Exposure Assessment of Air Pollution in Lungs
Abstract
:1. Introduction
2. Particle Pollution and Health
3. Airflow and Particle Deposition in Human Airways
4. Computational Methodology
4.1. Reconstruction of Human Airways
4.2. Grid Generation
4.3. Governing Equations
Particle Transport Model
4.4. Turbulence Model
4.5. Boundary Conditions
4.6. CFD Solver Settings
5. Results & Discussion
5.1. Computational Validation
5.2. Particle Transport in Human Airways
5.3. Regional Deposition of RSPM in Upper Airways
5.4. Regional Deposition of RSPM in Tracheo-Bronchial Airways
6. Conclusions
- The RSPM transport analysis shows the presence of a large number of PM10 before the nasal valve, revealing that the nasal valve acts effectively as a prime defence mechanism against PM10 during normal breathing. However, it fails to do so effectively for PM2.5 and PM10 at moderate breathing.
- The RSPM deposition results reveal that the nasal cavity is quite effective in depositing PM10 and preventing it from entering the respiratory system. Significant differences were observed in the transport and deposition patterns of PM2.5 and PM10. Significant differences were also observed in the RSPM transport and deposition patterns in the right and left bronchial airways.
- The primary mechanism of particle deposition is attributed to inertial impact. Therefore, it is primarily governed by the particle size (particle diameter-d) and then by the airflow velocity (or volumetric flow rate-Q), according to the impaction parameter (d2Q).
- The present CFD study was not extended to computationally capture the deposition of PM2.5 and PM10 beyond seventh generation bronchi and the subsequent penetration of these particles in the blood stream through alveoli region of the human lungs due to the fact that it requires molecular dynamics simulation, and hence is beyond the scope of present study. The interested authors may however refer to the related literature [63,64].
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Schlesinger, B. Biological Disposition of Airborne Particles: Basic Principles and Application to Vehicular Emissions. In Air Pollution, the Automobile, and Public Health; Watson, A.Y., Bates, R.R., Kennedy, D., Eds.; National Academy Press: Washington, DC, USA, 1988; ISBN 0-309-56826-9. [Google Scholar]
- National Research Council. Committee on the Epidemiology of Air Pollutants. In Epidemiology and Air Pollution; National Academy Press: Washington, DC, USA, 1985; p. 224. [Google Scholar]
- Belis, C.A.; Dingenen, R.V.; Klimont, Z.; Dentener, F. Scenario analysis of PM2.5 and ozone impacts on health, crops and climate with TM5-FASST: A case study in the Western Balkans. J. Environ. Manag. 2022, 319, 115738. [Google Scholar] [CrossRef] [PubMed]
- Hulin, M.; Simoni, M.; Viegi, G.; Annesi-Maesano, I. Respiratory health and indoor air pollutants based on quantitative exposure assessments. Eur. Respir. J. 2012, 40, 1033–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, A.R.; Khan, F.; Jain, A.; Saha, S.C. Deposition of smoke particles in human airways with realistic waveform, Special issue on Heat Wave, Bush Fire and Air-Quality: Impacts on Respiratory Health. Atmosphere 2021, 12, 912. [Google Scholar] [CrossRef]
- Hystad, P.; Demers, P.A.; Johnson, K.C.; Carpiano, R.M.; Brauer, M. Long-term residential exposure to air pollution and lung cancer risk. Epidemiology 2013, 24, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Hvidtfeldt, U.A.; Severi, G.; Andersen, Z.J.; Atkinson, R.; Bauwelinck, M.; Bellander, T.; Boutron-Ruault, M.-C.; Brandt, J.; Brunekreef, B.; Cesaroni, G.; et al. Long-term low-level ambient air pollution exposure and risk of lung cancer—A pooled analysis of 7 European cohorts. Environ. Int. 2021, 146, 106249. [Google Scholar] [CrossRef]
- Gupta, S.K.; Elumalai, S.P. Size-segregated particulate matter and its association with respiratory deposition doses among outdoor exercisers in Dhanbad City, India. J. Air Waste Manag. Assoc. 2017, 67, 1137–1145. [Google Scholar] [CrossRef]
- Ching, J.; Kajino, M. Aerosol mixing state matters for particles deposition in human respiratory system. Sci. Rep. 2018, 8, 8864. [Google Scholar] [CrossRef] [Green Version]
- Milanzi, E.B.; Koppelman, G.H.; Smit, H.A.; Wijga, A.H.; Oldenwening, M.; Vonk, J.M.; Brunekreef, B.; Gehring, U. Air pollution exposure and lung function until age 16 years: The PIAMA birth cohort study. Eur. Respir. J. 2018, 52, 1800218. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zhang, M.; Chen, W.; Jiang, L.; Chen, C.; Qin, J. Assessment of Air Pollutant PM2.5 Pulmonary Exposure Using a 3D Lung-on-Chip Model. ACS Biomater. Sci. Eng. 2020, 6, 3081–3090. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Q.; Liu, Y.; Guo, Q.; Shan, Y.; Cheng, Z.; Zhong, Z. The Effects of Indoor Air Filter on Reductions in PM2.5 Associated Health Risks of Respiratory Function in Mouse. Atmosphere 2022, 13, 1005. [Google Scholar] [CrossRef]
- Miller, L.; Xu, X. Ambient PM2.5 Human Health Effects—Findings in China and Research Directions. Atmosphere 2018, 9, 424. [Google Scholar] [CrossRef] [Green Version]
- Ratajczak, A.; Badyda, A.; Czechowski, P.O.; Czarnecki, A.; Dubrawski, M.; Feleszko, W. Air Pollution Increases the Incidence of Upper Respiratory Tract Symptoms among Polish Children. J. Clin. Med. 2021, 10, 2150. [Google Scholar] [CrossRef] [PubMed]
- Weibel, E.R. Morphometry of the Human Lung; Academic Press: New York, NY, USA, 1963. [Google Scholar]
- Srivastav, V.K.; Jain, A.; Paul, A.R.; Joshi, S. CFD Modelling of Airflow in Human Respiratory System. In Proceedings of the 9th International Conference on Mechanical Engineering (ICME-2011), Dhaka, Bangladesh, 18–20 December 2011. Paper Code: ICME11-FL-09. [Google Scholar]
- Kim, S.K.; Chung, S.K. Investigation on the respiratory airflow in human airway by PIV. J. Vis. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Im, S.; Heo, G.E.; Jeon, Y.J.; Sung, H.J.; Kim, S.K. Tomographic PIV measurements of flow patterns in a nasal cavity with geometry acquisition. Exp. Fluids 2014, 55, 1644. [Google Scholar] [CrossRef]
- Li, C.; Jiang, J.; Dong, H.; Zhao, K. Computational modeling and validation of human nasal airflow under various breathing conditions. J. Biomech. 2017, 64, 59–68. [Google Scholar] [CrossRef]
- Oldham, M.J. Computational fluid dynamic predictions and experimental results for particle deposition in an airway model. Aerosol Sci. Technol. 2000, 32, 61–71. [Google Scholar] [CrossRef]
- Gurman, J.L.; Lippmann, M.; Schlesinger, R. Particle deposition in replicate casts of the human upper tracheobronchial tree under constant and cyclic inspiratory flow, I. Experimental. Aerosol Sci. Technol. 1984, 3, 245–252. [Google Scholar] [CrossRef]
- Phuong, N.L.; Ito, K. Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD. J. Build. Environ. 2015, 94, 504–515. [Google Scholar] [CrossRef]
- Mishra, A.; Hicky, A.J.; Rossi, C.; Borchard, G.; Terada, M.; Makino, K.; Fourie, P.B.; Colombo, P. Inhaled drug therapy for treatment of Tuberculosis. J. Tuberc. 2011, 91, 71–81. [Google Scholar] [CrossRef]
- Gorji, M.R.; Pourmehran, O.; Bandpy, M.G.; Gorji, T.B. CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. J. Mol. Liq. 2015, 209, 121–133. [Google Scholar] [CrossRef]
- Agarwal, R.; Katiyar, V.K.; Pradhan, P. A mathematical modelling of particle flow in carotid a tree bifurcation. Int. J. Eng. Sci. 2008, 46, 1147–1156. [Google Scholar] [CrossRef]
- Naseri, A.; Shaghaghian, S.; Aboualia, O.; Ahmadi, G. Numerical investigation of transient transport and deposition of micro-particles under unsteady inspiratory flow in human upper airways. J. Respir. Physiol. Neurobiol. 2017, 244, 56–72. [Google Scholar] [CrossRef]
- Wen, J.; Gu, X.; Wang, M.; Jian, G.; Wang, S.; Zheng, G. The effects of injection modes on instantaneous particle deposition in a realistic human nasal cavity. Int. J. Numer. Methods Biomed. Eng. 2017, 33, e02802. [Google Scholar] [CrossRef] [PubMed]
- Vedantan, S.; Patnaik, B.S.V. Efficient numerical algorithm for multiphase field simulation. J. Phys. Rev. 2006, 73, 106–703. [Google Scholar]
- Feng, Y.; Kleinstreuer, C. Micron-particle transport, interactions and deposition in triple lung-airway bifurcations using a novel modeling approach. J. Aerosol Sci. 2014, 71, 1–15. [Google Scholar] [CrossRef]
- Zhang, Z.; Kleinstreuer, C. Transient airflow structures and particle transport in a sequentially branching lung airway model. Phys. Fluids 2002, 14, 862–880. [Google Scholar] [CrossRef]
- Cui, X.; Wu, W.; Gutheilc, E. Numerical study of the airflow structures in an idealized mouth-throat under light and heavy breathing intensities using large eddy simulation. Respir. Physiol. Neurobiol. 2018, 248, 1–9. [Google Scholar] [CrossRef]
- Inthavong, K.; Tian, Z.F.; Li, H.F.; Tu, J.W.; Yang, W.; Xue, C.L.; Li, C.L. A Numerical Study of Spray Particle Deposition in a Human Nasal Cavity. Aerosol Sci. Technol. 2006, 40, 1034–1045. [Google Scholar] [CrossRef]
- Lin, J.; Hu, G.L.; Fan, J.R.; Pan, D. Study on airflow and inhaled particle deposition within realistic human upper respiratory tract. J. Phys. Conf. Ser. 2011, 147, 012067. [Google Scholar] [CrossRef]
- Devdatta, V.K.; Pratibha, S. Numerical simulation of flow structure and deposition of particles in asthmatic airway bifurcation. Int. J. Enhanc. Res. Sci. Technol. Eng. 2012, 1, 1–8. [Google Scholar]
- Shang, Y.D.; Inthavong, K.; Tu, J.Y. Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Comput. Fluids 2013, 114, 141–150. [Google Scholar] [CrossRef]
- Luo, H.Y.; Liu, Y. Particle deposition in a CT-Scanned human lung airway. J. Biomech. 2009, 42, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Feng, Y.; Wenqi, Z.; Sun, B.; Feng, T. Numerical investigation of particle deposition in a triple bifurcation airway due to gravitational sedimentation and inertial impaction. J. Powder Technol. 2017, 323, 284–293. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lee, K.-H.; Mutuku, J.K.; Hwang, C.-J. Flow dynamics and PM2.5 depositions in healthy and asthmatic airways at different inhalation statuses. J. Aerosol Air Qual. Res. 2018, 18, 866–883. [Google Scholar] [CrossRef] [Green Version]
- Pirhadi, M.; Sajadia, B.; Ahmadi, G.; Malekian, D. Phase change and deposition of inhaled droplets in the human nasal cavity under cyclic inspiratory airflow. J. Aerosol Sci. 2018, 118, 64–81. [Google Scholar] [CrossRef]
- Tohidi, R.; Sajadi, B.; Ahmadi, G. The effect of nasal airway obstruction on the dispersion and deposition of inhaled volatile droplets in the human nasal cavity: A numerical study. J. Aerosol Sci. 2020, 150, 105650. [Google Scholar] [CrossRef]
- Calmet, H.; Houzeaux, G.; Vázquez, M.; Eguzkitza, B.; Gambaruto, A.M.; Bates, A.J.; Doorly, D.J. Flow features and micro-particle deposition in a human respiratory system during sniffing. J. Aerosol Sci. 2018, 123, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Tian, L.; Ahmadi, G. Numerical assessment of respiratory airway exposure risks to diesel exhaust particles. Exp. Comput. Multiph. Flow 2019, 1, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Health Effects Institute (HEI). State of Global Air 2020; Special Report; Health Effects Institute: Boston, MA, USA, 2020; pp. 1–28. Available online: https://www.healthdata.org/policy-report/state-global-air-2020 (accessed on 10 September 2022).
- Zhou, Y.; Cheng, Y.-S. Particle Deposition in a Cast of Human Tracheobronchial Airways. Aerosol Sci. Technol. 2005, 39, 492–500. [Google Scholar] [CrossRef]
- Srivastav, V.K.; Paul, A.R.; Jain, A. Effects of Cartilaginous Rings on Airflow and Particle Transport through Simplified and Realistic Human Upper Respiratory Tracts. Acta Mech. Sin. 2013, 29, 883–892. [Google Scholar] [CrossRef]
- Inthavong, K.; Ma, J.; Shang, Y.; Dong, J.; Chetty, A.S.R.; Tu, J.; Frank-Ito, D. Geometry and airflow dynamics analysis in the nasal cavity during inhalation. J. Clin. Biomech. 2019, 66, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Dong, J.; Tiana, L.; Inthavong, K.; Tu, J. Detailed computational analysis of flow dynamics in an extended respiratory airway model. J. Clin. Biomech. 2019, 61, 105–111. [Google Scholar] [CrossRef]
- Srivastav, V.S.; Paul, A.R.; Jain, A. Capturing the wall turbulence in CFD simulation of human respiratory tract. Math. Comput. Simul. 2019, 160, 23–38. [Google Scholar] [CrossRef]
- Kumar, B.; Srivastav, V.K.; Jain, A.; Paul, A.R. Study of numerical schemes for the CFD simulation of human airways. Int. J. Integr. Eng. 2019, 11, 32–40. Available online: https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/3637 (accessed on 1 October 2022).
- Tiwari, A.; Jain, A.; Paul, A.R.; Saha, S.C. Computational evaluation of drug delivery in human respiratory tract under realistic inhalation. Phys. Fluids 2021, 33, 083311. [Google Scholar] [CrossRef]
- Srivastav, V.K.; Paul, A.R.; Jain, A. Computational fluid dynamics study of airflow and particle transport in third to sixth generation human respiratory tract. Int. J. Emerg. Multidiscip. Fluid Sci. 2011, 3, 227–234. [Google Scholar] [CrossRef]
- Srivastav, V.K.; Jain, A.; Paul, A.R. Computational study of drug delivery in tumorous human airways. Int. J. Comput. Sci. Math. 2019, 10, 459–475. [Google Scholar] [CrossRef]
- Shukla, R.K.; Srivastav, V.K.; Paul, A.R.; Jain, A. Fluid structure interaction studies of human airways. Sādhanā 2020, 45, 229. [Google Scholar] [CrossRef]
- Islam, M.S.; Larpruenrudee, P.; Saha, S.C.; Pourmehran, O.; Paul, A.R.; Gemci, T.; Collins, R.; Paul, G.; Gu, Y. How SARS coronavirus-2 aerosol propagate through the age-specific upper airways? Phys. Fluids 2021, 33, 081911. [Google Scholar] [CrossRef]
- Islam, M.S.; Larpruenrudee, P.; Paul, A.R.; Paul, G.; Gemci, T.; Gu, Y.; Saha, S.C. SARS-CoV-2 Aerosol: How far it can travel to the lower airways? Phys. Fluids 2021, 33, 061903. [Google Scholar] [CrossRef]
- Srivastav, V.K.; Kumar, A.; Shukla, S.K.; Paul, A.R.; Bhatt, A.D.; Jain, A. Airflow and Aerosol-Drug Delivery in a CT Scan based Human Respiratory Tract with Tumor using CFD. J. Appl. Fluid Mech. 2014, 7, 345–356. [Google Scholar] [CrossRef]
- Larpruenrudee, P.; Islam, M.S.; Paul, G.; Paul, A.R.; Gu, Y.T.; Saha, S.C. Model for pharmaceutical aerosol transport through stenosis airway. In Handbook of Lung Targeted Drug Delivery Systems: Recent Trends and Clinical Evidences; Pathak, Y., Islam, N., Eds.; CRC Press: Boca Raton, FL, USA, 2022; Chapter 8; ISBN 9780367490676. [Google Scholar]
- Vanaki, S.M.; Holmes, D.; Saha, S.C.; Chen, J.; Brown, R.J.; Jayathilake, P.G. Muco-ciliary clearance: A review of modelling techniques. J. Biomech. 2020, 99, 109578. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.C.; Francis, I.; Huang, X.; Paul, A.R. Heat Transfer and Fluid Flow Analysis of Realistic 16-Generation Lung. Phys. Fluids 2022, 34, 061906. [Google Scholar] [CrossRef]
- Rios de Anda, I.; Wilkins, J.W.; Robinson, J.F.; Royall, C.P.; Sear, R.P. Modeling the filtration efficiency of a woven fabric: The role of multiple lengthscales. Phys. Fluids 2022, 34, 033301. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.T.; Asgharian, B.; Kimbell, J.S.; Wong, B.A. Particle deposition in human nasal airway replicas manufactured by different methods. Part I: Inertial regime particles. Aerosol Sci. Technol. 2004, 38, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- Schroeter, J.D.; Guilherme, J.M.; Julia, G.; Kimbell, S. Effects of surface smoothness on inertial particle deposition in human nasal models. J. Aerosol Sci. 2011, 42, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.I.; Gandhi, N.S.; Hughes, Z.E.; Gu, Y.T.; Saha, S.C. Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants. Biochim. Biophys. Acta (BBA) Biomembr. 2019, 1861, 1458–1467. [Google Scholar] [CrossRef]
- Hossain, S.I.; Gandhi, N.S.; Hughes, Z.E.; Saha, S.C. Computational modelling of the interaction of gold nanoparticle with lung surfactant monolayer. MRS Adv. 2019, 4, 1177–1185. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, A.R.; Jain, A.; Saha, S.C. Exposure Assessment of Air Pollution in Lungs. Atmosphere 2022, 13, 1767. https://doi.org/10.3390/atmos13111767
Paul AR, Jain A, Saha SC. Exposure Assessment of Air Pollution in Lungs. Atmosphere. 2022; 13(11):1767. https://doi.org/10.3390/atmos13111767
Chicago/Turabian StylePaul, Akshoy Ranjan, Anuj Jain, and Suvash C. Saha. 2022. "Exposure Assessment of Air Pollution in Lungs" Atmosphere 13, no. 11: 1767. https://doi.org/10.3390/atmos13111767
APA StylePaul, A. R., Jain, A., & Saha, S. C. (2022). Exposure Assessment of Air Pollution in Lungs. Atmosphere, 13(11), 1767. https://doi.org/10.3390/atmos13111767