Evaluation of Fengyun-4A Detection Accuracy: A Case Study of the Land Surface Temperature Product for Hunan Province, Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Products
FY-4A/AGRI LST
Himawari-8/AHI LST
2.2.2. In Situ Measured LST Data
2.2.3. Reanalysis Products
CLDAS
ERA5-Land
2.2.4. Auxiliary Data
2.3. Methods
2.3.1. Research Methods
- Acquire FY-4A/AGRI LST and Himawari-8/AHI LST products from 1 October 2019 0 h to 30 September 2021 23 h and decode and extract data for Hunan Province; carry out nearest-neighbor sampling to match 1 h remote sensing products with in situ measurements. The direct authenticity test and assessment based on measured data use this matched dataset.
- Obtain the CLDAS ground surface temperature data and the ERA5-Land skin temperature data of ERA5-Land for the same time period as step 1. Resample the CLDAS and ERA5-Land products to the FY-4A and Himawari-8 grids using three points inverse distance weighting, respectively, and match them hour by hour to form the FY-4A-CLDAS-ERA5-Land and Himawari-8-CLDAS-ERA5-Land datasets. The TCA-based LST accuracy assessment was carried out only for grids for which all three datasets were significantly positively correlated [20]; there were >100 data triplets [39].
- Identify the influencing mechanisms of environmental factors on FY-4A LST products by analyzing the effects of topography, land cover, landform, soil moisture, vegetation, and other environmental factors on TCA errors.
2.3.2. Performance Indicators
Direct Authenticity Test
Triple Collocation Analysis
3. Results
3.1. Direct Authenticity Test and Evaluation of FY-4A LST Using In Situ Measurement
3.2. FY-4A LST Authenticity Test Using TCA
3.3. Analysis of the Mechanism of the Influence of Environmental Factors on the Performance of FY-4A/LST
4. Discussion
5. Conclusions
- The FY-4A LST product captured the surface temperature well for Hunan Province (R = 0.893, Rho = 0.915), but it generally underestimated LST (Bias = −0.6295 °C) and there was a large random error (RMSE = 8.588 °C, ubRMSE = 5.842 °C); observation accuracy was worse than for Himawari-8 LST.
- The FY-4A LST product performed better in terms of accuracy for the central-eastern area, the northern area except Dongting Lake, and the central-southern parts of Hunan Province than for other parts of the province. The greatest accuracy was for the Hengyang basin in central Hunan. Accuracy decreased in the western and southern mountainous areas and the Dongting Lake area, and accuracy was the lowest in the mountainous areas along the southern and northwestern borders.
- When the surface temperature is high (>25 °C), remote sensing detection will significantly underestimate LST, and accuracy is greatly affected by topography and terrain; product accuracy decreases as elevation increases, and the change trend is basically consistent with change in elevation. FY-4A LST is most accurate when the land cover is Cultivated land or Artificial surfaces and the landform is Platform. Accuracy changes between day and night and seasonally, and decreases as land cover becomes more heterogeneous, mountain relief increases, or slope and NDVI increase; accuracy increases as soil moisture increases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Station Number | Station Name | Latitude (°) | Longitude (°) | Elevation (m) | Land Cover Type | Geomorphic Type |
---|---|---|---|---|---|---|
1 | Longshan | 29.46 | 109.44 | 488.7 | Artificial surfaces | Plain |
2 | Sangzhi | 29.4 | 110.16 | 318.8 | Artificial surfaces | Hill |
3 | Zhangjiajie | 29.12 | 110.42 | 218.5 | Artificial surfaces | Platform |
4 | Shimen | 29.58 | 111.36 | 116.9 | Artificial surfaces | Platform |
5 | Cili | 29.43 | 111.09 | 167.7 | Forest | Hill |
6 | Lixian | 29.67 | 111.73 | 38.1 | Cultivated land | Platform |
7 | Linli | 29.47 | 111.67 | 89.3 | Forest | Platform |
8 | Nanxian | 29.35 | 112.43 | 40.3 | Cultivated land | Plain |
9 | Huarong | 29.54 | 112.6 | 49.5 | Artificial surfaces | Platform |
10 | Anxiang | 29.41 | 112.2 | 33.6 | Cultivated land | Plain |
11 | Yueyang | 29.38 | 113.09 | 53 | Artificial surfaces | Plain |
12 | Linxiang | 29.48 | 113.45 | 60.4 | Artificial surfaces | Plain |
13 | Huayuan | 28.58 | 109.46 | 341 | Artificial surfaces | Platform |
14 | Baojing | 28.68 | 109.65 | 438.1 | Cultivated land | Hill |
15 | Yongshun | 29.01 | 109.84 | 268.2 | Cultivated land | Platform |
16 | Guzhang | 28.68 | 109.98 | 294 | Forest | Platform |
17 | Jishou | 28.24 | 109.68 | 254.6 | Artificial surfaces | Plain |
18 | Yuanling | 28.46 | 110.4 | 151.6 | Artificial surfaces | Platform |
19 | Luxi | 28.23 | 110.21 | 186 | Forest | Platform |
20 | Chenxi | 28.01 | 110.19 | 152.8 | Artificial surfaces | Plain |
21 | Taoyuan | 28.91 | 111.48 | 48.7 | Artificial surfaces | Plain |
22 | Changde | 29.12 | 111.68 | 150.6 | Forest | Hill |
23 | Hanshou | 28.92 | 111.96 | 31.9 | Artificial surfaces | Plain |
24 | Taojiang | 28.51 | 112.17 | 136.9 | Forest | Platform |
25 | Anhua | 28.38 | 111.25 | 196 | Artificial surfaces | Platform |
26 | Yuanjiang | 28.85 | 112.37 | 37 | Water body | Plain |
27 | Xiangyin | 28.73 | 112.93 | 63 | Forest | Platform |
28 | Heshan | 28.57 | 112.38 | 46.3 | Artificial surfaces | Platform |
29 | Ningxiang | 28.25 | 112.56 | 74.7 | Artificial surfaces | Plain |
30 | Huanghua | 28.21 | 113.2 | 101.4 | Cultivated land | Platform |
31 | Miluo | 28.86 | 113.11 | 82.5 | Forest | Platform |
32 | Pingjiang | 28.71 | 113.57 | 106.3 | Artificial surfaces | Plain |
33 | Changsha | 28.11 | 112.79 | 119 | Forest | Platform |
34 | Liuyang | 28.16 | 113.63 | 101.1 | Forest | Plain |
35 | Fenghuang | 27.95 | 109.6 | 349.6 | Artificial surfaces | Platform |
36 | Mayang | 27.87 | 109.8 | 176.6 | Artificial surfaces | Plain |
37 | Xinhuang | 27.37 | 109.16 | 355.5 | Forest | Platform |
38 | Zhijiang | 27.45 | 109.68 | 272.2 | Artificial surfaces | Plain |
39 | Huaihua | 27.61 | 110.03 | 286.9 | Cultivated land | Plain |
40 | Xupu | 27.92 | 110.6 | 204 | Forest | Plain |
41 | Hongjiang | 27.21 | 109.84 | 252 | Artificial surfaces | Hill |
42 | Dongkou | 27.03 | 110.61 | 339.5 | Cultivated land | Platform |
43 | Lengshuijiang | 27.7 | 111.44 | 249.2 | Artificial surfaces | Plain |
44 | Xinhua | 27.75 | 111.29 | 211.9 | Artificial surfaces | Plain |
45 | Lianyuan | 27.71 | 111.68 | 249.2 | Artificial surfaces | Hill |
46 | Loudishi | 27.69 | 112 | 205.8 | Forest | Platform |
47 | Xuefengshan | 27.32 | 110.41 | 1420 | Forest | High relief mountain |
48 | Shaoyangshi | 27.18 | 111.45 | 311 | Cultivated land | Platform |
49 | Longhui | 27.13 | 111.01 | 308.4 | Cultivated land | Platform |
50 | Xinshao | 27.34 | 111.45 | 294.1 | Forest | Platform |
51 | Shaodong | 27.24 | 111.74 | 252.6 | Artificial surfaces | Plain |
52 | Shaoshan | 27.93 | 112.53 | 88.3 | Cultivated land | Platform |
53 | Xiangxiang | 27.75 | 112.51 | 86.9 | Forest | Plain |
54 | Xiangtan | 27.88 | 112.83 | 63.8 | Cultivated land | Platform |
55 | Shuangfeng | 27.45 | 112.17 | 100 | Artificial surfaces | Platform |
56 | Nanyue | 27.3 | 112.69 | 1265.9 | Forest | Medium relief mountain |
57 | Hengshan | 27.26 | 112.84 | 159.1 | Forest | Hill |
58 | Hengdong | 27.05 | 112.98 | 109.4 | Forest | Platform |
59 | Youxian | 27.06 | 113.35 | 115.2 | Forest | Platform |
60 | Zhuzhou | 27.87 | 113.17 | 74.6 | Artificial surfaces | Platform |
61 | Lilin | 27.64 | 113.51 | 72.7 | Artificial surfaces | Platform |
62 | Jingzhou | 26.56 | 109.67 | 320.3 | Artificial surfaces | Plain |
63 | Huitong | 26.88 | 109.72 | 281.4 | Forest | Platform |
64 | Tongdao | 26.17 | 109.78 | 397.5 | Artificial surfaces | Plain |
65 | Suining | 26.59 | 110.15 | 310.3 | Artificial surfaces | Platform |
66 | Xinning | 26.46 | 110.83 | 346.1 | Forest | Platform |
67 | Wugang | 26.74 | 110.64 | 341 | Artificial surfaces | Plain |
68 | Chengbu | 26.37 | 110.31 | 477.7 | Artificial surfaces | Plain |
69 | Shaoyangxian | 27 | 111.29 | 283.3 | Cultivated land | Hill |
70 | Lengshuitan | 26.5 | 111.62 | 192.8 | Cultivated land | Plain |
71 | Yongzhoushi | 26.23 | 111.62 | 172.6 | Artificial surfaces | Plain |
72 | Dongan | 26.4 | 111.29 | 169 | Artificial surfaces | Plain |
73 | Qiyang | 26.59 | 111.86 | 113.2 | Artificial surfaces | Plain |
74 | Qidong | 26.76 | 112.08 | 218.9 | Cultivated land | Platform |
75 | Hengyangxian | 26.97 | 112.37 | 90.8 | Artificial surfaces | Plain |
76 | Hengyang | 26.89 | 112.6 | 104.9 | Artificial surfaces | Platform |
77 | Changning | 26.41 | 112.39 | 116.6 | Artificial surfaces | Platform |
78 | Hengnan | 26.76 | 112.69 | 137 | Grassland | Platform |
79 | Leiyang | 26.43 | 112.83 | 135 | Cultivated land | Platform |
80 | Anren | 26.71 | 113.26 | 101.8 | Artificial surfaces | Plain |
81 | Chaling | 26.79 | 113.55 | 136.2 | Grassland | Plain |
82 | Yanling | 26.48 | 113.79 | 268.8 | Cultivated land | Plain |
83 | Yongxing | 26.13 | 113.11 | 167.6 | Artificial surfaces | Platform |
84 | Guidong | 26.08 | 113.94 | 835.9 | Artificial surfaces | Hill |
85 | Shuangpai | 26.03 | 111.66 | 205 | Artificial surfaces | Platform |
86 | Daoxian | 25.53 | 111.6 | 192.2 | Artificial surfaces | Plain |
87 | Ningyuan | 25.59 | 111.96 | 244.2 | Grassland | Plain |
88 | Jiangyong | 25.28 | 111.31 | 269 | Forest | Plain |
89 | Xintian | 25.91 | 112.21 | 224.2 | Artificial surfaces | Platform |
90 | Chenzhou | 25.74 | 112.98 | 368.6 | Forest | Hill |
91 | Guiyang | 25.75 | 112.72 | 329.1 | Artificial surfaces | Hill |
92 | Jiahe | 25.58 | 112.37 | 214.5 | Grassland | Hill |
93 | Lanshan | 25.38 | 112.2 | 277 | Artificial surfaces | Plain |
94 | Yizhang | 25.41 | 112.94 | 222.8 | Forest | Hill |
95 | Linwu | 25.27 | 112.55 | 292 | Artificial surfaces | Plain |
96 | Zixing | 25.97 | 113.22 | 139.3 | Artificial surfaces | Platform |
97 | Rucheng | 25.51 | 113.68 | 645.6 | Forest | Plain |
98 | Jianghua | 25.18 | 111.57 | 265.7 | Artificial surfaces | Hill |
99 | Pumanxiang | 25.65 | 112.54 | 291 | Cultivated land | Platform |
References
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Shuai, S.; Chunxiang, S.; Xiao, L.; Shuai, H.; Zhiwei, J.; Tao, Z. Assessment of ground temperature simulation in China by different land surface models based on station observations. J. Appl. Meteorol. Sci. 2017, 28, 737–749. [Google Scholar]
- Mannstein, H. Surface energy budget, surface temperature and thermal inertia. In Remote Sensing Applications in Meteorology and Climatology; Springer: Berlin/Heidelberg, Germany, 1987; pp. 391–410. [Google Scholar]
- Sellers, P.; Hall, F.; Asrar, G.; Strebel, D.; Murphy, R.E. The first ISLSCP field experiment (FIFE). Bull. Am. Meteorol. Soc. 1988, 69, 22–27. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Wang, D.; Sheng, Y. The impact of energy consumption on the surface urban heat island in China’s 32 major cities. Remote Sens. 2017, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.C.; Liu, H.; Cheng, J. Evaluation and characteristic research in diurnal surface temperature cycle in China using FY-2F data. Natl. Remote Sens. Bull. 2019, 23, 570–581. [Google Scholar]
- Quan, W.; Chen, H.; Han, X.; Ma, Z. Validation of the modified Becker’s split-window approach for retrieving land surface temperature from AVHRR. J. Meteorol. Res. 2015, 29, 823–836. [Google Scholar] [CrossRef]
- Zhu, J.H.; Zhu, S.Y.; Yu, F.C.; Zhang, G.X.; Xu, Y.M. A downscaling method for ERA5 reanalysis land surface temperature over urban and mountain areas. Natl. Remote Sens. Bull. 2021, 25, 1778–1791. [Google Scholar]
- Fan, J.; Tan, S.; Han, Q.; Li, J. Evaluation of six satellite-based soil moisture products based on in situ measurements in Hunan Province, Central China. Front. Environ. Sci. 2022, 56, 829046. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, L.; Tang, S.; Gao, L.; Chen, L.; Zheng, W.; Han, X.; Chen, J.; Shao, J. General Comparison of FY-4A/AGRI with Other GEO/LEO Instruments and Its Potential and Challenges in Non-meteorological Applications. Front. Earth Sci. 2019, 6, 224. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Li, H.; Göttsche, F.-M.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sens. Environ. 2019, 225, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Biard, J.C.; Hulley, G.C.; Privette, J.L.; Hook, S.J.; Olioso, A.; Göttsche, F.M.; Radocinski, R.; Román, M.O.; Yu, Y. Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sens. Environ. 2014, 154, 19–37. [Google Scholar] [CrossRef]
- Martin, M.A.; Ghent, D.; Pires, A.C.; Göttsche, F.-M.; Cermak, J.; Remedios, J.J. Comprehensive in situ validation of five satellite land surface temperature data sets over multiple stations and years. Remote Sens. 2019, 11, 479. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Ma, M. Scale mismatch between in situ and remote sensing observations of land surface temperature: Implications for the validation of remote sensing LST products. IEEE Geosci. Remote Sens. Lett. 2014, 12, 497–501. [Google Scholar]
- Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.; Remedios, J. Land surface temperature product validation best practice protocol. Version 1.1. In Best Practice for Satellite-Derived Land Product Validation; WGCV/CEOS: Washington, DC, USA, 2018; Volume 60. [Google Scholar]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. Ocean. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- Gruber, A.; Su, C.-H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 200–211. [Google Scholar] [CrossRef]
- Chen, F.; Crow, W.T.; Colliander, A.; Cosh, M.H.; Jackson, T.J.; Bindlish, R.; Reichle, R.H.; Chan, S.K.; Bosch, D.D.; Starks, P.J. Application of triple collocation in ground-based validation of Soil Moisture Active/Passive (SMAP) level 2 data products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 489–502. [Google Scholar] [CrossRef]
- Miralles, D.G.; Crow, W.T.; Cosh, M.H. Estimating spatial sampling errors in coarse-scale soil moisture estimates derived from point-scale observations. J. Hydrometeorol. 2010, 11, 1423–1429. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Scipal, K.; Parinussa, R.M.; Liu, Y.Y.; Wagner, W.; De Jeu, R.A.; Naeimi, V. Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci. 2010, 14, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Luo, Y.; Tan, S.; Ma, W.; Zhang, H.; Liu, F. Accuracy evaluation of the FY-3 C/MWRI land surface temperature product in Hunan Province. Remote Sens. Land Resour. 2021, 1, 249–255. [Google Scholar]
- Wu, P.; Yin, Z.; Zeng, C.; Duan, S.-B.; Göttsche, F.-M.; Ma, X.; Li, X.; Yang, H.; Shen, H. Spatially continuous and high-resolution land surface temperature product generation: A review of reconstruction and spatiotemporal fusion techniques. IEEE Geosci. Remote Sens. Mag. 2021, 9, 112–137. [Google Scholar] [CrossRef]
- Yang, J.; Ren, J.; Sun, D.; Xiao, X.; Xia, J.C.; Jin, C.; Li, X. Understanding land surface temperature impact factors based on local climate zones. Sustain. Cities Soc. 2021, 69, 102818. [Google Scholar] [CrossRef]
- Song, J.; Du, S.; Feng, X.; Guo, L. The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models. Landsc. Urban Plan. 2014, 123, 145–157. [Google Scholar] [CrossRef]
- Guo, A.; Yang, J.; Sun, W.; Xiao, X.; Cecilia, J.X.; Jin, C.; Li, X. Impact of urban morphology and landscape characteristics on spatiotemporal heterogeneity of land surface temperature. Sustain. Cities Soc. 2020, 63, 102443. [Google Scholar] [CrossRef]
- Xiao, R.; Weng, Q.; Ouyang, Z.; Li, W.; Schienke, E.W.; Zhang, Z. Land surface temperature variation and major factors in Beijing, China. Photogramm. Eng. Remote Sens. 2008, 74, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Koc, C.B.; Osmond, P.; Peters, A.; Irger, M. Understanding land surface temperature differences of local climate zones based on airborne remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2724–2730. [Google Scholar]
- Yang, J.; Wong, M.S.; Menenti, M.; Nichol, J. Study of the geometry effect on land surface temperature retrieval in urban environment. ISPRS J. Photogramm. Remote Sens. 2015, 109, 77–87. [Google Scholar] [CrossRef]
- Choi, Y.-Y.; Suh, M.-S. Development of Himawari-8/Advanced Himawari Imager (AHI) land surface temperature retrieval algorithm. Remote Sens. 2018, 10, 2013. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; van Dijk, A.I.; Renzullo, L.J.; Xu, Z.; He, J.; Tian, S.; Zhou, J.; Li, H. On agricultural drought monitoring in Australia using Himawari-8 geostationary thermal infrared observations. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102153. [Google Scholar] [CrossRef]
- Yu, Y.; Tarpley, D.; Privette, J.L.; Goldberg, M.D.; Raja, M.K.R.V.; Vinnikov, K.Y.; Xu, H. Developing Algorithm for Operational GOES-R Land Surface Temperature Product. IEEE Trans. Geosci. Remote Sens. 2009, 47, 936–951. [Google Scholar]
- Shi, C.; Xie, Z.; Qian, H.; Liang, M.; Yang, X. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci. 2011, 54, 1430–1440. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Russo, I.M.; Di Bisceglie, M.; Galdi, C.; Lavalle, M.; Zuffada, C. Entropy-Based Coherence Metric for Land Applications of GNSS-R. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [Google Scholar] [CrossRef]
- Fan, J.; Luo, M.; Han, Q.; Liu, F.; Huang, W.; Tan, S. Evaluation of SMOS, SMAP, AMSR2 and FY-3C soil moisture products over China. PLoS ONE 2022, 17, e0266091. [Google Scholar] [CrossRef] [PubMed]
- McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys. Res. Lett. 2014, 41, 6229–6236. [Google Scholar] [CrossRef]
- Draper, C.; Reichle, R.; de Jeu, R.; Naeimi, V.; Parinussa, R.; Wagner, W. Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ. 2013, 137, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Sekertekin, A.; Bonafoni, S. Sensitivity Analysis and Validation of Daytime and Nighttime Land Surface Temperature Retrievals from Landsat 8 Using Different Algorithms and Emissivity Models. Remote Sens. 2020, 12, 2776. [Google Scholar] [CrossRef]
- Sekertekin, A.; Bonafoni, S. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sens. 2020, 12, 294. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, H.; Sun, L.; Yang, Y.; Hu, T.; Bian, Z.; Cao, B.; Du, Y.; Liu, Q. An Operational Split-Window Algorithm for Retrieving Land Surface Temperature from Geostationary Satellite Data: A Case Study on Himawari-8 AHI Data. Remote Sens. 2020, 12, 2613. [Google Scholar] [CrossRef]
- Chang, Y.; Xiao, J.; Li, X.; Frolking, S.; Zhou, D.; Schneider, A.; Weng, Q.; Yu, P.; Wang, X.; Li, X.; et al. Exploring diurnal cycles of surface urban heat island intensity in Boston with land surface temperature data derived from GOES-R geostationary satellites. Sci. Total Environ. 2021, 763, 144224. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Wang, H.; Mao, K.; Yuan, Z.; Shi, J.; Cao, M.; Qin, Z.; Duan, S.; Tang, B. A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning. Remote Sens. Environ. 2021, 265, 112665. [Google Scholar] [CrossRef]
- Xu, H.; Yu, Y.; Tarpley, D.; Göttsche, F.; Olesen, F. Evaluation of GOES-R Land Surface Temperature Algorithm Using SEVIRI Satellite Retrievals with In Situ Measurements. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3812–3822. [Google Scholar] [CrossRef]
Data Category | Data Name | Time Period | Temporal Resolution | Spatial Resolution |
---|---|---|---|---|
Remote sensing products | FY-4A/AGRI LST | 1 October 2019 0 h–30 September 2019 23 h | 1 h | 4 km |
Himawari-8/AHI LST | 1 October 2019 0 h–30 September 2019 23 h | 1 h | 0.045° | |
In situ measured data | In situ measured LST from CMA stations | 1 October 2019 0 h–30 September 2019 23 h | 1 h | / |
Reanalysis products | CLDAS LST | 1 October 2019 0 h–30 September 2019 23 h | 1 h | 0.0625° |
ERA5-Land LST | 1 October 2019 0 h–30 September 2019 23 h | 1 h | 0.1° | |
Auxiliary data | NASA ASTER GDEM v3 | 2021 | / | 30 m |
China’s GlobalLand30 v2020 | 2020 | / | 30 m | |
Geomorphic type data from IGSNRR, CAS | 2009 | / | 1:1,000,000 | |
Soil moisture data retrieval from SMAP | 1 October 2019– 30 September 2019 | 1 d | 36 km | |
NDVI data of NASA VNP13A2 | 22 September 2019– 30 March 2021 | 16 d | 1 km |
Product | R | Bias | Biasr | RMSE | ubRMSE | Data Quantity | |
---|---|---|---|---|---|---|---|
FY-4A | overall | 0.893 | −6.295 | 0.303 | 8.588 | 5.842 | 5.394 × 105 |
daytime | 0.920 | −9.244 | 0.336 | 11.078 | 6.105 | 2.181 × 105 | |
nighttime | 0.864 | −4.294 | 0.265 | 6.365 | 4.699 | 3.213 × 105 | |
Himawari-8 | overall | 0.926 | −4.933 | 0.238 | 7.508 | 5.660 | 5.191 × 105 |
daytime | 0.923 | −7.413 | 0.247 | 9.606 | 6.110 | 2.368 × 105 | |
nighttime | 0.849 | −2.854 | 0.219 | 5.124 | 4.256 | 2.823 × 105 |
Factors | Classification | R | Bias | Biasr | RMSE | ubRMSE | Data Quantity |
---|---|---|---|---|---|---|---|
Land surface temperature (°C) | −20–3 | 0.333 | −0.276 | 0.937 | 3.179 | 3.167 | 0.316 × 105 |
3–26 | 0.778 | −4.791 | 0.316 | 6.779 | 4.795 | 3.301 × 105 | |
26–49 | 0.673 | −9.031 | 0.274 | 10.141 | 4.613 | 1.617 × 105 | |
49–72 | 0.333 | −21.512 | 0.401 | 21.868 | 3.929 | 0.16 × 105 | |
Seasons | Spring | 0.849 | −6.446 | 0.306 | 8.630 | 5.737 | 0.972 × 105 |
Summer | 0.756 | −8.137 | 0.261 | 10.160 | 6.084 | 1.277 × 105 | |
Autumn | 0.854 | −6.573 | 0.290 | 8.829 | 5.895 | 1.624 × 105 | |
Winter | 0.819 | −4.354 | 0.444 | 6.637 | 5.009 | 1.521 × 105 | |
Elevation (m) | 32–379 | 0.895 | −6.378 | 0.303 | 8.652 | 5.845 | 5.011 × 105 |
379–726 | 0.874 | −6.348 | 0.344 | 8.182 | 5.163 | 0.233 × 105 | |
726–1073 | 0.848 | −5.954 | 0.362 | 8.297 | 5.779 | 0.052 × 105 | |
1073–1420 | 0.847 | −2.125 | 0.150 | 6.051 | 5.665 | 0.099 × 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Han, Q.; Wang, S.; Liu, H.; Chen, L.; Tan, S.; Song, H.; Li, W. Evaluation of Fengyun-4A Detection Accuracy: A Case Study of the Land Surface Temperature Product for Hunan Province, Central China. Atmosphere 2022, 13, 1953. https://doi.org/10.3390/atmos13121953
Fan J, Han Q, Wang S, Liu H, Chen L, Tan S, Song H, Li W. Evaluation of Fengyun-4A Detection Accuracy: A Case Study of the Land Surface Temperature Product for Hunan Province, Central China. Atmosphere. 2022; 13(12):1953. https://doi.org/10.3390/atmos13121953
Chicago/Turabian StyleFan, Jiazhi, Qinzhe Han, Songqi Wang, Hailei Liu, Leishi Chen, Shiqi Tan, Haiqing Song, and Wei Li. 2022. "Evaluation of Fengyun-4A Detection Accuracy: A Case Study of the Land Surface Temperature Product for Hunan Province, Central China" Atmosphere 13, no. 12: 1953. https://doi.org/10.3390/atmos13121953
APA StyleFan, J., Han, Q., Wang, S., Liu, H., Chen, L., Tan, S., Song, H., & Li, W. (2022). Evaluation of Fengyun-4A Detection Accuracy: A Case Study of the Land Surface Temperature Product for Hunan Province, Central China. Atmosphere, 13(12), 1953. https://doi.org/10.3390/atmos13121953