Higher Heat Stress Increases the Negative Impact on Rice Production in South China: A New Perspective on Agricultural Weather Index Insurance
Abstract
:1. Introduction
2. Data
2.1. Observation Data
2.2. Model Data
3. Methods
3.1. Rice Heat Stress Weather Index Insurance Model
3.2. Bias Correction Methods
3.3. Model Performance Evaluation
3.4. Piecewise Linear Fitting Model (PLFIM)
4. Results
4.1. Spatial–Temporal Characteristics of HSWI and Payout Based on Observations
4.2. Spatial–Temporal Characteristics of HSWI and Payout Based on Projections
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agricultural Organization of the United Nations; FAO: Rome, Italy, 2019.
- Zhu, C.; Xiang, J.; Zhang, Y.; Zhang, Y.; Zhu, D.; Chen, H. Innovation and practice of high-yield rice cultivation technology in China. Sci. Agric. Sin. 2015, 48, 3404–3414. [Google Scholar]
- Peng, S.; Tang, Q.; Zou, Y. Current Status and Challenges of Rice Production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Fahad, S.; Adnan, M.; Hassan, S.; Saud, S.; Hussain, S.; Wu, C.; Wang, D.; Hakeem, K.R.; Alharby, H.F.; Turan, V. Rice responses and tolerance to high temperature. In Advances in Rice Research for Abiotic Stress Tolerance; Elsevier: Amsterdam, The Netherlands, 2019; pp. 201–224. [Google Scholar]
- Matsui, T.; Omasa, K.; Horie, T. High temperature at flowering inhibit swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod. Sci. 2000, 3, 430–434. [Google Scholar] [CrossRef]
- Matsui, T.; Omasa, K.; Horie, T. The Difference in Sterility due to High Temperatures during the Flowering Period among Japonica-Rice Varieties. Plant Prod. Sci. 2001, 4, 90–93. [Google Scholar] [CrossRef]
- Matsui, T.; Omasa, K. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering, anther characteristics. Ann. Bot. 2002, 89, 683–687. [Google Scholar] [CrossRef] [Green Version]
- Jagadish, S.; Craufurd, P.; Wheeler, T. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 2007, 58, 1627–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagadish, S.V.K.; Craufurd, P.Q.; Wheeler, T.R. Phenotyping parents of mapping populations of rice (Oryza sativa L.) for heat tolerance during anthesis. Crop Sci. 2008, 48, 1140–1146. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Muthurajan, R.; Oane, R.; Wheeler, T.R.; Heuer, S.; Bennett, J.; Craufurd, P.Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J. Exp. Bot. 2010, 61, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Omasa, K.; Horie, T. Comparison between anthers of two rice (Oryza sativa L.) cultivars with tolerance to high temperatures at flowering or susceptibility. Plant Prod. Sci. 2001, 4, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Endo, M.; Tsuchiya, T.; Hamada, K.; Kawamura, S.; Yano, K.; Ohshima, M.; Higashitani, A.; Watanabe, M.; Kawagishi-Kobayashi, M. High Temperatures Cause Male Sterility in Rice Plants with Transcriptional Alterations During Pollen Development. Plant Cell Physiol. 2009, 50, 1911–1922. [Google Scholar] [CrossRef]
- Kobata, T.; Uemuki, N. High Temperatures during the Grain-Filling Period Do Not Reduce the Potential Grain Dry Matter Increase of Rice. Agron. J. 2004, 96, 406–414. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Muthurajan, R.; Rang, Z.W.; Malo, R.; Heuer, S.; Bennett, J.; Craufurd, P.Q. Spikelet Proteomic Response to Combined Water Deficit and Heat Stress in Rice (Oryza sativa cv. N22). Rice 2011, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Wang, C.; Linderholm, H.W.; Fu, Y.; Cai, W.; Xu, J.; Zhuang, L.; Wu, M.; Shi, Y.; Wang, G.; et al. The negative impact of increasing temperatures on rice yields in southern China. Sci. Total Environ. 2022, 820, 153262. [Google Scholar] [CrossRef] [PubMed]
- Gourdji, S.M.; Sibley, A.M.; Lobell, D.B. Global crop exposure to critical high temperatures in the reproductive period, Historical trends and future projections. Environ. Res. Lett. 2013, 8, 24–41. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.L.; Wang, X.H.; Lobell, D.B.; Huang, Y.; Huang, M.T.; Yao, Y.T.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, F.; Zhang, Z.; Liu, J.; Yokozawa, M. Modelling the impacts of weather and climate variability on crop productivity over a large area: A new super-ensemble-based probabilistic projection. Agric. For. Meteorol. 2009, 149, 1266–1278. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Tao, F. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C. Earth Syst. Dyn. 2018, 9, 543–562. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Zhang, S.; Zhang, Z. Changes in rice disasters across China in recent decades and the meteorological and agronomic causes. Reg. Environ. Chang. 2013, 13, 743–759. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, P.; Chen, Y.; Song, X.; Wei, X.; Shi, P. Global warming over 1960–2009 did increase heat stress and reduce cold stress in the major rice-planting areas across China. Eur. J. Agron. 2014, 59, 49–56. [Google Scholar] [CrossRef]
- Shi, P.; Tang, L.; Lin, C.; Liu, L.; Wang, H.; Cao, W.; Zhu, Y. Modeling the effects of post-anthesis heat stress on rice phenology. Field Crop. Res. 2015, 177, 26–36. [Google Scholar] [CrossRef]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Ling, X.; Zhang, Z.; Zhai, J.; Ye, S.; Huang, J. A review for impacts of climate change on rice production in China. Acta Agron. Sin. 2019, 45, 323–334. [Google Scholar] [CrossRef]
- Crompton, R.P.; Mcaneney, K.J. Normalised Australian insured losses from meteorological hazards, 1967–2006. Environ. Sci. Policy 2008, 11, 371–378. [Google Scholar] [CrossRef]
- Sangha, K.K.; Russell-Smith, J.; Edwards, A.C.; Surjan, A. Assessing the real costs of natural hazard-induced disasters, A case study from Australia’s Northern Territory. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 2021, 108, 479–498. [Google Scholar] [CrossRef]
- Clarke, D.; Mahul, O.; Rao, K.N.; Verma, N. Weather Based Crop Insurance in India; Policy Research Working Paper Series 5985; The World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Biswas, B.; Dhaliwal, L.; Singh, S.P.; Sandhu, S. Weather based crop insurance in India, Present status and future possibilities. J. Agrometeorol. 2009, 11, 238–241. [Google Scholar]
- Liu, B.C.; Li, M.S.; Guo, Y. Analysis of the Demand for Weather Index Agricultural Insurance on Household level in Anhui, China. Agric. Agric. Sci. Procedia 2010, 1, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Barry, J.B.; Olivier, M. Weather index insurance for agriculture and rural areas in lower-income countries. Am. J. Agric. Econ. 2007, 89, 1241–1247. [Google Scholar]
- Hess, U.; Syroka, J. Weather-Based Insurance in Southern Africa, The Case of Malawi; Agriculture and Rural Development Discussion; The World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Paulson, N.D.; Hart, C.E. A spatial approach to addressing weather derivative basis risk, A drought insurance example. In Proceedings of the 2006 Annual Meeting of American Agricultural Economics Association, Long Beach, CA, USA, 23–26 July 2006; Iowa State University: Ames, IA, USA, 2006. [Google Scholar]
- Raphael, N.K.; Holly, H.W.; Douglas, L.Y. Weather-based crop insurance contracts for African countries. In Proceedings of the International Association of Agricultural Economists Conference, Gold Coast, QL, Australia, 12–18 August 2006. [Google Scholar]
- Varangis, P.; Skees, J.; Barnett, B. Weather Indexes for Developing Countries; World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Yang, T.; Sun, X.; Liu, B.; Xun, S. Design on weather indices model for insurance of rice heat damage in anhui province. Chin. J. Agrometeorol. 2015, 36, 220–226. [Google Scholar]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Vuuren, D.; Edmonds, J.; Kaimuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways, an overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Wang, S.; Song, A.; Xie, W.; Tang, W.; Dai, J.; Ding, X.; Wu, R. Impact Assessment of Future Climate Change on Climatic Productivity Potential of Single-season Rice in the South of the Huaihe River of the Anhui Province. J. Arid. Meteorol. 2020, 38, 179–187. [Google Scholar]
- Abatzoglou, J.T.; Brown, T.J. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Clim. 2011, 32, 772–780. [Google Scholar] [CrossRef]
- Duan, C.; Wang, P.; Cao, W.; Wang, X.; Wu, R.; Cheng, Z. Improving the Spring Air Temperature Forecast Skills of BCC_CSM1.1 (m) by Spatial Disaggregation and Bias Correction, Importance of Trend Correction. Atmosphere 2021, 12, 1143. [Google Scholar] [CrossRef]
- Shen, C.; Duan, Q.; Miao, C.; Xing, C.; Fan, X.; Wu, Y.; Han, J. Bias Correction and Ensemble Projections of Temperature Changes over Ten Subregions in CORDEX East Asia. Adv. Atmos. Sci. 2020, 37, 1191–1210. [Google Scholar] [CrossRef]
- Raeisaenen, J.; Raety, O. Projections of daily mean temperature variability in the future, cross-validation tests with ENSEMBLES regional climate simulations. Clim. Dyn. 2013, 41, 1553–1568. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Tomé, A.R.; Miranda, P.M.A. Piecewise linear fitting and trend changing points of climate parameters. Geophys. Res. Lett. 2004, 31, L02207. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2021, the Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wires Clim. Change 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, X.; Giorgi, F.; Zhou, B.; Shi, Y.; Wu, J.; Zhang, Y. Projected Changes in Temperature and Precipitation Extremes over China as Measured by 50-yr Return Values and Periods Based on a CMIP5 Ensemble. Adv. Atmos. Sci. 2018, 35, 376–388. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Y.; Wang, C. Study on the impact of high temperature damage to rice in the lower and middle reaches of the Yangtze River. J. Catastrophology 2011, 26, 57–62. [Google Scholar]
- Li, D.; Zhou, L.; Zhou, T. Changes of extreme indices over China in response to 1.5 °C global warming projected by a regional climate model. Adv. Earth Sci. 2017, 32, 446–457. [Google Scholar]
- Xiong, W.; Feng, L.; Ju, H.; Yang, D. Possible impacts of high temperatures on China’s rice yield under climate change. Adv. Earth Sci. 2016, 31, 515–528. [Google Scholar]
- Yao, F.M.; Qin, P.C.; Zhang, J.H.; Lin, E.D.; Vijendra, B. Uncertainties in assessing the effect of climate change on agriculture using model simulation and uncertainty processing methods. Chin. Sci. Bull. 2011, 56, 547–555. [Google Scholar]
- Tao, F.L.; Hayashi, Y.; Zhang, Z.; Sakamoto, T.; Yokozawa, M. Global warming, rice production, and water use in China, developing a probabilistic assessment. Agric. For. Meteorol. 2008, 148, 94–110. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environ. Res. Lett. 2008, 3, 034007. [Google Scholar]
10 < HSWI ≤ 14 | 14 < HSWI ≤ 18 | 18 < HSWI ≤ 22 | 22 < HSWI ≤ 26 | HSWI > 26 | |
---|---|---|---|---|---|
Trigger value C (°C) | 10 | 14 | 18 | 22 | 26 |
Payout coefficient A (CNY °C−1 mu−1) | 0.2 | 1.5 | 2.0 | 4.0 | 8.0 |
payout base B (CNY mu−1) | 0 | 0.8 | 6.8 | 14.8 | 30.8 |
RCP4.5 | RCP6.0 | RCP8.5 | |
---|---|---|---|
Near future | 15 July to 9 August | 16 July to 10 August | 14 July to 8 August |
Mid-future | 10 July to 4 August | 11 July to 5 August | 7 July to 1 August |
Far future | 6 July to 31 July | 4 July to 29 July | 27 June to 22 July |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Duan, C.; Yang, T.; Wang, S. Higher Heat Stress Increases the Negative Impact on Rice Production in South China: A New Perspective on Agricultural Weather Index Insurance. Atmosphere 2022, 13, 1768. https://doi.org/10.3390/atmos13111768
Cao W, Duan C, Yang T, Wang S. Higher Heat Stress Increases the Negative Impact on Rice Production in South China: A New Perspective on Agricultural Weather Index Insurance. Atmosphere. 2022; 13(11):1768. https://doi.org/10.3390/atmos13111768
Chicago/Turabian StyleCao, Wen, Chunfeng Duan, Taiming Yang, and Sheng Wang. 2022. "Higher Heat Stress Increases the Negative Impact on Rice Production in South China: A New Perspective on Agricultural Weather Index Insurance" Atmosphere 13, no. 11: 1768. https://doi.org/10.3390/atmos13111768
APA StyleCao, W., Duan, C., Yang, T., & Wang, S. (2022). Higher Heat Stress Increases the Negative Impact on Rice Production in South China: A New Perspective on Agricultural Weather Index Insurance. Atmosphere, 13(11), 1768. https://doi.org/10.3390/atmos13111768