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Abstract: Land surface temperature (LST) is an important parameter in determining surface energy
balance and a fundamental variable detected by the advanced geostationary radiation imager (AGRI),
the main payload of FY-4A. FY-4A is the first of a new generation of Chinese geostationary satellites,
and the detection product of the satellite has not been extensively validated. Therefore, it is important
to conduct a comprehensive assessment of this product. In this study, the performance of the
FY-4A LST product in the Hunan Province was authenticity tested with in situ measurements,
triple collocation analyzed with reanalysis products, and impact analyzed with environmental
factors. The results confirm that FY-4A captures LST well (R = 0.893, Rho = 0.915), but there is a
general underestimation (Bias = −0.6295 ◦C) and relatively high random error (RMSE = 8.588 ◦C,
ubRMSE = 5.842 ◦C). In terms of accuracy, FY-4A LST is more accurate for central-eastern, northern,
and south-central Hunan Province and less accurate for western and southern mountainous areas and
Dongting Lake. FY-4A LST is not as accurate as Himawari-8 LST; its accuracy also varies seasonally
and between day and night. The accuracy of FY-4A LST decreases as elevation, in situ measured
LST, surface heterogeneity, topographic relief, slope, or NDVI increase and as soil moisture decreases.
FY-4A LST is also more accurate when the land cover is cultivated land or artificial surfaces or when
the landform is a platform for other land covers and landforms. The conclusions drawn from the
comprehensive analysis of the large quantity of data are generalizable and provide a quantitative
baseline for assessing the detection capability of the FY-4A satellite, a reference for determining
improvement in the retrieval algorithm, and a foundation for the development and application of
future domestic satellite products.

Keywords: FY-4A/AGRI; land surface temperature; in situ measurement; triple collocation analysis;
environmental factors; comprehensive evaluation

1. Introduction

Land surface processes are important in Earth system research, and accurate modeling
of the state of the land surface is essential for predicting the weather, modeling climate, and
simulating the water cycle [1,2]. Land surface temperature (LST), which characterizes the
state of surface heat balance, is an important physical parameter in modeling land surface
processes [3,4], whether in climate, hydrology, ecology, biogeochemistry, or agricultural
research [5–7].
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LST is usually measured by in situ observation, predicted by models, or retrieved
from satellite-based remote sensing data. In situ measurements are accurate, but recording
stations are sparsely distributed, and their data do not meet the needs of regional-scale
research or applications [8]. Models can process long LST time series with high spatial
and temporal resolutions, but several input parameters are required, and the accuracy
of the product is compromised by land surface inhomogeneity, land cover diversity, and
difficulties in parameterizing land surface processes [2]. Satellite-based remote sensing is
the principal method of detecting LST, and it provides real-time spatial and temporal distri-
butions of surface temperature at regional and global scales [9]. Of the many techniques
used for remote sensing, geostationary satellite-based remote sensing technology uses
measurements in the thermal infrared (TIR) spectral bands to obtain LST at high temporal
and spatial resolutions.

Remote sensing products require continuous comprehensive assessments to improve
both detection technology and product performance [10]. Such activity promotes their
use. Thus, new satellite detection technology and new products must be evaluated. The
Fengyun-4 series (FY-4) represents the second generation of Chinese geostationary meteo-
rological satellites. The prototype satellite FY-4A was launched on 11 December 2016. Its
successful launch and the applications it carries make it a key component of the geosyn-
chronous satellite constellation [11]. The advanced geostationary radiation imager (AGRI),
the primary instrument of satellite payload, was designed principally to image land sur-
face, atmosphere, and cloud targets with high spatial and temporal resolution [12]. FY-4A
products, from the most advanced integrated atmospheric observation satellite of its time,
have not been comprehensively evaluated.

Validating remote sensing products uses many methods of testing and assessment,
such as ground-based validation [13], radiance-based validation [14], and satellite product
comparison [15]. Temperature and radiance measured in situ provide the most accurate
data for validation [16]. Testing product accuracy by directly comparing product data
with in situ data is conceptually straightforward, but land surface heterogeneity and scale
mismatch can lead to errors in this type of validation [17]. Direct comparison of satellite
products may not generate noise-free results and is therefore inadequate for evaluating a
remote sensing product in terms of other products [18]. Triple collocation analysis (TCA) is a
method of calculating differences in random error in a single geophysical variable between
three collocated datasets [19] that does not require the use of a high-quality reference
dataset. TCA has become an important method of assessing Earth observation data [20],
but it is not widely used to assess LST products. However, the recent development of
innovative remote sensing and reanalysis products has resulted in the creation of many
independent LST data products, which allows the use of TCA to test the accuracy of remote
sensing LST products. All metrics calculated by TCA theoretically lie between the evaluated
product and the unknown ground truth value [21], which enables a comparison of the
accuracy and error characteristics of different products [22,23].

Various environmental factors distort the data recorded by satellite-based LST prod-
ucts [24,25]. It is necessary to identify how these factors affect the data to ensure the retrieval
algorithm extracts accurate data by correcting for the mechanisms that reduce data accuracy.
Studies have identified the various ways in which land cover [26,27], landform [28], human
activity [29], meteorological conditions [30], and geographic factors [31] reduce the accuracy
of satellite-based LST products, and researchers have created corresponding algorithms
to increase the accuracy of detected LST data [31]. Identification and modeling of the
environmental factors that affect the accuracy of FY-4A/LST data products at a regional
scale and analysis of the influencing mechanisms are conducive to the improvement of the
algorithms and thus increase product utility.

This study was intended to complete a comprehensive evaluation of the FY-4A/AGRI
LST product for Hunan Province, China, and proceeded as follows. We conducted an
accuracy test by direct comparison of FY-4A data with in situ measured data. We then
conducted TCA with FY-4A data and two reanalysis products and determined the influence
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of several environmental factors. We used the Himawari-8 Advanced Himawari Imager
LST product for comparison; this product is extensively used and has been well-validated
in remote sensing LST assessments. The sensing instrumentation is functionally similar to
FY-4A/AGRI, which makes the Himawari-8 product good for comparison [32,33] that will
provide information used to improve and promote the use of FY-4A LST products. In situ
measurement and grid products were included in our assessment, and a variety of methods
were used in our comprehensive evaluation. The use of a large quantity of data suggests
that the research conclusions are universally generalizable. The results of this study provide
a baseline reference for assessing the detection capability of FY-4A and the utility of FY-4A
LST products. This study also provides a basic analysis of how environmental factors, such
as day and night, seasons, elevation, topography, land cover, landform, soil moisture, and
vegetation, affect the accuracy of retrieved LST data. The work of this study supports the
adoption and improvement of Fengyun 4 satellite LST products.

2. Materials and Methods
2.1. Study Area

Hunan Province is in south-central China, between 24◦38′–30◦08′ N and 108◦47′–114◦15′ E.
The province covers an area of 211,800 km2 and is in the transition zone from the Yunnan-
Guizhou Plateau to the Jiangnan Hills and the Nanling Mountains to the Jianghan Plain.
The province is highest in the south and lowest in the north and is surrounded by mountains
on three sides (Figure 1). The central region alternates between hills and river valley basins,
and the Dongting Lake Plain in the north is low and flat. The province has a high forest
cover and a good natural environment. The climate of Hunan is continental subtropical
monsoonal humid with abundant light, heat, and water resources but large intra-annual
variations and significant vertical changes.
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Figure 1. Topographical map showing the distribution of in situ measurement stations, land cover
and landforms in Hunan Province; abbreviations for land cover are: CL Cultivated land, FE Forest,
GL Grassland, WL Wetland, WB Water body, AS Artificial surfaces; abbreviations for landform are:
PL Plain, PF Platform, HL Hill, LM Low relief mountain, MM Medium relief mountain, HM High
relief mountain.

2.2. Data

The datasets used in this study are shown in Table 1.
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Table 1. Datasets used in this study.

Data Category Data Name Time Period Temporal Resolution Spatial Resolution

Remote sensing
products

FY-4A/AGRI LST 1 October 2019 0 h–
30 September 2019 23 h 1 h 4 km

Himawari-8/AHI LST 1 October 2019 0 h–
30 September 2019 23 h 1 h 0.045◦

In situ measured data In situ measured LST
from CMA stations

1 October 2019 0 h–
30 September 2019 23 h 1 h /

Reanalysis products
CLDAS LST 1 October 2019 0 h–

30 September 2019 23 h 1 h 0.0625◦

ERA5-Land LST 1 October 2019 0 h–
30 September 2019 23 h 1 h 0.1◦

Auxiliary data

NASA ASTER GDEM v3 2021 / 30 m
China’s

GlobalLand30 v2020 2020 / 30 m

Geomorphic type data
from IGSNRR, CAS 2009 / 1:1,000,000

Soil moisture data
retrieval from SMAP

1 October 2019–
30 September 2019 1 d 36 km

NDVI data of
NASA VNP13A2

22 September 2019–
30 March 2021 16 d 1 km

2.2.1. Remote Sensing Products
FY-4A/AGRI LST

FY-4A is the first satellite in the FY-4 series of independently developed Chinese
second-generation geostationary meteorological satellites. FY-4A was the most advanced
integrated atmospheric observation satellite of its time. It was launched in December 2016
and delivered in September 2017, positioned over the equator at 99.5◦ E (it later drifted
to 104.7◦ E). The three-axis stabilized FY-4 series offers full disk coverage every 15 min or
better (in contrast to the 30 min of FY-2), and there is an option for more frequent regional
and mesoscale observation modes. The Advanced Geostationary Radiation Imager (AGRI)
on FY-4A, with 14 channels, provides data that can be used to improve applications in
a wide range of oceanic, land, and atmospheric monitoring activities and in forecasting
extreme weather, especially typhoons and thunderstorms [12]. FY-4A LST data retrieval is
based on the split-window algorithm [34] and uses two TIR channels (10.3–12.5 µm). The
sensitivity of the product is 0.2 K, the spatial resolution is 4 km, and the temporal resolution
is up to 15 min. The product was projected using the normalized projection (NOM) and
was downloaded from http://satellite.nsmc.org.cn/ (accessed on 2 April 2021). Data were
stored in netCDF format.

Himawari-8/AHI LST

Himawari-8 is a Japanese meteorological satellite that became operational in July 2015.
It is positioned over the equator at 140◦ E. The primary instrument aboard Himawari-8 is
the advanced Himawari imager (AHI), which is a 16-channel multispectral imager that
captures visible light and infrared images of the Asia–Pacific region. AHI is similar to AGRI,
so its LST product can be used for comparison with the FY-4A LST product. The Eastern
Asia and Oceania LST of the Copernicus LST version 2 datasets derived from Himawari-8
data was retrieved using the generalized split-window algorithm (GSW) for two adjacent
TIR channels (10.8–13.1 µm). The spatial resolution is 0.045◦, the temporal resolution is 1 h,
and it was projected using WGS 1984 and downloaded from http://land.copernicus.eu/
(accessed on 2 April 2021). Data were stored in netCDF format.

http://satellite.nsmc.org.cn/
http://land.copernicus.eu/
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2.2.2. In Situ Measured LST Data

The in situ LST measurements were obtained from the National Meteorological Sta-
tions of the China Meteorological Administration (CMA). Most of the stations are located
in flat terrain areas with uniform land cover and so can represent the local scale land
surface state and thus are suitable for verification data (Table A1). All of the in situ data
were automatically observed by platinum resistance sensors and subjected to data quality
control processes. The data range was (−80, 80) ◦C, and the accuracy was 0.1 ◦C. There are
99 stations in Hunan Province (Figure 1), and the data were obtained through the China
Integrated Meteorological Information Sharing System (CIMISS) with a temporal resolution
of hours.

2.2.3. Reanalysis Products
CLDAS

CMA Land Data Assimilation System (CLDAS) Version 2.0 [35] is a reanalysis grid
product developed by CMA that covers Asia (0–65◦ N, 60–160◦ E) and consists of model,
ground, and satellite data ensembles; it is of better quality than similar international
products for China. We used the more accurate near real-time type LST product, which
contains 0.0625◦ equal latitude and longitude grid data with 1 h temporal resolution. The
data agreed well with ground observations: for China, the average correlation coefficient
was 0.98, root mean square error (RMSE) was 1.8 K, and Bias was 1.4 K. The product was
available from http://data.cma.cn/ (accessed on 13 March 2022). The data were saved in
netCDF format.

ERA5-Land

The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5-Land is
a fifth-generation reanalysis land surface dataset. ERA5-Land is produced by replaying
the land component of the ECMWF ERA5 climate reanalysis; it combines model data with
observations from across the world into a globally complete and consistent dataset. The
product is available at 1 h temporal resolution and ~9 km spatial resolution from ERA5-
Land servers. The ERA5-Land LST product is a state-of-the-art global reanalysis dataset
for land applications. When compared with the MODIS LST, it showed a good correlation
(correlation coefficient 0.94, Bias 1.36 K, RMSE 3.78) [36]. The product was available at
https://cds.climate.copernicus.eu/ (accessed on 2 April 2021). The data were saved in
netCDF format.

2.2.4. Auxiliary Data

The following data for environmental factors was used in the assessment.
1. Mean elevations within the FY-4A grids were calculated using a 30 m resolution

elevation dataset from the NASA Advanced Spaceborne Thermal Emission and Reflection
Radiometer Global Digital Elevation Model Version 3 (https://doi.org/10.5067/ASTER/
AST14DEM.003; accessed on 20 January 2021). Slopes were calculated by the arcGIS planar
method using this dataset.

2. Land cover type and information entropy within the FY-4A grids were derived from
the 30 m resolution land cover dataset of the Ministry of Natural Resources of the People’s
Republic of China, GlobalLand30 version 2020 (http://globallandcover.com; accessed on
2 April 2021). Information entropy is a measure of system uncertainty and indicates surface
heterogeneity [37,38]. The probability distribution of a random variable X with n possible
outcomes is P(X = xi) = pi for i = 1, 2, . . . , n. Information entropy H(X) is calculated as:

H(X) = −
n

∑
i=1

pi log pi (1)

3. The landform type for FY-4A grids was derived from the 1:1,000,000 dataset of the
spatial distribution of landforms in China from the Institute of Geographic Sciences and

http://data.cma.cn/
https://cds.climate.copernicus.eu/
https://doi.org/10.5067/ASTER/AST14DEM.003
https://doi.org/10.5067/ASTER/AST14DEM.003
http://globallandcover.com
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Natural Resources Research, Chinese Academy of Sciences (https://www.resdc.cn/data.
aspx?DATAID=124; accessed on 30 March 2022).

4. The mean value of soil moisture within the FY-4A grids was calculated using the
Soil Moisture Active Passive (SMAP) L3 Radiometer Global Daily 36 km EASE-Grid Soil
Moisture dataset (https://nsidc.org/; accessed on 15 April 2022) from 1 October 2019 to
30 September 2021.

5. The mean value of the normalized difference vegetation index (NDVI) in the FY-
4A grids was calculated using an NDVI dataset with a 16 d acquisition period at 1 km
resolution from 22 September 2019 to 30 September 2021. The data were obtained from
the Suomi National Polar-Orbiting Partnership NASA Visible Infrared Imaging Radiome-
ter Suite Vegetation Indices (VNP13A2) Version 1 (https://lpdaac.usgs.gov; accessed on
4 April 2022).

2.3. Methods
2.3.1. Research Methods

The LST measurement unit of each product in the study was standardized as ◦C, and
the time was standardized as UTC. Since the data quality flags in FY-4A LST products
are identified as invalid parameters, no data filtering was performed on the two remote
sensing products. The following steps were taken to conduct this research (Figure 2).
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Figure 2. Flowchart of this research project.

1. Acquire FY-4A/AGRI LST and Himawari-8/AHI LST products from 1 October 2019
0 h to 30 September 2021 23 h and decode and extract data for Hunan Province; carry
out nearest-neighbor sampling to match 1 h remote sensing products with in situ
measurements. The direct authenticity test and assessment based on measured data
use this matched dataset.

2. Obtain the CLDAS ground surface temperature data and the ERA5-Land skin temper-
ature data of ERA5-Land for the same time period as step 1. Resample the CLDAS and
ERA5-Land products to the FY-4A and Himawari-8 grids using three points inverse
distance weighting, respectively, and match them hour by hour to form the FY-4A-
CLDAS-ERA5-Land and Himawari-8-CLDAS-ERA5-Land datasets. The TCA-based
LST accuracy assessment was carried out only for grids for which all three datasets
were significantly positively correlated [20]; there were >100 data triplets [39].

3. Identify the influencing mechanisms of environmental factors on FY-4A LST products
by analyzing the effects of topography, land cover, landform, soil moisture, vegetation,
and other environmental factors on TCA errors.

https://www.resdc.cn/data.aspx?DATAID=124
https://www.resdc.cn/data.aspx?DATAID=124
https://nsidc.org/
https://lpdaac.usgs.gov
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2.3.2. Performance Indicators
Direct Authenticity Test

The performance of remote sensing LST products in Hunan Province was assessed
using the following error parameters: Pearson correlation coefficient (R), Bias, relative bias
(Biasr), root mean square error (RMSE), and unbiased RMSE (ubRMSE). The equations for
these indexes are:

R =
cov(RST, IST)

σRSTσIST
(2)

Bias =
1
m

m

∑
i=1

(RSTi − ISTi) (3)

Biasr =
1
m

m

∑
i=1

|RSTi − ISTi|
ISTi

(4)

RMSE =

√
1
m

m

∑
i=1

(RSTi − ISTi)
2 (5)

ubRMSE =
√

RMSE2 − Bias2 (6)

where RST is the LST of each remote sensing-based product, IST is the in situ measured
LST, cov() is the covariance, and σ is the standard deviation.

Triple Collocation Analysis

The following parameters were used as indicators of TCA: Sensitivity, standard error
(Stderr), correlation coefficient (Rho), fractional RMSE (fRMSE), and signal-to-noise ratio in
decibels (Snr_db). The equations used are:

Sensitivitya =
cov(a, b)× cov(a, c)

cov(b, c)
(7)

Errvara = cov(a, a)− Sensitivitya (8)

If Errvara ≥ 0, then Stderra =
√

Errvara (9)

Rho =


√

cov(a,b)×cov(a,c)
cov(a,a)×cov(b,c)

sign(cov(a, c)× cov(b, c))×
√

cov(a,b)×cov(b,c)
cov(b,b)×cov(a,c)

sign(cov(a, b)× cov(b, c))×
√

cov(a,c)×cov(b,c)
cov(c,c)×cov(a,b)

 (10)

f RMSE =
√

1− Rho2 (11)

Snra =
cov(a, a)× cov(b, c)
cov(a, b)× cov(a, c)

− 1 (12)

If Snra ≥ 0, then Snr_dba = −10× log(Snra) (13)

where a, b and c are the triple-collocated LST products in each grid.
Of the preceding parameters, greater values of R, Sensitivity and Rho, and lesser

values of Bias, Biasr, RMSE, ubRMSE and Stderr, indicate better product performance.
The value of fRMSE has a well-defined range from 0 (perfect estimates) to 1 (total noise,
with no ground truth signal), with values > ∼0.7 indicating an error variance that exceeds
the variance of the true time series [40]. A value of zero for Snr_db indicates that signal
variance is equal to noise variance; +3 (+6) dB indicates that signal variance is twice (four
times) noise variance; −3 (−6) dB indicates that signal variance is half (one-fourth) noise
variance, and so forth [20].
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3. Results
3.1. Direct Authenticity Test and Evaluation of FY-4A LST Using In Situ Measurement

Comparative analysis of the FY-4A LST hourly data for Hunan Province matched with
in situ measurements from 1 October 2019 0h to 30 September 2021 23 h shows (Table 2)
that the FY-4A product captured changes in the surface temperature well (R = 0.893), but
that it generally underestimated LST (Bias = −6.295 ◦C) and had some deviation from in
situ measurement (RMSE = 8.58 ◦C; ubRMSE = 5.842 ◦C). FY-4A was better at capturing
daytime surface temperature changes than nighttime changes but also had greater Bias;
ubRMSE was significantly lower than RMSE, indicating that FY-4A was more affected by
random errors in observations. The Himawari-8 LST product was better than FY-4A in
terms of all parameters except that there was overall less data due to the coarser resolution
of the product; the deviation in LST was clearly less, as shown by Bias and RMSE.

Table 2. Error parameters for comparison between FY-4A LST and Himawari-8 LST tested against in
situ measurements.

Product R Bias Biasr RMSE ubRMSE Data Quantity

FY-4A
overall 0.893 −6.295 0.303 8.588 5.842 5.394 × 105

daytime 0.920 −9.244 0.336 11.078 6.105 2.181 × 105

nighttime 0.864 −4.294 0.265 6.365 4.699 3.213 × 105

Himawari-8
overall 0.926 −4.933 0.238 7.508 5.660 5.191 × 105

daytime 0.923 −7.413 0.247 9.606 6.110 2.368 × 105

nighttime 0.849 −2.854 0.219 5.124 4.256 2.823 × 105

Daytime is the local meteorological daytime in Hunan Province, i.e., UTC [0, 12), and nighttime is UTC [12, 24).

When LST was low (<25 ◦C), the accuracy of FY-4A LST was better and stable. The
center of density of its scatterplot was around the y = x line, but as the temperature
increased, the deviation from observation gradually increased, and the underestimation of
LST became greater (Figure 3), which may be one reason for its larger overall error (Table 2);
there were also some outliers in the product. In contrast, the Himawari-8 LST product was
overall more stable, with the center of density of the scatterplot close to the y = x line. This
product also showed less deviation from direct observation than FY-4A at higher values of
LST (>25 ◦C).
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Figure 3. Scatterplots of FY-4A LST and Himawari-8 LST vs. in situ measurement; the straight line in
the figure is the y = x line; the brighter the color in the figure, the more concentrated the data points.

Table 3 shows the values of indicators when FY-4A LST was compared with in situ
measurement for equivalent classification of environmental factors. It can be seen that
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FY-4A LST was worst (R, Bias, RMSE were all worst) when LST was highest (49–72 ◦C).
When LST was low (−20–3 ◦C), FY-4A performed better according to several indicators
(Bias, RMSE, ubRMSE were all optimal), but its ability to capture changes in land surface
temperature was not good (R) in this temperature range; the better indicator values may be
due to the lower values of LST in this temperature range, as can be seen from the maximum
value of Biasr. The better performance of the FY-4A LST product in autumn and winter
and the worse performance in summer may be related to mean LST (minimum Biasr in
summer). The ability of the FY-4A LST product to capture changes in LST decreased as
elevation increased (R gradually decreased), but the deviation from in situ observation
gradually decreased (Bias and RMSE both improve greatly). This may also be related to the
decrease in LST as elevation increased.

Table 3. Error indicators for comparison between FY-4A LST and in situ measurement of classifica-
tions of different factors.

Factors Classification R Bias Biasr RMSE ubRMSE Data
Quantity

Land surface
temperature

(◦C)

−20–3 0.333 −0.276 0.937 3.179 3.167 0.316 × 105

3–26 0.778 −4.791 0.316 6.779 4.795 3.301 × 105

26–49 0.673 −9.031 0.274 10.141 4.613 1.617 × 105

49–72 0.333 −21.512 0.401 21.868 3.929 0.16 × 105

Seasons

Spring 0.849 −6.446 0.306 8.630 5.737 0.972 × 105

Summer 0.756 −8.137 0.261 10.160 6.084 1.277 × 105

Autumn 0.854 −6.573 0.290 8.829 5.895 1.624 × 105

Winter 0.819 −4.354 0.444 6.637 5.009 1.521 × 105

Elevation
(m)

32–379 0.895 −6.378 0.303 8.652 5.845 5.011 × 105

379–726 0.874 −6.348 0.344 8.182 5.163 0.233 × 105

726–1073 0.848 −5.954 0.362 8.297 5.779 0.052 × 105

1073–1420 0.847 −2.125 0.150 6.051 5.665 0.099 × 105

Data in red are the optimal parameters of each classification, and data in yellow are the worst parameters.

3.2. FY-4A LST Authenticity Test Using TCA

Using TCA can overcome the problem created by the difficulty of obtaining the
standard reference dataset of quantitative remote sensing parameters on the surface at a
regional scale with high spatial and temporal resolution; the error indicators for compar-
isons between remote sensing products and the unknown ground truth are computed in
the analysis [21]. The matched hourly data triplets formed in this study, the 2 y FY-4A-
CLDAS-ERA5-Land dataset with a total of 65.3 million triplets of data that we created, and
the sufficiency of the quantity of data ensure the generality of the study results.

The results of the analysis showed that the correlation coefficient (Rho) between FY-4A
LST and true surface temperature was greater in central-eastern, northern, and south-
central Hunan Province and that areas with very high correlation coefficients were found
mostly in the Hengyang basin in central Hunan. Rho decreased in the western and southern
mountainous areas and the northern Dongting Lake area; values for the southern border
mountainous areas and the northwestern border mountainous areas were significantly
lower (Figure 4). Rho for Himawari-8 LST was greater than for FY-4A overall; the spatial
distribution trended similarly.

Analysis of the other error indicators (Figure 5) showed that the sensitivity of FY-4A
LST to the true surface temperature was high relative to other remote sensing parame-
ters [38]. The distribution of Sensitivity was similar to that of Rho, and it was greater in
the central-eastern, south-central and northern parts of Hunan Province except for the
Dongting Lake area and some areas in the west; Stderr, which indicates the degree of error,
was between 3 and 4 for most grids and was greater in most areas in the west and the
Dongting Lake area in the north and very high in the high elevation mountainous areas in
the northwest.
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The FY-4A LST product showed stable deviation and weak signal interference. The
value of fRMSE, which indicates variation in error, was greater in the central-western,
northwestern, and southern border areas, and the greatest values were found mostly in the
northwestern, southern, and southeastern borders. Deviation was steady and always less
than the standard deviation of the true time series (~0.7). Snr_db, which characterizes the
signal-to-noise ratio, was greater in the central-southern, central, and northern areas except
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for Dongting Lake, where the signal showed weak interference; the signal showed some
distortion in the western and southern regions.

The distribution of TCA error indicators shows that FY-4A LST data is strongly in-
fluenced by topography, and parameters that indicate its accuracy are almost consistently
correlated with terrain in Hunan Province, whereas parameters indicating error are in-
versely related to terrain. FY-4A LST has low accuracy in the western and southern
mountainous areas of Hunan Province, indicated by low correlation, large deviation and
strong signal distortion, especially in the northwestern and southern border areas; in the
south-central, central, and northern areas other than Dongting Lake, the product is more
accurate, especially in the Hengyang basin, where correlation was greater, deviation was
less, and the signal-to-noise ratio was greater.

3.3. Analysis of the Mechanism of the Influence of Environmental Factors on the Performance
of FY-4A/LST

In this study, environmental factor parameters and remote sensing LST error pa-
rameters were combined for analysis of the mechanisms through which environmen-
tal factors influence FY-4A LST data. The results of the analysis confirmed the results
in Sections 3.1 and 3.2 that described the performance of FY-4A LST products as being
strongly influenced by topographic factors. The accuracy of remote sensing LST products
varied significantly for different mean DEM classifications (Figure 6). Most indicators
showed that the accuracy of remote sensing LST products gradually decreased as elevation
increased (Rho, Sensitivity, Snr_db gradually decreased; fRMSE gradually increased). Only
the parameter Stderr, which exists as a filtering process in the algorithm (Equation (9)),
showed a trend of initially increasing and then decreasing as elevation increased, which
indicated that the error of FY-4A LST was larger at medium elevations (436–1269 m). Rho
for Himawari-8 LST was greater than for FY-4A LST, but the change trend was consistent
between the two. Thus, the accuracy of FY4A LST gradually decreased, and the distortion
of the detection signal gradually increased as elevation increased.

The results of elevation analysis using TCA differed from the results based on in situ
measurement (Table 3). In the latter, the maximum station elevation category was also
worst in capturing changes in LST but had the least deviation (as indicated by Bias, Biasr,
and RMSE). However, we think the results of TCA in our study were more dependable
for the following two reasons. 1. There were only two in situ measurement stations in
the highest elevation category, so the amount of data provided was limited. 2. The least
values of Bias and RMSE may be related to the lowest LST value range at high elevation;
Stderr in TCA for areas above 436 m shows a similar trend to Bias and RMSE, and Biasr
shows a gradual increase as elevation increases in all categories except the highest elevation
category (Table 3 and Figure 6).

The performance of FY-4A LST varies with land cover. FY-4A data were more accurate
for Cultivated land and Artificial surfaces and less accurate for Forests and Water bodies.
Variation was greater for Forests and Wetlands (Figure 7). The accuracy of FY-4A LST
gradually decreased as land cover information entropy increased, indicating that as land
cover became more inhomogeneous, FY-4A LST decreased in accuracy. The trend of
variation in accuracy for Himawari-8 LST with land cover was generally similar to that
of FY-4A LST, but Himawari-8 was significantly more accurate when the surface water
content was greater (accuracy was relatively higher for Water body and there was less
variation for Wetland).

Landform, slope, soil moisture, and NDVI all affected the accuracy of FY-4A LST
(Figure 8). For landform, the accuracy of FY-4A LST was best for Platform, followed by Hill
and Plain, and it decreased for Mountain as relief increased, which is consistent with the
trend of accuracy decreasing as slope increased. For soil moisture, the accuracy of FY-4A
LST increased as surface soil moisture increased. For NDVI, the trend of variation in FY-4A
LST was more complex. When NDVI was low (<0.6), FY-4A LST was uniformly accurate;
however, when NDVI was high (>0.6), the accuracy of FY-4A LST decreased sharply as



Atmosphere 2022, 13, 1953 12 of 21

NDVI increased. This behavior indicates that lush vegetation on the ground surface has a
greater influence on FY-4A LST accuracy than other factors.
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4. Discussion

Many factors affect the accuracy of LST data retrieved from satellite TIR data, such
as atmospheric profiles, sensor parameters, surface parameters, and systematic errors due
to the parameterization step of the retrieval algorithm [41]. It is therefore important to
test the authenticity and comprehensively evaluate the LST product, especially for new
satellite products.

There have been many validation studies of the LST products of Landsat, MODIS,
Himawari and other satellites [16,42], and the effects of the retrieval algorithm, day/night
observation, season, and land cover type on the accuracy of remote sensing LST products
have been documented, quantified and modeled. In this study, we conducted a compre-
hensive assessment of the FY-4A LST product, which has not previously been extensively
validated. We used high-quality in situ measured data from CMA together with reanalysis
products, which gave us a large quantity of data to ensure our research was superior to
other similar validation studies [13,16,41]. The direct accuracy comparison analyzed more
than 500,000 data points, and TCA used >65 million data points for a 2 y period; the study
results were therefore more generalizable and provide a baseline reference for improving
and promoting the FY-4A product.

The authenticity test in the study adopted direct comparison between FY-4A LST
with in situ measurement and TCA between FY-4A LST with two reanalysis products.
The different methods of analysis allowed us to make more comprehensive and more
generalizable conclusions. The scale difference between different data products in the
direct comparison may have affected the results. The resolution of FY-4A/AGRI (4 km
resolution for both TIR bands and LST product) differs from the resolution of Himawari-
8/AHI (2 km resolution for TIR bands and 0.045◦ resolution for LST product), and the
remote sensing grid product scale is different from the in situ measured single point data
scale. However, the research results of the TCA method partially compensate for the impact
of scale differences on the results. In contrast to the Bias values that were within ±2 K
according to the Quality Assessment Report of Copernicus Global Land Operations, the
Bias values we obtained were generally greater than the values for in situ measurement.
This result may be due to the sparse distribution of observation stations (thus increasing
the scale mismatch between remote sensing data and in situ measurements) and the fact
that most meteorological observatories were situated on hills at elevations that are not
conducive to accurate remote sensing detection (Figure 6). However, the different but
still similar observational accuracy of FY-4A LST when compared with Himawari-8 data,
and the greater accuracy of the LST product than other remote sensing parameters [38],
illustrate the capability of the TIR-based split-window algorithm of FY-4A/AGRI to retrieve
accurate LST.

The seasonal and diurnal trends of FY-4A LST (Bias, RMSE; Table 3) were consistent
with the findings of Li et al. [43] for Himawari-8 and MODIS LST in western China; the
LST products in that study also showed the largest variation when the land cover was
forest. The error coefficients (Bias, Biasr, and RMSE) calculated in the comprehensive
assessment by Fan et al. [24] using FY-3C/MWRI LST and in situ measurement in Hunan
Province were similar to those we obtained in this study. Fan et al. [24] also found a trend
of decreasing accuracy with increasing elevation in remotely sensed LST together with a
trend of gradually increasing underestimation when daytime LST was >20 ◦C (descending
orbit). Martin et al. [16] validated remote sensing LST products using in situ radiation
measurement and found that the accuracy of such products varied with season, day/night,
and land cover, similar to our findings, and that observation variations in subtropical and
forest sites were similar to those of FY-4A LST.

There were large differences in remote sensing LST accuracy for different surface
temperature ranges in our results (Figure 3 and Table 3), and the ranges of surface tem-
perature were affected by factors such as day/night, season [44], land cover, soil moisture,
and vegetation condition [45]. Analysis of the effects of environmental factors confirmed
that the preceding factors had a large effect on LST accuracy. The poor performance of
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LST products in Dongting Lake area may be related to the interference of remote sensing
signals at the meeting of land surface and water surface. However, the lack of water surface
observation stations in the in situ measurements limits our in-depth analysis of this point.
Another factor that affects LST is shade: surfaces that are shaded are significantly cooler
than sunlit surfaces. The effects of this factor are incorporated in the effects of elevation,
landform, and slope on LST.

FY-4A LST was less accurate than Himawari-8 LST, which indicates that the FY-4A
product is in need of improvement. However, as the prototype of a new generation of
Chinese geostationary meteorological satellites, FY-4A is inherently experimental, and
therefore systematic errors due to instrument performance are unavoidable. It has been
found that some TIR bands of AGRI are not very stable in terms of satellite calibration [46].
It has also been found that although the retrieval algorithm used to produce FY-4A LST is
similar to that used for Geostationary Operational Environmental Satellites (GOES)-R LST,
observational variation in FY-4A LST is much greater [47]; this may also be related to the
relatively poor performance of the sensor.

LST is a fundamental surface parameter that is detected by the primary sensors of
China’s new generation of geostationary meteorological satellites. This comprehensive
evaluation of the FY-4A LST product confirms the satellite has a good detection capability,
but it does not yet match foreign satellite products in terms of overall accuracy. We can
improve the retrieval algorithm by incorporating the influencing factors we identified or
perhaps by using data-driven models based on artificial neural network methods to retrieve
quantitative parameters from the remote sensing Chinese satellites, which is the goal of our
next research project.

In conclusion, FY-4A, the first satellite of the FY-4 series, has successfully completed
its task of comprehensively prototyping China’s second-generation geostationary orbit
meteorological satellite program and observation technologies. Its observation performance
has exceeded expectations, and the data products are being used in live meteorological
applications. FY-4B has also been launched and will soon be in operation, and we look
forward to the increasingly important role that Chinese meteorological satellites will play
in the future.

5. Conclusions

In this study, we directly compared the FY-4A LST product with in situ measured LST
data and used TCA with other reanalysis products to test the authenticity of the FY-4A
LST product, which has not previously been extensively validated, for accuracy. We used
Himawari-8 LST for comparison. We analyzed the effects of several environmental factors
on LST accuracy. We drew the following conclusions.

1. The FY-4A LST product captured the surface temperature well for Hunan Province
(R = 0.893, Rho = 0.915), but it generally underestimated LST (Bias = −0.6295 ◦C) and
there was a large random error (RMSE = 8.588 ◦C, ubRMSE = 5.842 ◦C); observation
accuracy was worse than for Himawari-8 LST.

2. The FY-4A LST product performed better in terms of accuracy for the central-eastern
area, the northern area except Dongting Lake, and the central-southern parts of
Hunan Province than for other parts of the province. The greatest accuracy was
for the Hengyang basin in central Hunan. Accuracy decreased in the western and
southern mountainous areas and the Dongting Lake area, and accuracy was the lowest
in the mountainous areas along the southern and northwestern borders.

3. When the surface temperature is high (>25 ◦C), remote sensing detection will sig-
nificantly underestimate LST, and accuracy is greatly affected by topography and
terrain; product accuracy decreases as elevation increases, and the change trend is
basically consistent with change in elevation. FY-4A LST is most accurate when the
land cover is Cultivated land or Artificial surfaces and the landform is Platform.
Accuracy changes between day and night and seasonally, and decreases as land cover
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becomes more heterogeneous, mountain relief increases, or slope and NDVI increase;
accuracy increases as soil moisture increases.

FY-4A is an experimental satellite and its detection performance exceeded expecta-
tions and provided a variety of valuable observation products for China’s meteorological
operations. However, our evaluation found that the FY-4A LST product is not as accurate as
advanced foreign satellite products, and so there is still a need to improve the performance
of domestic satellite instruments and to improve the retrieval algorithm by combining
environmental factors so as to improve China’s meteorological detection capability.
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Appendix A

Table A1. Overview of in situ measured stations.

Station
Number Station Name Latitude (◦) Longitude (◦) Elevation (m) Land Cover Type Geomorphic Type

1 Longshan 29.46 109.44 488.7 Artificial surfaces Plain
2 Sangzhi 29.4 110.16 318.8 Artificial surfaces Hill
3 Zhangjiajie 29.12 110.42 218.5 Artificial surfaces Platform
4 Shimen 29.58 111.36 116.9 Artificial surfaces Platform
5 Cili 29.43 111.09 167.7 Forest Hill
6 Lixian 29.67 111.73 38.1 Cultivated land Platform
7 Linli 29.47 111.67 89.3 Forest Platform
8 Nanxian 29.35 112.43 40.3 Cultivated land Plain
9 Huarong 29.54 112.6 49.5 Artificial surfaces Platform

10 Anxiang 29.41 112.2 33.6 Cultivated land Plain
11 Yueyang 29.38 113.09 53 Artificial surfaces Plain
12 Linxiang 29.48 113.45 60.4 Artificial surfaces Plain
13 Huayuan 28.58 109.46 341 Artificial surfaces Platform
14 Baojing 28.68 109.65 438.1 Cultivated land Hill
15 Yongshun 29.01 109.84 268.2 Cultivated land Platform
16 Guzhang 28.68 109.98 294 Forest Platform
17 Jishou 28.24 109.68 254.6 Artificial surfaces Plain
18 Yuanling 28.46 110.4 151.6 Artificial surfaces Platform
19 Luxi 28.23 110.21 186 Forest Platform
20 Chenxi 28.01 110.19 152.8 Artificial surfaces Plain
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Table A1. Cont.

Station
Number Station Name Latitude (◦) Longitude (◦) Elevation (m) Land Cover Type Geomorphic Type

21 Taoyuan 28.91 111.48 48.7 Artificial surfaces Plain
22 Changde 29.12 111.68 150.6 Forest Hill
23 Hanshou 28.92 111.96 31.9 Artificial surfaces Plain
24 Taojiang 28.51 112.17 136.9 Forest Platform
25 Anhua 28.38 111.25 196 Artificial surfaces Platform
26 Yuanjiang 28.85 112.37 37 Water body Plain
27 Xiangyin 28.73 112.93 63 Forest Platform
28 Heshan 28.57 112.38 46.3 Artificial surfaces Platform
29 Ningxiang 28.25 112.56 74.7 Artificial surfaces Plain
30 Huanghua 28.21 113.2 101.4 Cultivated land Platform
31 Miluo 28.86 113.11 82.5 Forest Platform
32 Pingjiang 28.71 113.57 106.3 Artificial surfaces Plain
33 Changsha 28.11 112.79 119 Forest Platform
34 Liuyang 28.16 113.63 101.1 Forest Plain
35 Fenghuang 27.95 109.6 349.6 Artificial surfaces Platform
36 Mayang 27.87 109.8 176.6 Artificial surfaces Plain
37 Xinhuang 27.37 109.16 355.5 Forest Platform
38 Zhijiang 27.45 109.68 272.2 Artificial surfaces Plain
39 Huaihua 27.61 110.03 286.9 Cultivated land Plain
40 Xupu 27.92 110.6 204 Forest Plain
41 Hongjiang 27.21 109.84 252 Artificial surfaces Hill
42 Dongkou 27.03 110.61 339.5 Cultivated land Platform
43 Lengshuijiang 27.7 111.44 249.2 Artificial surfaces Plain
44 Xinhua 27.75 111.29 211.9 Artificial surfaces Plain
45 Lianyuan 27.71 111.68 249.2 Artificial surfaces Hill
46 Loudishi 27.69 112 205.8 Forest Platform
47 Xuefengshan 27.32 110.41 1420 Forest High relief mountain
48 Shaoyangshi 27.18 111.45 311 Cultivated land Platform
49 Longhui 27.13 111.01 308.4 Cultivated land Platform
50 Xinshao 27.34 111.45 294.1 Forest Platform
51 Shaodong 27.24 111.74 252.6 Artificial surfaces Plain
52 Shaoshan 27.93 112.53 88.3 Cultivated land Platform
53 Xiangxiang 27.75 112.51 86.9 Forest Plain
54 Xiangtan 27.88 112.83 63.8 Cultivated land Platform
55 Shuangfeng 27.45 112.17 100 Artificial surfaces Platform
56 Nanyue 27.3 112.69 1265.9 Forest Medium relief mountain
57 Hengshan 27.26 112.84 159.1 Forest Hill
58 Hengdong 27.05 112.98 109.4 Forest Platform
59 Youxian 27.06 113.35 115.2 Forest Platform
60 Zhuzhou 27.87 113.17 74.6 Artificial surfaces Platform
61 Lilin 27.64 113.51 72.7 Artificial surfaces Platform
62 Jingzhou 26.56 109.67 320.3 Artificial surfaces Plain
63 Huitong 26.88 109.72 281.4 Forest Platform
64 Tongdao 26.17 109.78 397.5 Artificial surfaces Plain
65 Suining 26.59 110.15 310.3 Artificial surfaces Platform
66 Xinning 26.46 110.83 346.1 Forest Platform
67 Wugang 26.74 110.64 341 Artificial surfaces Plain
68 Chengbu 26.37 110.31 477.7 Artificial surfaces Plain
69 Shaoyangxian 27 111.29 283.3 Cultivated land Hill
70 Lengshuitan 26.5 111.62 192.8 Cultivated land Plain
71 Yongzhoushi 26.23 111.62 172.6 Artificial surfaces Plain
72 Dongan 26.4 111.29 169 Artificial surfaces Plain
73 Qiyang 26.59 111.86 113.2 Artificial surfaces Plain
74 Qidong 26.76 112.08 218.9 Cultivated land Platform
75 Hengyangxian 26.97 112.37 90.8 Artificial surfaces Plain
76 Hengyang 26.89 112.6 104.9 Artificial surfaces Platform
77 Changning 26.41 112.39 116.6 Artificial surfaces Platform



Atmosphere 2022, 13, 1953 19 of 21

Table A1. Cont.

Station
Number Station Name Latitude (◦) Longitude (◦) Elevation (m) Land Cover Type Geomorphic Type

78 Hengnan 26.76 112.69 137 Grassland Platform
79 Leiyang 26.43 112.83 135 Cultivated land Platform
80 Anren 26.71 113.26 101.8 Artificial surfaces Plain
81 Chaling 26.79 113.55 136.2 Grassland Plain
82 Yanling 26.48 113.79 268.8 Cultivated land Plain
83 Yongxing 26.13 113.11 167.6 Artificial surfaces Platform
84 Guidong 26.08 113.94 835.9 Artificial surfaces Hill
85 Shuangpai 26.03 111.66 205 Artificial surfaces Platform
86 Daoxian 25.53 111.6 192.2 Artificial surfaces Plain
87 Ningyuan 25.59 111.96 244.2 Grassland Plain
88 Jiangyong 25.28 111.31 269 Forest Plain
89 Xintian 25.91 112.21 224.2 Artificial surfaces Platform
90 Chenzhou 25.74 112.98 368.6 Forest Hill
91 Guiyang 25.75 112.72 329.1 Artificial surfaces Hill
92 Jiahe 25.58 112.37 214.5 Grassland Hill
93 Lanshan 25.38 112.2 277 Artificial surfaces Plain
94 Yizhang 25.41 112.94 222.8 Forest Hill
95 Linwu 25.27 112.55 292 Artificial surfaces Plain
96 Zixing 25.97 113.22 139.3 Artificial surfaces Platform
97 Rucheng 25.51 113.68 645.6 Forest Plain
98 Jianghua 25.18 111.57 265.7 Artificial surfaces Hill
99 Pumanxiang 25.65 112.54 291 Cultivated land Platform
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