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Abstract: Although combustion is considered a common source of ammonia (NH3) in the atmo-
sphere, field measurements quantifying such emissions of NH3 are still lacking. In this study, online
measurements of NH3 were performed by a cavity ring-down spectrometer, in the cold season at a
rural site in Xianghe on the North China Plain. We found that the NH3 concentrations were mostly
below 65 ppb during the study period. However, from 18 to 21 November 2017, a close burn event
(~100 m) increased the NH3 concentrations to 145.6 ± 139.9 ppb. Using a machine-learning technique,
we quantified that this burn event caused a significant increase in NH3 concentrations by 411%,
compared with the scenario without the burn event. In addition, the ratio of ∆NH3/∆CO during the
burn period was 0.016, which fell in the range of biomass burning. Future investigations are needed
to evaluate the impacts of the NH3 combustion sources on air quality, ecosystems, and climate in the
context of increasing burn events worldwide.

Keywords: random forest model; ammonia; burn events; combustion sources; China

1. Introduction

As an important alkaline gas in the atmosphere, atmospheric ammonia (NH3) has a
crucial influence on atmospheric chemistry and the nitrogen cycle [1,2]. It can react with
sulfuric acid (H2SO4) and nitric acid (HNO3), and enhance the formation of secondary
inorganic aerosols (SIAs) [3]. Additionally, NH3 can enhance the yield of secondary
organic aerosols (SOAs) through aqueous chemistry [4]. These particulate SIAs and SOAs
in the air decrease visibility, damage human health, and affect the climate [5–9]. After
deposition, NH3 can directly or indirectly affect terrestrial and aquatic ecosystems, such
as soil acidification, water eutrophication, and reduction in biodiversity [10–12]. Thus,
identifying and quantifying the sources of NH3 is essential to understanding its vital role
in atmospheric chemistry and reducing its negative impacts on the ecosystem and climate.

Although livestock waste and nitrogen fertilization are considered the most important
sources of NH3 emissions on a global or regional scale [13,14], NH3 is also emitted into
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the atmosphere during the fuel combustion process through pyrolysis [15]. Biomass
burning, such as forest fires, plays a critical role in NH3 emissions in rural areas. For
example, 1.4–8.2 and 0.7–2.6 Tg of NH3 were emitted from forest fires in Indonesia in
autumn in 2015, and Russia in July–August 2010, respectively [16,17], and 0.12 Mt of NH3
was emitted from agricultural crop residue burning in India from 2008 to 2009 [18]. In
urban areas, the nitrogen isotopic approach indicates that NH3 originated primarily from
combustion sources, including coal combustion, NH3 slip from power plants, and vehicle
exhausts [19–21]. A high-resolution global inventory revealed that NH3 emissions from
combustion sources continued to increase from 1960 to 2013 [22]. In China, an average of
8182 forest fires occurred from 1987 to 2007 [23]. The elevated fire frequencies were partially
due to climate change [24]. Thus, the impact of combustion sources on NH3 concentrations
and related consequences needs further attention.

China is a global hotspot of atmospheric NH3 emissions, with an annual increasing
rate of 1.9% [25]. Notably, the North China Plain (NCP) is confirmed to be the largest region
with high surface concentrations, and the highest emissions in China [26]. Despite the
pollution reduction actions implemented since 2013, severe haze pollution events still occur
in the cold season in this region. For example, the highest PM2.5 concentration reached
approximately 250 µg/m3 in winter in 2020 [27], and it was dominated by sulfate–nitrate–
ammonium (SNA), especially nitrate aerosols [28]. Recent studies have suggested that
NH3 plays an important role in determining nitrate concentrations [29,30]. Therefore, it
is necessary to observe the concentrations of NH3 and investigate its emission sources
in this region.

In this study, we performed online measurements of NH3 in the cold season in Xianghe,
a rural site in NCP. During the observation campaign, we detected an unexpected burn
event that had a significant influence on the NH3 concentrations. Finally, we attempted to
combine a novel machine-learning technique based on the random forest (RF) algorithm,
to quantify the impact of burn events. Such an understanding could be beneficial for
controlling NH3 emissions and further improving air quality in the future.

2. Data and Methods
2.1. Site Description

Since 2017, online measurements of NH3 concentrations have been performed in
Xianghe, NCP (39.75◦ N, 116.96◦ E) (Figure 1). The site is surrounded by residential areas
that lack tall buildings and obvious industrial emission sources. Based on its location in the
northern part of the NCP between Beijing (~45 km) and Tianjin (~70 km), the instruments
at the site can detect pollutants of urban, rural, background or mixed origins, reflecting the
complex changes in NH3 in the NCP.
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2.2. Data Sources
2.2.1. Measurements of NH3

Hourly concentrations of NH3 were measured at a high temporal resolution of 1 Hz,
online, using a standard cavity ring-down spectrometer (CRDS) (G2103, Picarro Inc., Santa
Clara, CA, USA). CRDS is a direct absorption technique that uses pulsed or continuous light
sources and has a significantly higher sensitivity than conventional spectrometers [31]. In
CRDS, two high reflectivity mirrors are used in the optical cavity to increase the absorption
optical path length, thereby enhancing the contrast of the absorption signal of NH3. The
CRDS setting measures how long it takes for the light to drop to a certain percentage of its
original intensity, and the “ring-down time” is used to calculate the concentration of NH3
in the cavity [32].

To prevent water vapor from affecting the NH3 spectrum, the manufacturer has
incorporated a correction procedure for the reported NH3 values [33]. In addition, to reduce
the adsorption of NH3, the Teflon tubing was insulated and warmed with heating tape
(~45.7 ◦C). Meanwhile, a filter was installed at the front of the inlet to induce ambient air
flow. According to the air conditions, the filter was replaced every 2 weeks to 1 month. The
instrument was placed in an air-conditioned cabin laboratory; more detailed descriptions
are documented elsewhere [34].

2.2.2. Other Supporting Data

Air pollutants and meteorological data are also used in this study. The hourly concen-
trations of SO2, NOx, CO, and PM2.5 were measured at the same height as NH3. Meteoro-
logical parameters, including temperature (T), relative humidity (RH), wind speed (WS),
and wind direction (WD), were obtained from the China Meteorological Administration
(http://data.cma.cn (accessed on 14 October 2021)).

2.2.3. Burn Event

During the observation campaign, a burn event occurred from 18 to 21 November, 2017.
This burn event was caused by the combustion of garbage in the nearby residential area, which
was approximately 100 m away from the observation site. The burned material was complex
and included discarded paper, kitchen waste, crop residues, weeds, branches, and leaves.

2.3. RF Models

The temporal variations in NH3 in this study demonstrated a cycle ranging from
4 to 7 days. These strong cycles are regional in nature and controlled by the passage
of cold fronts [35]. This unique temporal feature indicated that the results presented
are reproducible on a regular basis, and applicable for the RF model in predicting NH3
dynamics with meteorological conditions.

In this study, we used a machine-learning technique to quantify the influence of burn
events on NH3 concentrations. First, we established a model (RF1) with observed NH3
concentrations as the dependent variable, and predictors (meteorological parameters, time
predictors, and regional transport parameters) as the independent variables (Table 1). RF1
was trained on datasets during the nonburning period (8–17 and 22–30 November 2017).
The training set accounted for 80% of data, and the testing set included the remaining
20%. On the basis of RF1, a series of models (RF2–RF11) were established, according to the
relative importance of the predictor variables for eliminating or adding some predictors
(Table S1). A detailed evaluation of all the established models is provided in Table S2,
including the coefficients of determination (R2), the fraction of predictions within a factor of
2 (FAC2), mean bias, normalized mean bias, root-mean-square error (RMSE), and Pearson
correlation coefficient (PCC). The performance of RF5 was considered the best due to its
higher R2 and lower RMSE.

The RF models were developed using the rmweather R package. However, unlike
previous studies, we further adjusted two important parameters of RF5, namely, the number
of trees (ntree) and the number of variables split in each node (mtry). Mtry values from 1 to

http://data.cma.cn
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8 with an interval of 1, and ntree values from 50 to 500 with an interval of 50, were selected.
As shown in Figure S1, when ntree was 300 and mtry was 5, the simulation effect of the
model was best, as indicated by the higher R2 value and lower prediction error (MSE).

Table 1. All possible predictors for the RF models in this study.

Codes Prediction Variables Units

Meteorological parameters

T Air Temperature ◦C
WS Wind speed m/s
WD Wind direction degree
Pressure Atmospheric pressure hPa
RH Relative humidity %

Time parameters

day_Julian Date of the year (1–366) n/a
weekday Day of the week (1–7) n/a
hour Hour of the day (0–23) n/a

Air pollutants

PM2.5 Particulate matter µg/m3

NOx Nitrogen oxides µg/m3

NO2 Nitrogen dioxide µg/m3

SO2 Sulfur dioxide µg/m3

CO Carbon monoxide ppb
NO Nitrogen monoxide µg/m3

Regional transport parameter

cluster Back trajectory cluster n/a

After the RF model was adjusted and optimized, the testing datasets were randomly
selected to assess the correlation between the observed and predicted concentrations
(Figure S2), to ensure that this model could make better predictions. Finally, we used this
model to predict NH3 concentrations under the assumption of no burn events. To evaluate
the impact of the burn events (18–21 November 2017) on NH3 concentrations, relative
changes (R) between the observed concentrations (Cobserved) and predicted concentrations
(Cpredicted) for NH3 were defined using the following equation:

R =
Cobserved − Cpredicted

Cpredicted
× 100% (1)

3. Results and Discussion
3.1. Changes in Observed Concentrations of NH3

Hourly concentrations of NH3 were selected from 8 to 30 November 2017 in this study,
and their temporal variations are shown in Figure 2. We found that the NH3 concentrations
were mostly below 65 ppb during the study period, with the exception of 18–21 November,
when a burn event occurred. Therefore, in the following sections, we have separated
the dataset into two periods, i.e., the burning period (18–21 November 2017) and the
nonburning period (8–17 and 22–30 November 2017).

During the nonburning period, the NH3 concentrations in Xianghe ranged from 1.9 to
154.3 ppb, with a mean value of 25.4 ± 16.9 ppb. The NH3 concentrations in this study were
comparable to the urban observations (28.5 ± 11.6 ppb) in autumn in Beijing [36]. Moreover,
the average NH3 level measured in Xianghe was generally similar to observations in India
(24.6 ± 5.0 ppb) [37], but much higher than those in Europe (1.2 ppb) and the United States
(2.4 ppb) in autumn [10,38].

After the start of the burn event, the observed concentrations of NH3 significantly
increased, with the highest value exceeding 600 ppb. In addition, three concentration spikes
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occurred: at 7:00, 18 November (281.6 ppb); 2:00, 19 November (547.1 ppb); and 10:00,
20 November (601.4 ppb). During the burning period, the average NH3 concentration was
145.6 ± 139.9 ppb, which is five times that in a previous report (26.6 ± 13.9 ppb) at the
Xianghe site in the cold season [39].
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In addition to NH3, the concentrations of other air pollutants also significantly in-
creased during the burning period, e.g., by 209.7%, 84.3%, 69.1%, and 79.8% for PM2.5, SO2,
NOx, and CO, respectively (Figure S3). These air pollutants had a positive correlation with
NH3 during the burning period, especially CO (R2 = 0.74, p < 0.01) and NOx (R2 = 0.72,
p < 0.01). However, their positive correlation was not significant in the nonburning period
(Table S3). These results all indicated the potential influence of combustion sources on
air quality. In addition, the intensity of combustion was closely related to weather condi-
tions [40]. In our study, the NH3 concentrations were higher during the burning period
when the air mass originated from the northwest, and had a higher RH (56.2 ± 26.3%) and
lower T (−1.1 ± 5 ◦C) and WS (1.6 ± 1.5 m s−1) (Figure S4). To quantify the impact of
the burn events on NH3, we predicted NH3 concentrations without burn events using a
machine-learning technique in the next section.

3.2. Changes in Predicted Concentrations of NH3

We first established a model (RF5) to predict the NH3 concentrations assuming that
no burn event occurred from 18 to 21 November 2017. The predicted results are shown in
Figure 2, with all predicted concentrations lower than 65 ppb. In addition, the temporal
variation in predicted NH3 concentrations was basically similar to its observed value in the
nonburning period. This finding indicates that the concentrations and temporal pattern of
NH3 will not change significantly if there is no burn event.

The difference between the predicted and observed concentrations of NH3 allows us to
quantify the impacts of burn events on NH3 emissions. As shown in Figure 3 and Table S4,
remarkable differences were not found between the observed and predicted concentrations
of NH3 before the burn event, indicating that our model captured the variations in NH3
concentrations well. However, the observed concentration of NH3 increased drastically
compared with the predicted value during the burning period, with increased ratios of
336.9%, 561.1%, and 652.2% in the first three days of the burn event. At the end of the
burning period and with the resumption of “normal emissions”, the predicted values were
consistent with the observations after 22 November. Overall, the observed and predicted
concentrations of NH3 during the burning period were 145.6 ± 139.9 and 28.5 ± 10.4 ppb,
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respectively, resulting in an increase of 411%. These results indicated that the combustion
source is an important factor of NH3 emissions.
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3.3. Dominant Source of NH3 during the Burn Event

Although the overall impacts of the burn event on NH3 concentrations were identified
in the above sections, the potential dominant source contributing to the substantial increase
in NH3 was still unclear. To address this concern, we further investigated the relationship
between NH3 and other air pollutants.

As shown in Figure 4, we found that the ratio of NH3 to other air pollutants signifi-
cantly increased after the burn event occurred. Compared with those before burn events,
the ratio of NH3/PM2.5, NH3/SO2, NH3/NOx, and NH3/CO increased by a factor of 1.6,
2.5, 3.0, and 5.4 during the burning period, respectively (Table S5). This finding indicated
a dramatic change of CO during the burn event. Thus, CO was selected as a tracer of
fire [41]. Then, the emission ratio (ER) was defined as ∆NH3/∆CO in our study [17,42],
where ∆NH3 and ∆CO represented the difference in the corresponding concentrations of
NH3 and CO before and during the burn event. In this study, the calculated ∆NH3/∆CO
value was 0.016, which was consistent with the characteristics of biomass burning (Table 2).
Therefore, the dominant source emitting substantial NH3 might be biomass burning in
this burn event. Future control measures on NH3 emissions should pay more attention to
potential contributions from biomass burning.

Table 2. Summary of the NH3 concentration and its emission ratio (ER = ∆NH3/∆CO) in different
burn events.

Focus Region Event
NH3 (ppb)

ER (ppb/ppb) Reference
Range Average

Xianghe, China Biomass burning 2.4–601.4 145.6 ± 139.9 0.016 this study
Shenyang, China Vehicular exhaust 61.8–248.3 152.9 ± 55.6 – [43]
Canada and U.S. Forest fire 7–130 – 0.012 [44]
Yucatan, Mexico Biomass burning – – 0.022 [45]
California, U.S. Biomass burning – – 0.019 [46]
Colorado, U.S. Wildfires <150 – 0.027 [47]

the Flint Hills, U.S. Grassland fire – 95 – [48]
Western U.S. Wildfires >400 – – [49]
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4. Conclusions

In this study, the NH3 concentrations were measured by the CRDS technique in the
cold season at a rural site in the NCP. The hourly NH3 concentrations were mostly below
65 ppb during the study period. However, an unexpected burn event caused a significant
increase in NH3 concentration from 18 to 21 November 2017, with peak values exceeding
600 ppb. With the aid of a machine-learning technique, we found that the burn event
could cause a 411% increase in the NH3 concentration. Notably, the ∆NH3/∆CO ratio was
0.016 during the burning period, indicating that biomass burning might be the dominant
emission source. Due to the increasing occurrence of burn events worldwide, the impacts
of the combustion sources of NH3 on air quality, ecosystems, and climate need to be
further explored.
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average of the ratio between NH3 and other air pollutants before and during the burn event.
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