Seasonal Characteristics of Atmospheric PM2.5 in an Urban Area of Vietnam and the Influence of Regional Fire Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. PM2.5 Sampling and Chemical Analysis
2.3. Meteorological Data
2.4. MODIS Fire Radiative Power Data
2.5. Air Mass Backward Trajectories
3. Results and Discussion
3.1. Seasonal Variation of Concentrations of PM2.5 and Its Chemical Compositions
3.2. Analysis of Relationship among PM2.5 Chemical Components
3.3. Influences of Seasonal Meteorological Conditions and Regional Fire Activities on the Variation of PM2.5 and Its Chemical Compositions
4. Conclusions
- The concentration of PM2.5 and its key components (Cl−, SO42−, NH4+, K+, OC, and EC) measured in the winter period were significantly higher than those measured in the summer period, implying heavy PM2.5 pollution in the winter period.
- The estimation of SOC showed the larger contribution of secondary sources than of primary sources to OC observed during the winter period, compared to those in the summer period.
- The correlation analysis among anions and cations in atmospheric PM2.5 suggested that different sources and atmospheric processes could influence the seasonal variations of PM2.5 species.
- The analysis of the relationship between meteorological parameters and mass concentrations of PM2.5, as well as its major species, demonstrated that the unfavorable meteorological condition (lower wind speed and lower boundary-layer height) in the winter period was one of the key factors contributing to the increased PM2.5 pollution in this season.
- Due to the dominance of north and northeast winds during the winter period, the impact of long-range transport of air pollutants emitting from the largely industrialized and intensive fire regions in the southern China and Southeast Asia region was likely another important source for the increased PM2.5 pollution in the winter period.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katsouyanni, K.; Touloumi, G.; Samoli, G.; Gryparis, A.; Le Tertre, A.; Monopolis, Y.; Rossi, G.; Zmirou, D.; Ballester, F.; Boumghar, A.; et al. Confounding and effect modification in the short-term effects of ambient particles on total mortality: Results from 29 European cities within the APHEA2 project. Epidemiology 2011, 12, 521–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriadis, K.; Klaus, M.O.; Theopisti, L.; Angeliki, K.; Panayiotis, R.; Maria, O.P. Influence of local and regional sources on the observed spatial and temporal variability of size resolved atmospheric aerosol mass concentrations and water-soluble species in the Athens metropolitan area. Atmos. Environ. 2014, 97, 252–261. [Google Scholar] [CrossRef]
- Danalatos, D.; Glavas, S. Gas phase nitric acid, ammonia and related particulate matter at a Mediterranean coastal site, Patras, Greece. Atmos. Environ. 1999, 33, 3417–3425. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Rodriguez, S.; Plana, F.; Ruiz, C.R.; Cots, N.; Massague, G.; Puig, O. PM10 and PM2.5 source apportionment in the Barcelona metropolitan area Catalonia Spain. Atmos. Environ. 2010, 35, 6407–6419. [Google Scholar] [CrossRef]
- Zhu, L.; Daven, K.H.; Jesse, O.B.; Karen, E.C.P.; Mark, W.S.; Ming, L.; Shannon, L.C. Sources and Impacts of Atmospheric NH3: Current Understanding and Frontiers for Modeling Measurements and Remote Sensing in North America. Curr. Pollut. Rep. 2015, 1, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chunlin, L.; Zoran, R.; Andelija, M.; Yuantong, G.; Mohammad, S.I.; Shuxiao, W.; Jiming, H.; Hefeng, Z.; Congrong, H.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [Green Version]
- Reiss, R.; Anderson, E.L.; Cross, C.E.; Hidy, G.; Hoel, D.; McClellan, R.; Moolgavkar, S. Evidence of health impacts of sulfate- and-nitrate-containing particles in ambient air. Inhal. Toxicol. 2007, 19, 419–449. [Google Scholar] [CrossRef]
- World Bank. Available online: https://www.worldbank.org/en/country/vietnam/overview (accessed on 18 April 2022).
- Nguyen, D.L.; Hieu, B.T.; Trung, B.Q.; Dat, M.V.; Duy, N.V.; Dinh, P.V.; Hien, T.T.; Hiep, N.H. Investigation of sources and processes influencing variation of PM2.5 and its chemical compositions during a summer period of 2020 in an urban area of Hanoi city, Vietnam. Air. Qual. Atmos. Health. 2022, 15, 235–253. [Google Scholar] [CrossRef]
- Ministry of Natural Resources and Environment (MONRE). Report on the Implementation of National Action Plan on Air Quality Management to 2020, Vision to 2025; 2020. (In Vietnamese)
- CEM. Air Quality Report for Hanoi City in 2019; Vietnam Environment Administration, Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2019. (In Vietnamese)
- Nguyen, D.L.; Nowarat, C. Strategic environmental assessment application for sustainable transport-related air quality policies: A case study in Hanoi City Vietnam. Environ. Dev. Sustain. 2011, 13, 565–585. [Google Scholar] [CrossRef]
- Tran, N.Q.; Nguyen, T.H.; Mac, V.D.; Tran, L.K.; Thai, H.P.; Morawska, L.; Thai, K.P. Motorcyclists have much higher exposure to black carbon compared to other commuters in traffic of Hanoi, Vietnam. Atmos. Environ. 2021, 245, 118–129. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Shoji, K.; Bui, M.T.; Pham, T.H.; Vu, T.A.; Ly, B.T.; Kajii, Y. Air quality study in Hanoi, Vietnam in 2015–2016 based on a one-year observation of NOx, O3, CO and a one-week observation of VOCs. Atmos. Pollut. Res. 2018, 9, 544–551. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (HYbrid SINGLE-Particle Lagrangian Integrated Trajectory); Model Access, NOAA Air Resources Laboratory, Silver Spring; 2019. Available online: http://www.arl.noaa.gov/ready/hysplit4.html (accessed on 18 March 2022).
- Ahmed, M.; Guo, X.X.; Xing, M.Z. Determination and analysis of trace metals and surfactant in air particulate matter during biomass burning haze episode in Malaysia. Atmos. Environ. 2016, 141, 219–229. [Google Scholar] [CrossRef]
- Sulong, N.A.; Latif, M.T.; Khan, M.F.; Amil, N.; Ashfold, M.J.; Wahab, M.I.A.; Sahani, M. Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur Malaysia. Sci. Total Environ. 2017, 601, 556–570. [Google Scholar] [CrossRef]
- Dahari, N.; Latif, M.T.; Muda, K.; Hussein, N. Influence of Meteorological Variables on Suburban Atmospheric PM2.5 in the Southern Region of Peninsular Malaysia. Aerosol Air. Qual. Res. 2020, 20, 14–25. [Google Scholar] [CrossRef]
- Alias, N.F.; Khan, M.F.; Sairi, N.A.; Zain, S.M.; Suradi, H.; Rahim, H.A.; Tirthankar, B.; Aynul Bari, M.; Murnira, O.; Mohd, T.L. Characteristics, emission sources, and risk factors of heavy metals in PM2.5 from southern Malaysia. ACS Earth Space Chem. 2020, 4, 1309–1323. [Google Scholar] [CrossRef]
- Zhang, Z.; Khlystov, A.; Norford, L.K.; Tan, Z.; Balasubramanian, R. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications. Atmos. Environ. 2017, 161, 132–143. [Google Scholar] [CrossRef]
- ChooChuay, C.; Siwatt, P.; Danai, T.; Oramas, S.; Woranuch, D.; Qiyuan, W.; Li, X.; Guohui, L.; Yongming, H.; Jittree, P.; et al. Impacts of PM2.5 sources on variations in particulate chemical compounds in ambient air of Bangkok, Thailand. Atmos. Pollut. Res. 2020, 11, 1657–1667. [Google Scholar] [CrossRef]
- Santoso, M.; Lestiani, D.D.; Kurniawati, S.; Damastuti, E.; Kusmartini, I.; Atmodjo, D.P.D.; Sari, D.K.; Hopke, P.K.; Mukhtar, R.; Muhtarom, T.; et al. Assessment of Urban Air Quality in Indonesia. Aerosol Air. Qual. Res. 2020, 20, 2142–2158. [Google Scholar] [CrossRef]
- Hien, T.T.; Chi, N.D.T.; Nguyen, N.T.; Vinh, L.X.; Takenaka, N.; Huy, D.H. Current Status of Fine Particulate Matter (PM2.5) in Vietnam’s Most Populous City, Ho Chi Minh City. Aerosol Air. Qual. Res. 2019, 19, 2239–2251. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Zhang, L.; Yao, C.; Xie, T.; Rao, L.; Lu, H.; Liu, X.; Wang, Q.; Lu, S. Relationships between chemical elements of PM2.5 and O3 in Shanghai atmosphere based on the 1-year monitoring observation. J. Environ. Sci. 2020, 95, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Bai, X.; Liu, S.; Wu, B.; Liu, W.; Lv, Y.; Guo, Z.; Lin, S.; Zhao, S.; Hao, Y.; et al. Fine particulate matter (PM2.5/PM1.0) in Beijing, China: Variations and chemical compositions as well as sources. J. Environ. Sci. 2022, 121, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Thepnuan, D.; Chantara, S. Characterization of PM2.5–bound Polycyclic Aromatic Hydrocarbons in Chiang Mai Thailand during Biomass Open Burning Period of 2016. Appl. Environ. Res. 2020, 42, 11–24. [Google Scholar] [CrossRef]
- Ravindra, K.; Singh, T.; Sinha, V.; Sinha, B.; Paul, S.; Attri, S.D.; Mor, S. Appraisal of regional haze event and its relationship with PM2.5 concentration, crop residue burning and meteorology in Chandigarh, India. Chemosphere 2021, 273, 128562. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.K.; Srivastava, M.K.; Chatterjee, A.; Vijayan, N.; Tripathy, S.S.; Kumari, K.M.; Mandal, T.K.; Sharma, C. Chemical characterization, source apportionment and transport pathways of PM2.5 and PM10 over Indo Gangetic Plain of India. Urban Clim. 2021, 36, 100805. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Viet, H.T.; Hieu, B.T.; Trung, B.Q.; Ha, V.V. Evaluating carbonaceous species in fine particle PM2.5 in an urban area in Hanoi. J. Sci. Technol. Civ. Eng. STCE-HUCE 2021, 15, 9–17. [Google Scholar] [CrossRef]
- Siciliano, T.; Siciliano, M.; Malitesta, C.; Proto, A.; Cucciniello, R.; Giove, A.; Iacobellis, S.; Genga, A. Carbonaceous PM10 and PM2.5 and secondary organic aerosol in a coastal rural site near Brindisi (Southern Italy). Environ. Sci. Pollut. Res. 2018, 25, 23929–23945. [Google Scholar] [CrossRef]
- Volkamer, R.; Jimenez, J.L.; Martini, F.S.; Dzepina, K.; Zhang, Q.; Salcedo, D.; Molina, L.T.; Worsnop, D.R.; Molina, M.J. Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophys. Res. Lett. 2006, 33, L17811. [Google Scholar] [CrossRef] [Green Version]
- Turpin, B.J.; Lim, H.J. Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 2001, 35, 602–610. [Google Scholar] [CrossRef]
- Huang, X.F.; Yun, H.; Gong, Z.H.; Li, X.; He, L.Y.; Zhang, Y.H.; Hu, M. Source apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China. Sci. China Earth Sci. 2014, 57, 1352–1362. [Google Scholar] [CrossRef]
- Mancilla, Y.; Herckes, P.; Fraser, M.P.; Mendoza, A. Secondary organic aerosol contributions to PM2.5 in Monterrey Mexico: Temporal and seasonal variation. Atmos. Res. 2015, 153, 348–359. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.S.; Tang, A.H.; Yuan, H.; Sun, Y.L.; Chen, S.; Zheng, A. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos. Environ. 2005, 39, 3771–3784. [Google Scholar] [CrossRef]
- Mirante, F.; Salvador, P.; Pio, C.; Alves, C.; Artiñano, B.; Caseiro, A.; Revuelt, M.A. Size fractionated aerosol composition at roadside and background environments in the Madrid urban atmosphere. Atmos. Res. 2014, 138, 278–292. [Google Scholar] [CrossRef]
- Arimoto, R.; Duce, R.A.; Savoie, D.L.; Prospero, J.M.; Talbot, R.; Cullen, J.D.; Tomza, U.; Lewis, N.F.; Ray, B.J. Relationships among aerosol constituents from Asia and the North Pacific during Pem-West A. J. Geophys. Res. Atmos. 1996, 101, 2011–2023. [Google Scholar] [CrossRef]
- Yao, X.; Chan, C.K.; Fang, M.; Cadle, S.; Chan, T.; Mulawa, P.; He, K.; Ye, B. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ. 2002, 36, 4223–4234. [Google Scholar] [CrossRef]
- Cao, J.J.; Zhenxing, S.; Judith, C.C.; Guowei, Q.; John, G.W. Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology 2009, 7, 161–168. [Google Scholar] [CrossRef]
- Hu, M.; He, L.; Zhang, Y.; Wang, M.; Kim, Y.P.; Moon, K.C. Seasonal variation of ionic species in fine particles at Qingdao, China. Atmos. Environ. 2002, 36, 5853–5859. [Google Scholar] [CrossRef]
- Sun, Z.; Yujing, M.; Yanju, L.; Longyi, S. A comparison study on airborne particles during haze days and non-haze days in Beijing. Sci. Total Environ. 2013, 456–457, 1–8. [Google Scholar] [CrossRef]
- Adachi, K.; Buseck, P.R. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmos. Chem. Phys. 2008, 8, 6469–6481. [Google Scholar] [CrossRef]
- Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.J.; Lee, S.C.; Chow, J.C.; Ho, K.F.; Zhang, X.Y.; Zou, S.C.; Fung, K.K.; Chow, J.C.; Watson, J.G. Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmos. Environ. 2003, 37, 1451–1460. [Google Scholar] [CrossRef]
- Wang, P.; Cao, J.J.; Shen, Z.X.; Han, Y.M.; Lee, S.C.; Huang, Y.; Zhu, C.S.; Wang, Q.Y.; Xu, H.M.; Huang, R.J. Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi’an China. Sci. Total Environ. 2015, 508, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.G.; Chow, J.C.; Houck, J.E. PM2.5 chemical source profiles for vehicle exhaust vegetative burning geological material and coal burning in Northwestern Colorado during 1995. Chemosphere 2001, 43, 1141–1151. [Google Scholar] [CrossRef]
- Hildemann, L.M.; Markowski, G.R.; Cass, G.R. Chemical composition of emissions from urban sources of organic aerosol. Environ. Sci. Technol. 1991, 25, 744–759. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.; Ji, Y.; Pi, Y.; Yang, K.; Wang, L.; Zhang, Y.; Zhai, Y.; Yan, Z.G.; Han, X.D. Hygroscopic analysis of individual Beijing haze aerosol particles by environmental scanning electron microscopy. Atmos. Environ. 2018, 172, 149–153. [Google Scholar] [CrossRef]
- Sjogren, S.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Cubison, M.J.; Coe, H.; Zardini, A.A.; Marcolli, C.; Krieger, U.K.; Peter, T. Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate adipic and humic acid mixtures. J. Aerosol Sci. 2007, 38, 157–171. [Google Scholar] [CrossRef]
- Liu, F.; Tan, Q.; Jiang, X.; Yang, F.; Jiang, W. Effects of relative humidity and PM2.5 chemical compositions on visibility impairment in Chengdu China. J. Environ. Sci. 2019, 86, 15–23. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, Y.; Zhang, D.; Wang, X.; Xia, Y.; Liu, X.; Tian, P.; Han, Z.; Xia, X.; Wang, Y.; et al. Roles of regional transport and heterogeneous reactions in the PM2.5 increase during winter haze episodes in Beijing. Sci. Total Environ. 2017, 599–600, 246–253. [Google Scholar] [CrossRef]
- Lim, H.J.; Turpin, B.J. Origins of primary and secondary organic aerosol in Atlanta: Results of time-resolved measurements during the Atlanta supersite experiment. Environ. Sci. Technol. 2002, 36, 4489–4496. [Google Scholar] [CrossRef]
- Qiao, T.; Zhao, M.; Xiu, G.; Yu, J. Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment. Sci. Total Environ. 2016, 557–558, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Du, P.; Samat, A.; Xia, J.; Che, M.; Xue, Z. Spatiotemporal Pattern of PM2.5 Concentrations in Mainland China and Analysis of Its Influencing Factors using Geographically Weighted Regression. Sci. Rep. 2017, 7, 40607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L. The Relationships between PM2.5 and Meteorological Factors in China: Seasonal and Regional Variations. Int. J. Environ. Res. Public Health. 2017, 14, 1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pateraki, S.; Asimakopoulos, D.N.; Flocas, H.A.; Maggos, T.; Vasilakos, C. The role of meteorology on different sized aerosol fractions (PM10, PM2.5, PM2.5–10). Sci. Total Environ. 2012, 419, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Vassilakos, C.; Pateraki, S.; Veros, D.; Maggos, T.; Michopoulos, J.; Saraga, D.; Helmis, C.G. Temporal determination of heavy metals in PM2.5 aerosols in a suburban site of Athens, Greece. J. Atmos. Chem. 2007, 57, 1–17. [Google Scholar] [CrossRef]
- Bui, T.H.; Nguyen, D.L.; Nguyen, H.H.; Bui, Q.T. Comparison of aerosol products retrieved from AERONET and MODIS over an urban area in Hanoi city, Vietnam. J. Sci. Technol. Civ. Eng. STCE-HUCE 2018, 12, 99–108. [Google Scholar] [CrossRef]
- Bui, T.H.; Nguyen, D.L.; Nguyen, H.H. Study of aerosol optical properties at two urban areas in the north of Vietnam with the implication for biomass burning impacts. Environ. Sci. Pollut. Res. 2021, 29, 41923–41940. [Google Scholar] [CrossRef]
- Bui, T.H.; Nguyen, D.L.; Nguyen, H.H.; Bui, Q.T.; Do, H.D. Inter-comparison between MODIS satellite-based and AERONET ground-based Aerosol Optical Depth products in Viet Nam. Vietnam. J. Sci. Technol. 2020, 58, 124–132. [Google Scholar] [CrossRef]
- Huang, K.; Fu, J.S.; Hsu, N.C.; Gao, Y.; Dong, X.; Tsay, S.C.; Lam, Y.F. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmos. Environ. 2012, 78, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Lasko, K.; Vadrevu, K.P.; Tran, V.T.; Ellicott, E.; Nguyen, T.T.N.; Bui, H.Q.; Justice, C. Satellites may underestimate rice residue and associated burning emissions in Vietnam. Environ. Res. Lett. 2017, 12, 085006. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Hieu, B.T.; Hiep, N.H. Contrasting seasonal pattern between ground-based PM2.5 and MODIS satellite-based aerosol optical depth (AOD) at an urban site in Hanoi, Vietnam. Environ. Sci. Pollut. Res. 2022, 29, 41971–41982. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Hieu, B.T.; Vy, V.H.; Thuy, P.T. Studying the optical and physical properties of aerosol in an urban area of Hanoi City. Version B Vietnam. J. Sci. Technol. 2022, 64, 1–6. [Google Scholar] [CrossRef]
- Trung, B.Q.; Nguyen, D.L.; Hieu, B.T.; Dat, M.V.; Duy, N.V.; Chinh, P.M.; Viet, H.T. Evaluating concentration of element and carbon in atmospheric PM10 measured in an urban area in Hanoi during summer 2020. J. Sci. Technol. Civ. Eng. STCE-HUCE 2021, 15, 62–70. [Google Scholar] [CrossRef]
- Trung, B.Q.; Nguyen, D.L.; Hieu, B.T.; Dat, M.V.; Duy, N.V.; Chinh, P.M.; Viet, H.T.; Hoa, H.X. Evaluating ionic and carbonaceous species in fine particle PM2.5 measured during winter in an urban area in Hanoi. J. Sci. Technol. Civ. Eng. STCE-HUCE 2022, 16, 54–64. [Google Scholar] [CrossRef]
- Ngoc, B.A.P.; Delbarre, H.; Deboudt, K.; Dieudonné, E.; Tran, D.N.; Thanh, S.L.; Pelon, J.; Ravetta, F. Key factors explaining severe air pollution espisodes in Hanoi during 2019 winter season. Atmos. Pollut. Res. 2021, 12, 101068. [Google Scholar] [CrossRef]
Mean ± Standard Deviation (Range) | |||
---|---|---|---|
Summer | Winter | All Data | |
PM2.5 and its chemical compositions (µg m−3) | |||
PM2.5 | 40.20 ± 15.36 (19.79–69.92) | 122.90 ± 50.88 (49.83–220.41) | 80.37 ± 55.63 (19.79–220.41) |
F− | 0.12 ± 0.02 (0.05–0.14) | 0.02 ± 0.009 (0.008–0.039) | 0.07 ± 0.05 (0.008–0.14) |
Cl− | 0.21 ± 0.20 (0.03–2.06) | 2.19 ± 1.04 (0.54–4.49) | 1.17 ± 1.28 (0.03–4.49) |
NO3− | 0.85 ± 1.24 (0.14–4.86) | 0.018 ± 0.009 (0.005–0.043) | 0.44 ± 0.47 (0.01–4.86) |
SO42− | 3.63 ± 2.60 (0.87–10.44) | 10.28 ± 7.41 (1.71–27.17) | 6.86 ± 6.37 (0.87–27.17) |
Na+ | 0.31 ± 0.07 (0.20–0.45) | 0.21 ± 0.09 (0.08–0.39) | 0.26 ± 0.09 (0.08–0.45) |
NH4+ | 1.45 ± 1.32 (0.32–4.98) | 4.05 ± 2.60 (0.74–10.42) | 2.71 ± 2.40 (0.32–10.42) |
K+ | 0.41 ± 0.25 (0.10–1.12) | 1.04 ± 0.52 (0.37–1.90) | 0.72 ± 0.51 (0.10–1.90) |
Mg2+ | 0.09 ± 0.10 (0.03–0.47) | 0.06 ± 0.03 (0.01–0.11) | 0.07 ± 0.07 (0.01–0.47) |
Ca2+ | 0.47 ± 0.25 (0.19–0.98) | 0.47 ± 0.20 (0.17–0.88) | 0.47 ± 0.22 (0.17–0.98) |
EC | 1.34 ± 0.77 (0.27–2.79) | 2.40 ± 0.90 (1.07–3.96) | 1.85 ± 0.98 (0.27–3.96) |
OC | 11.85 ± 6.43 (4.74–28.20) | 30.20 ± 12.01 (12.80–52.07) | 20.76 ± 13.23 (4.74–52.07) |
Trace elements (*) | 1.98 ± 0.78 (0.82–3.69) | 1.25 ± 0.49 (0.29–2.20) | 1.62 ± 0.74 (0.29–3.69) |
Meteorology | |||
Wind speed (m/s) | 2.46 ± 0.73 (1.29–3.41) | 1.88 ± 0.69 (1.02–3.28) | 2.18 ± 0.76 (1.02–3.41) |
Boundary layer height (m) | 563.93 ± 143.71 (296.77–745.62) | 447.12 ± 167.48 (215.94–840.02) | 507.19 ± 164.42 (215.94–840.02) |
Ambient temperature (°C) | 31.32 ± 1.19 (29.01–33.09) | 15.51 ± 2.95 (10.24–21.39) | 23.64 ± 8.31 (10.24–33.09) |
Relative humidity (%) | 74.91 ± 5.91 (65.06–86.01) | 70.36 ± 12.51 (49.63–86.96) | 72.70 ± 9.82 (49.63–86.96) |
Location, Country | Type of Sampling Site | Study Period | PM2.5 Concentration (µg m−3) | References |
---|---|---|---|---|
Kampar, Malaysia | Semi-Urban | August–October 2015 | 55.89 | [18] |
Kuala Lumpur, Malaysia | Urban | June 2015–January 2016 | [19] | |
-Pre-haze period | 24.5 ± 12.0 | |||
-Haze period | 72.3 ± 38.0 | |||
-Post-haze period | 14.3 ± 3.58 | |||
Johor Bahru, Malaysia | Suburban | August 2017–January 2018 (Southwest monsoon) | 21.85 | [20] |
Johor Bahru, Malaysia | Urban | January–March 2019 | 26.28 ± 4.32 | [21] |
Singapore | Urban | November 2015–February 2016 | 13.02 ± 2.73 | [22] |
Bangkok, Thailand | Urban | August 2017–March 2018 | 77.0 ± 21.2 | [23] |
Bandung, Indonesia | Urban | May 2012–December 2017 | 18 ± 8 | [24] |
Ho Chi Minh, Vietnam | Urban roadside | March 2017–March 2018 | 36.3 ± 13.7 | [25] |
Shanghai, China | Urban | May 2018–March 2019 | 39.35 ± 35.74 | [26] |
Beijing, China | Urban | December 2018–November 2019 | 66.58 ± 60.17 | [27] |
Chiang Mai, Thailand | Urban | March–April 2016 (Smoke haze period) | 65.3 ± 17.6 | [28] |
Chandigarh, India | Urban | October–November 2015 (Haze period) | 161.7 | [29] |
Delhi, India | Urban | January 2015–December 2016 | 135 ± 64 | [30] |
Varanasi, India | Urban | 99 ± 33 | ||
Kolkata, India | Urban | 116 ± 38 | ||
Hanoi, Vietnam | Urban | July 2020 and January 2021 | 80.37 | This study |
PM2.5 | F− | Cl− | NO3− | SO42− | Na+ | NH4+ | K+ | Mg2+ | Ca2+ | OC | EC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Summer | ||||||||||||
PM2.5 | 1.000 | −0.167 | 0.572 | 0.598 | 0.454 | −0.316 | 0.476 | 0.329 | 0.436 | 0.001 | 0.725 | 0.689 |
F− | 1.000 | 0.187 | 0.142 | −0.014 | 0.327 | 0.072 | 0.292 | −0.208 | 0.077 | −0.072 | −0.086 | |
Cl− | 1.000 | 0.960 | 0.677 | 0.151 | 0.816 | 0.550 | 0.298 | 0.012 | 0.631 | 0.519 | ||
NO3− | 1.000 | 0.742 | 0.180 | 0.840 | 0.349 | 0.534 | 0.056 | 0.660 | 0.450 | |||
SO42− | 1.000 | −0.111 | 0.973 | 0.286 | 0.585 | −0.409 | 0.829 | 0.536 | ||||
Na+ | 1.000 | −0.043 | −0.118 | −0.054 | 0.509 | −0.406 | −0.526 | |||||
NH4+ | 1.000 | 0.419 | 0.493 | −0.345 | 0.824 | 0.574 | ||||||
K+ | 1.000 | −0.395 | −0.369 | 0.465 | 0.717 | |||||||
Mg2+ | 1.000 | 0.052 | 0.523 | 0.145 | ||||||||
Ca2+ | 1.000 | −0.477 | −0.538 | |||||||||
OC | 1.000 | 0.856 | ||||||||||
EC | 1.000 | |||||||||||
Winter | ||||||||||||
PM2.5 | 1.000 | 0.793 | 0.649 | 0.074 | 0.950 | 0.637 | 0.914 | 0.864 | 0.787 | 0.641 | 0.835 | 0.387 |
F− | 1.000 | 0.601 | −0.013 | 0.756 | 0.595 | 0.774 | 0.706 | 0.686 | 0.477 | 0.743 | 0.176 | |
Cl− | 1.000 | 0.604 | 0.730 | 0.891 | 0.758 | 0.649 | 0.862 | 0.867 | 0.576 | 0.777 | ||
NO3− | 1.000 | 0.179 | 0.433 | 0.185 | 0.253 | 0.515 | 0.539 | 0.228 | 0.624 | |||
SO42− | 1.000 | 0.704 | 0.983 | 0.888 | 0.836 | 0.770 | 0.758 | 0.491 | ||||
Na+ | 1.000 | 0.756 | 0.580 | 0.817 | 0.708 | 0.417 | 0.538 | |||||
NH4+ | 1.000 | 0.860 | 0.814 | 0.780 | 0.711 | 0.477 | ||||||
K+ | 1.000 | 0.818 | 0.730 | 0.835 | 0.404 | |||||||
Mg2+ | 1.000 | 0.837 | 0.682 | 0.545 | ||||||||
Ca2+ | 1.000 | 0.541 | 0.769 | |||||||||
OC | 1.000 | 0.449 | ||||||||||
EC | 1.000 |
Relative Humidity | Wind Speed | Boundary Layer Height | Ambient Temperature | |||||
---|---|---|---|---|---|---|---|---|
Summer | Winter | Summer | Winter | Summer | Winter | Summer | Winter | |
PM2.5 | 0.383 | 0.548 | −0.701 | −0.775 | −0.749 | −0.799 | −0.483 | 0.462 |
Cl− | 0.488 | 0.401 | −0.513 | −0.748 | −0.584 | −0.769 | −0.602 | 0.371 |
NO3− | 0.551 | −0.040 | −0.518 | −0.352 | −0.574 | −0.339 | −0.652 | 0.092 |
SO42− | 0.751 | 0.577 | −0.633 | −0.793 | −0.665 | −0.794 | −0.743 | 0.484 |
Na+ | −0.107 | 0.659 | 0.368 | −0.753 | 0.493 | −0.819 | 0.206 | 0.601 |
NH4+ | 0.720 | 0.644 | −0.616 | −0.817 | −0.675 | −0.839 | −0.745 | 0.565 |
K+ | −0.042 | 0.438 | −0.285 | −0.743 | −0.410 | −0.766 | −0.073 | 0.440 |
Mg2+ | 0.456 | 0.512 | −0.331 | −0.750 | −0.343 | −0.776 | −0.467 | 0.473 |
Ca2+ | −0.085 | 0.379 | 0.025 | −0.582 | 0.158 | −0.647 | 0.111 | 0.282 |
OC | 0.512 | 0.128 | −0.656 | −0.704 | −0.805 | −0.688 | −0.603 | 0.294 |
POC | 0.171 | −0.087 | −0.478 | −0.449 | −0.685 | −0.411 | −0.348 | −0.065 |
SOC | 0.719 | 0.182 | −0.626 | −0.586 | −0.655 | −0.585 | −0.680 | 0.358 |
EC | 0.171 | −0.087 | −0.478 | −0.449 | −0.685 | −0.411 | −0.348 | −0.065 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, Q.T.; Nguyen, D.L.; Bui, T.H. Seasonal Characteristics of Atmospheric PM2.5 in an Urban Area of Vietnam and the Influence of Regional Fire Activities. Atmosphere 2022, 13, 1911. https://doi.org/10.3390/atmos13111911
Bui QT, Nguyen DL, Bui TH. Seasonal Characteristics of Atmospheric PM2.5 in an Urban Area of Vietnam and the Influence of Regional Fire Activities. Atmosphere. 2022; 13(11):1911. https://doi.org/10.3390/atmos13111911
Chicago/Turabian StyleBui, Quang Trung, Duc Luong Nguyen, and Thi Hieu Bui. 2022. "Seasonal Characteristics of Atmospheric PM2.5 in an Urban Area of Vietnam and the Influence of Regional Fire Activities" Atmosphere 13, no. 11: 1911. https://doi.org/10.3390/atmos13111911
APA StyleBui, Q. T., Nguyen, D. L., & Bui, T. H. (2022). Seasonal Characteristics of Atmospheric PM2.5 in an Urban Area of Vietnam and the Influence of Regional Fire Activities. Atmosphere, 13(11), 1911. https://doi.org/10.3390/atmos13111911