Effects of Weather and Anthropogenic Precursors on Ground-Level Ozone Concentrations in Malaysian Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Pollutant Dataset
2.2. Spatial Analysis
2.3. Measure of Association Using Spearman Correlation
2.4. Prediction Model
2.4.1. Multiple Linear Regression (MLR)
2.4.2. Artificial Neural Network (ANN)
2.4.3. Performance Indicators
Performance Indicators | Equation | Better Predictability if |
---|---|---|
Mean Absolute Error | Closer to 0 | |
Root Mean Squared Error | ||
Correlation | Closer to −1 or +1 |
n | = | total number of hourly measurements at a particular site; |
= | predicted values of a single set of hourly monitoring data; | |
= | the observed values from a single set of hourly monitoring records; | |
= | the mean of the predicted values from a single set of hourly monitoring data; | |
= | the mean of the observed values from a single set of hourly monitoring data; | |
= | the standard deviation of the predicted values from a single set of hourly monitoring data; | |
= | the standard deviation of the observed values from a single set of hourly monitoring data. |
3. Results and Discussion
3.1. Spatiotemporal Variation of Ground-Level Ozone
3.2. Association of O3 Level with Its Precursors
3.3. Association of O3 Level with Other Trace Gases and Weather Parameters
3.4. Prediction of Daytime and Nighttime O3 Levels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, H.; Takigawa, M.; Liu, G.; Zhu, J.; Kobayashi, K. A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. Glob. Chang. Biol. 2013, 19, 2739–2752. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sharma, S.K.; Mandal, T.K. Ozone sensitivity factor NOX or NMHCs. A case study over an urban site in Delhi, India. Urban Clim. 2021, 39, 100980. [Google Scholar] [CrossRef]
- Kelly, J.; Makar, P.A.; Plummer, D.A. Projections of mid-century summer air-quality for North America: Effects of changes in climate and precursor emissions. Atmos. Chem. Phys. 2012, 12, 5367–5390. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, P.S.; Bortoli, D.; Domingues, A.; Silva, A.M. Surface ozone variability and trend over urban and suburban sites in Portugal. Aerosol Air Qual. 2016, 16, 138–152. [Google Scholar] [CrossRef] [Green Version]
- An, J.; Zou, J.; Wang, J.; Lin, X.; Zhu, B. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. Environ. Sci. Pollut. Resour. 2015, 22, 19607–19617. [Google Scholar] [CrossRef]
- Latif, M.T.; Huey, L.S.; Juneng, L. Variations of surface ozone concentration across the Klang Valley, Malaysia. Atmos. Environ. 2012, 61, 434–445. [Google Scholar] [CrossRef]
- Awang, N.R.; Ramli, N.A.; Yahaya, A.S.; Elbayoumi, M. High night time ground level ozone concentrations in Kemaman: NO and NO2 concentrations attributions. Aerosol Air Qual. Res. 2015, 15, 1357–1366. [Google Scholar] [CrossRef]
- Li, X.; Rappenglueck, B. A study of model nighttime ozone bias in air quality modeling. Atmos. Environ. 2018, 195, 210–228. [Google Scholar] [CrossRef]
- Yang, J.; Ji, Z.; Kang, S.; Zhang, Q.; Chen, X.; Lee, S.Y. Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources. Environ. Pollut. 2019, 254, 112952. [Google Scholar] [CrossRef]
- Li, K.; Chen, L.; Ying, F.; White, S.J.; Jang, C.; Wu, X.; Gao, X.; Hong, S.; Shen, J.; Azzi, M.; et al. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China. Atmos. Res. 2017, 196, 40–52. [Google Scholar] [CrossRef]
- Tong, L.; Zhang, H.; Yu, J.; He, M.; Xu, N.; Zhang, J.; Qian, F.; Feng, J.; Xiao, H. Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo, China. Atmos. Res. 2017, 187, 57–68. [Google Scholar] [CrossRef]
- Romer, P.S.; Duffey, K.C.; Wooldridge, P.J.; Edgerton, E.; Baumann, K.; Feiner, P.A.; Miller, D.O.; Brune, W.H.; Koss, A.R.; de Gouw, J.A.; et al. Effects of temperature-dependent NO x emissions on continental ozone production. Atmos. Chem. Phys. 2018, 18, 2601–2614. [Google Scholar] [CrossRef] [Green Version]
- Mujabar, S.; Chintaginjala Venkateswara, R. Empirical models for estimating the global solar radiation of Jubail Industrial City, the Kingdom of Saudi Arabia. SN Appl. Sci. 2021, 3, 95. [Google Scholar] [CrossRef]
- Gorai, A.K.; Tuluri, F.; Tchounwou, P.B.; Ambinakudige, S. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA. Air Quality. Atmos. Health 2015, 8, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Jamaluddin, A.F.; Tangang, F.; Chung, J.X.; Juneng, L.; Sasaki, H.; Takayabu, I. Investigating the mechanisms of diurnal rainfall variability over Peninsular Malaysia using the non-hydrostatic regional climate model. Meteorol. Atmos. Phys. 2017, 130, 611–633. [Google Scholar] [CrossRef]
- Verma, N.; Satsangi, A.; Lakhani, A.; Kumari, K.M. Prediction of Ground level Ozone concentration in Ambient Air using Multiple Regression Analysis. J. Chemstry Biol. Phys. Sci. 2015, 5, 3685–3696. [Google Scholar]
- Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M. Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan. Phys. A Stat. Mechacnic Appl. 2008, 387, 2317–2327. [Google Scholar] [CrossRef]
- Barrero, M.A.; Grimalt, J.O.; Canto’n, L.M. Prediction of daily ozone concentration maxima in the urban atmosphere. Chemometr. Intell. Lab. Syst. 2006, 80, 67–76. [Google Scholar] [CrossRef]
- Banja, M.; Papanastasiou, D.K.; Poupkou, A.; Melas, D. Atmospheric Pollution Research Development of a short–term ozone prediction tool in Tirana area based on meteorological variables. Atmos. Pollut. Res. 2012, 3, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Allu, S.K.; Srinivasan, S.; Maddala, R.K.; Reddy, A.; Anupoju, G.R. Seasonal ground level ozone prediction using multiple linear regression (MLR) model. Modeling Earth Syst. Environ. 2020, 6, 1981–1989. [Google Scholar] [CrossRef]
- Al-Alawi, S.M.; Abdul-Wahab, S.A.; Bakheit, C.S. Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ. Modeling Softw. 2008, 23, 396–403. [Google Scholar] [CrossRef]
- Padma, K.; Samuel Selvaraj, R.; Arputharaj, S.; Milton Boaz, B. Improved Artificial Neural Network Performance on Surface Ozone Prediction Using Principal Component Analysis. Int. J. Curr. Res. Rev. 2014, 6, 1–6. [Google Scholar]
- Pawlak, I.; Jarosławski, J. Forecasting of surface ozone concentration by using artificial neural networks in rural and urban areas in central Poland. Atmosphere 2019, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Aljanabi, M.; Shkoukani, M.; Hijjawi, M. Ground-level Ozone Prediction Using Machine Learning Techniques: A Case Ground-level Ozone Prediction Using Machine Learning Techniques: A Case Study in Amman, Jordan. Int. J. Autom. Comput. 2020, 17, 667–677. [Google Scholar] [CrossRef]
- Macías-Hernández, B.A.; Tello-Leal, E.; Ramirez-Alcocer, U.M.; Hernandez-Resendiz, J.D. Particulate Matter (PM2.5) Concentration Forecasting through an Artificial Neural Network in Port City Environment. Environ. Sci. Proc. 2022, 19, 31. [Google Scholar]
- Ghahremanloo, M.; Lops, Y.; Choi, Y.; Yeganeh, B. Deep Learning Estimation of Daily Ground-Level NO2 Concentrations from Remote Sensing Data. JGR Atmos. 2021, 126, 21. [Google Scholar]
- Wan Mahiyuddin, W.R.; Sahani, M.; Aripin, R.; Latif, M.T.; Thach, T.Q.; Wong, C.M. Short-term effects of daily air pollution on mortality. Atmos. Environ. 2013, 65, 69–79. [Google Scholar] [CrossRef]
- Department of Statistic 2020. Available online: https://www.dosm.gov.my/v1 (accessed on 12 May 2022).
- Astivia, O.L.O.; Zumbo, B.D. Population models and simulation methods: The case of the Spearman rank correlation. Br. J. Math. Stat. Psychol. 2017, 70, 347–367. [Google Scholar] [CrossRef]
- Fan, Q.; Lan, J.; Liu, Y.; Wang, X.; Chan, P.; Fan, S.; Feng, Y. Diagnostic analysis of the sulfate aerosol pollution in spring over Pearl River Delta, China. Aerosol Air Qual. Res. 2015, 15, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Sukatis, F.F.; Ul-Saufie, A.Z.; Noor, N.M.; Zakaria, N.A.; Suwardi, A. Estimation of Missing Values in Air Pollution Dataset by Using Various Imputation Methods. Int. J. Conserv. Sci. 2019, 10, 791–804. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. Springer Texts in Statistics and Introduction to Statistical Learning; Springer: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Ul-Saufie, A.Z.; Yahaya, A.S.; Ramli, N.A.; Hamid, H.A. Performance of multiple linear regression model for longterm PM10 concentration prediction based on gaseous and meteorological parameters. J. Appl. Sci. 2012, 12, 1488–1494. [Google Scholar] [CrossRef]
- Kavassalis, S.C.; Murphy, J.G. Understanding ozone-meteorology correlations: A role for dry deposition. Geophys. Res. Lett. 2017, 44, 2922–2931. [Google Scholar] [CrossRef]
- Ghosh, D.; Lal, S.; Sarkar, U. High nocturnal ozone levels at a surface site in Kolkata, India: Trade-off between meteorology and specific nocturnal chemistry. Urban Clim. 2013, 5, 82–103. [Google Scholar] [CrossRef]
- Jenkin, M.E. Trends in ozone concentration distributions in the UK since 1990: Local, regional and global influences. Atmos. Environ. 2008, 42, 5434–5445. [Google Scholar] [CrossRef]
- Coyle, M.; Fowler, D.; Smith, R.I.; Weston, K.; Stedman, J.R. Quantifying the spatial distribution of surface ozone concentration in the UK. Atmos. Environ. 2002, 36, 1013–1024. [Google Scholar] [CrossRef]
- Latif, M.T.; Dominick, D.; Ahamad, F.; Shuhada, N.; Khan, M.F.; Juneng, L.; Xiang, C.J.; Nadzir, M.S.M.; Robinson, A.D.; Ismail, M.; et al. Seasonal and long-term variations of surface ozone concentrations in Malaysian Borneo. Sci. Total Environ. 2016, 573, 494–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harnung, S.E.; Johnson, M.S. Chemistry and the Environment; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Munir, S.; Chen, H.; Ropkins, K. Characterising the temporal variations of ground level ozone and its relationship with traffic-related air pollutants in the UK: A quantile regression approach. Sustain. Dev. Plan. 2012, 9, 29–41. [Google Scholar]
- Heard, D.E.; Pilling, M.J. Measurement of OH and HO2 in the troposphere. Chem. Revolut. 2003, 103, 5163–5198. [Google Scholar] [CrossRef]
- Ding, A.J.; Fu, C.B.; Yang, X.Q.; Sun, J.N.; Zheng, L.F.; Xie, Y.N.; Kulmala, M. Ozone and fine particle in the western Yangtze River Delta: An overview of 1-year data at the SORPES station. Atmos. Chem. Phys. 2013, 13, 5813–5830. [Google Scholar] [CrossRef] [Green Version]
- Ahamad, F.; Latif, M.T.; Tang, R.; Juneng, L.; Diminick, D.; Juahir, H. Variation of surface ozone exceedance around Klang Valley, Malaysia. Atmos. Res. 2014, 139, 126–137. [Google Scholar] [CrossRef]
- Latif, M.T.; Dominick, D.; Ahamad, F.; Khan, M.F.; Juneng, L.; Hamzah, F.M.; Nadzir, M.S.M. Long term assessment of air quality from a background station on the Malaysian Peninsular. Sci. Total Environ. 2014, 482, 336–348. [Google Scholar] [CrossRef]
- Mohtar, A.A.A.; Latif, M.T.; Baharudin, N.H.; Ahamad, F.; Chung, J.X.; Othman, M.; Juneng, L. Variation of major air pollutants in different seasonal conditions in an urban environment in Malaysia. Geosci. Lett. 2018, 5, 21. [Google Scholar] [CrossRef]
- Xu, W.Y.; Zhao, C.S.; Ran, L.; Deng, Z.Z.; Liu, P.F.; Ma, N.; Chen, L.L. Characteristics of pollutants and their correlation to meteorological conditions at a suburban site in the North China Plain. Atmos. Chem. Phys. 2011, 11, 4353–4369. [Google Scholar] [CrossRef]
Location | Station | Population [28] | Background of Study Areas |
---|---|---|---|
Kuala Terengganu | Sekolah Kebangsaan Pusat Chabang Tiga (5.3066, 103.1217) | 261,300 | Urban Residential areas |
Seremban | Kolej Vokasional Ampangan (2.7250, 101.9708) | 467,800 | Urban Residential areas |
Perai | Sekolah Kebangsaan Seberang Jaya 2 (5.3979, 100.4043) | 630,999 | Industrial areas Residential areas |
Value of ρ | Station |
---|---|
0.00–0.19 | Very weak |
0.20–0.39 | Weak |
0.40–0.59 | Moderate |
0.60–0.79 | Strong |
0.80–1.00 | Very strong |
Study Area | Year | 2016 | 2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|---|---|---|
Perai | N | Valid | 8237 | 5513 | 8260 | 8350 | 8292 |
Missing | 547 | 1303 | 500 | 410 | 492 | ||
Mean | 0.01543 | 0.01629 | 0.01749 | 0.01757 | 0.01718 | ||
Median | 0.01100 | 0.01050 | 0.01140 | 0.01090 | 0.01185 | ||
Std. Deviation | 0.014710 | 0.16441 | 0.017208 | 0.017544 | 0.015890 | ||
Minimum | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Maximum | 0.091 | 0.085 | 0.095 | 0.093 | 0.080 | ||
Seremban | N | Valid | 6478 | 5886 | 8327 | 8356 | 8373 |
Missing | 2306 | 928 | 426 | 406 | 409 | ||
Mean | 0.01686 | 0.01748 | 0.02030 | 0.02194 | 0.01943 | ||
Median | 0.01200 | 0.01200 | 0.01600 | 0.01930 | 0.01680 | ||
Std. Deviation | 0.014792 | 0.016436 | 0.017167 | 0.016930 | 0.014807 | ||
Minimum | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Maximum | 0.097 | 0.103 | 0.100 | 0.095 | 0.094 | ||
Kuala Terengganu | N | Valid | 8335 | 5975 | 8215 | 8320 | 8337 |
Missing | 449 | 836 | 558 | 440 | 447 | ||
Mean | 0.01981 | 0.01776 | 0.01739 | 0.01559 | 0.01412 | ||
Median | 0.01800 | 0.01670 | 0.01600 | 0.01520 | 0.01350 | ||
Std. Deviation | 0.013018 | 0.012303 | 0.012521 | 0.011184 | 0.009916 | ||
Minimum | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Maximum | 0.076 | 0.082 | 0.069 | 0.058 | 0.057 |
Study Area | Time | Predict Hour | Model |
---|---|---|---|
Seremban | Daytime | Next 12 h | O3, t+12 = 0.004 + 0.477 O3 − 0.027 NO + 0 T + 0 UVB + 0 H |
Nighttime | Next 12 h | O3, t+12 = 0.047 + 0.276 O3 − 0.042 NO + 0 WS − 0.001 T + 0 H | |
Kuala Terengganu | Daytime | Next 12 h | O3, t+12 = 0.022 + 0.453 O3 + 0.311 NOX − 0.449 NO + 0 WS + 0 T +0 UVB + 0 H |
Nighttime | Next 12 h | O3, t+12 = 0.001 + 0.487 O3 − 0.024 NO + 0 WS + 0 T + 0 H | |
Perai | Daytime | Next 12 h | O3, t+12 = 0.09 + 0.403 O3 − 0.002 CO + 0.197 NOX − 0.325 NO + 0 T + 0 UVB + 0 H |
Nighttime | Next 12 h | O3, t+12 = 0.44 + 0.207 O3 + 0.002 NOX − 0.091 NO − 0.001 T + 0 H |
Study Area | Time | MLR | ANN | ||||
---|---|---|---|---|---|---|---|
MAE | RMSE | r | MAE | RMSE | r | ||
Seremban | Daytime | 0.015 | 0.019 | 0.576 | 0.010 | 0.012 | 0.699 |
Nighttime | 0.014 | 0.015 | 0.615 | 0.005 | 0.006 | 0.753 | |
Kuala Terengganu | Daytime | 0.014 | 0.017 | 0.739 | 0.006 | 0.007 | 0.805 |
Nighttime | 0.016 | 0.021 | 0.711 | 0.004 | 0.006 | 0.795 | |
Perai | Daytime | 0.061 | 0.064 | 0.747 | 0.006 | 0.008 | 0.862 |
Nighttime | 0.012 | 0.013 | 0.683 | 0.005 | 0.007 | 0.765 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baidrulhisham, S.E.; Noor, N.M.; Hassan, Z.; Sandu, A.V.; Vizureanu, P.; Ul-Saufie, A.Z.; Zainol, M.R.R.M.A.; Kadir, A.A.; Deák, G. Effects of Weather and Anthropogenic Precursors on Ground-Level Ozone Concentrations in Malaysian Cities. Atmosphere 2022, 13, 1780. https://doi.org/10.3390/atmos13111780
Baidrulhisham SE, Noor NM, Hassan Z, Sandu AV, Vizureanu P, Ul-Saufie AZ, Zainol MRRMA, Kadir AA, Deák G. Effects of Weather and Anthropogenic Precursors on Ground-Level Ozone Concentrations in Malaysian Cities. Atmosphere. 2022; 13(11):1780. https://doi.org/10.3390/atmos13111780
Chicago/Turabian StyleBaidrulhisham, Syaza Ezzati, Norazian Mohamed Noor, Zulkarnain Hassan, Andrei Victor Sandu, Petrica Vizureanu, Ahmad Zia Ul-Saufie, Mohd Remy Rozainy Mohd Arif Zainol, Aeslina Abdul Kadir, and György Deák. 2022. "Effects of Weather and Anthropogenic Precursors on Ground-Level Ozone Concentrations in Malaysian Cities" Atmosphere 13, no. 11: 1780. https://doi.org/10.3390/atmos13111780
APA StyleBaidrulhisham, S. E., Noor, N. M., Hassan, Z., Sandu, A. V., Vizureanu, P., Ul-Saufie, A. Z., Zainol, M. R. R. M. A., Kadir, A. A., & Deák, G. (2022). Effects of Weather and Anthropogenic Precursors on Ground-Level Ozone Concentrations in Malaysian Cities. Atmosphere, 13(11), 1780. https://doi.org/10.3390/atmos13111780