Analysis of Microtopography Atmospheric Precipitable Water Vapour over the Northeastern Margin of the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Methods
2.3. Data
3. Results
3.1. Time Variation Characteristics of PWV
- a.
- Characteristics of PWV of hourly variation
- b.
- Monthly and seasonal variation characteristics of PWV
- c.
- Interannual variation in PWV
3.2. Spatial Distribution Characteristics of PWV
3.3. Changes in PWV before and after Rainfall
4. Discussions and Conclusions
4.1. Conclusions
4.2. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, J.T. Meteorological Applications of GPS. Meteorol. Sci. Technol. 1993, 4, 47–51. [Google Scholar]
- Bevis, M.; Businger, S.; Herring, T.A. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Rocken, C.; Ware, T.; Van Hove, T. Sensing Atmospheric Water Vapor with the Global Positioning System. Geophys. Res. Lett. 1993, 20, 2631–2634. [Google Scholar] [CrossRef] [Green Version]
- Rocken, C.; Hove, T.V.; Johnson, J. GPS/STORM-GPS Sensing of Atmospheric Water Vapor for Meteorology. J. Atmos. Ocean. Technol. 1995, 12, 468–478. [Google Scholar] [CrossRef]
- Liang, F.; Li, C.C.; Wang, Y.C.; Mao, J.T.; Fang, Z.Y. An Analysis of Atmospheric Precipitable Water Based on Regional Ground-Based GPS Network in Beijing. Chin. J. Atmos. Sci. 2003, 27, 236–244. [Google Scholar]
- Mao, P.Y.; Chen, Y.M.; Meng, X. Feasibility Analysis of Precipitable Water Vapor Retrieval with Ground-Based GPS Based on Singular Spectrum Analysis. J. Geod. Geodyn. 2017, 37, 933–936. [Google Scholar]
- Wang, H.; Lei, H.C.; Yang, C.; Song, Y.P.; Meng, J.; Xu, X.L. A Comparison of Datasets of Precipitable Water Vapor over Jinan Retrieved by Three Kinds of Equipments. J. Mar. Meteorol. 2017, 37, 83–89. [Google Scholar]
- Wang, H.; Zhang, E.H.; Meng, J.; Xu, X.L. Error Analysis of Precipitable Water Vapor by GPS/MET and Its Application in Precipitation Forecast. Sci. Soil Water Conserv. 2017, 15, 85–91. [Google Scholar]
- Cao, Y.J.; Liu, J.M.; Liang, H.; Li, W.J.; Chu, Y.L. Progress in Ground-Based GPS Tomographying Atmospheric Water Vapor Resource. J. Nat. Resour. 2010, 10, 1786–1796. [Google Scholar]
- Xiong, Y.L.; Huang, D.F.; Ding, X.L.; Yin, H.T. Research on the Modeling of Tropospheric Delay Based on Multi-reference-stations. Geotech. Investig. Surv. 2005, 5, 55–57. [Google Scholar]
- Xue, Q. The Study on Local Model Based on the Atmospheric Weighted Mean Temperature. Railw. Investig. Surv. 2018, 44, 24–27. [Google Scholar]
- Gu, X.P.; Wang, C.Y.; Wu, D.X. Research on the Local Algorithm for Weighted Atmospheric Temperature Used in GPS Remote Sensing Water Vapor. Sci. Meteorol. Sin. 2005, 25, 79–83. [Google Scholar]
- Wang, X.Y.; Zhu, W.Y.; Yan, H.J.; Ding, J.C. The Latest Advance in Monitoring Atmosphere by Ground Based GPS. Adv. Earth Sci. 1997, 12, 22–30. [Google Scholar]
- Chen, X.L. Study on the Operation and Application of the Ground-Based GPS in Hebei; Lanzhou University: Lanzhou, China, 2007. [Google Scholar]
- Li, C.; Mao, J.T. Analysis for Remote Sensing of Atmospheric Precipitable Water Using Ground Based GPS Receiver. Q. J. Appl. Meteorol. 1998, 9, 91–98. [Google Scholar]
- Yang, J.M.; Qiu, J.H. A Method for Estimating Precipitable Water and Effective Water Vapor Content from Ground Humidity Parameters. Chin. J. Atmos. Sci. 2002, 26, 9–22. [Google Scholar]
- Zhou, X.J.; Zhao, P.; Chen, J.M.; Chen, L.X.; Li, W.L. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Sci. China (Ser. D Earth Sci.) 2009, 39, 1473–1486. [Google Scholar] [CrossRef]
- Liu, X.D. Influences of Qinghai Xizang(Tibet) Plateau Uplift on the Atmospheric Circulation, Global Climate and Environment Changes. Plateau Meteorol. 1999, 18, 321–332. [Google Scholar]
- Wu, G.X.; Mao, J.Y.; Duan, A.M.; Zhang, Q. Recent Progress in the Study on the Impacts of Tibetan Plateau on Asian Summer Climate. Acta Meteorol. Sin. 2004, 62, 528–540. [Google Scholar]
- Xu, X.D.; Shi, X.Y.; Wang, Y.Q. Data Analysis and Numerical Simulation of Moisture Source and Transport Associated with Summer Precipitation in the Yangtze River Valley over China. Meteorol. Atmos. Phys. 2008, 100, 217–231. [Google Scholar] [CrossRef]
- Huang, J.P.; Liu, Y.Z.; Wang, T.H.; Yan, H.R.; Li, J.M.; He, Y.L. An Overview of the Aerosol and Cloud Properties and Water Vapor Budget over the Qinghai-Xizang Plateau. Plateau Meteorol. 2021, 40, 1225–1240. [Google Scholar]
- Liang, H. Study of Atmospheric Water Vapor Distribution and Change over Tibetan Plateau and around Area; Chinese Academy of Meteorological Sciences: Beijing, China, 2005. [Google Scholar]
- Bothe, O.; Fraedrich, K.; Zhu, X. Large-scale Circulations and Tibetan Plateau Summer Drought and Wetness in a High–resolution Climate Model. Int. J. Climatol. 2011, 31, 832–846. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H. Changes of the Connection between the Summer North Atlantic Oscillation and the East Asian Summer Rainfall. J. Geophys. Res. Atmos. 2012, 117, 393–407. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.; Li, S. Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 3534–3544. [Google Scholar]
- Chang, Z.L.; Cui, Y.; Zhang, W.; Tian, L.; Zhai, T. Characteristics and Developing Potential of Cloud Water Resources in Ningxia with the CERES Data. Arid Land Geogr. 2015, 38, 1112–1120. [Google Scholar]
- Guan, C.H.; Meng, Q.L.; Li, C.; Yin, J.Y. GAMIT/GLOBK Fast Installation and Example Solution Based on Ubuntu. Geomat. Spat. Inf. Technol. 2021, 44, 5–8. [Google Scholar]
- Wang, R.; Pang, Z.; Wang, Q.; Bi, J.X. Research on Positioning Accuracy of BDS/GPS based on GAMIT/GLOBK. Site Investig. Sci. Technol. 2021, 2, 20–25. [Google Scholar]
- Li, Y. Analysis of GAMIT/GLOBK in High-precision GNSS Data Processing for Crustal Deformation. Prog. Earthq. Sci. 2021, 3, 29–37. [Google Scholar] [CrossRef]
- Mu, R.H.; Chang, C.T.; Dang, Y.M.; Cheng, Y. GAMIT 10.71 Resolution GNSS Long Baseline Precision Analysis. GNSS World China 2020, 45, 14–19+83. [Google Scholar]
- Guo, R.C.; Hu, J. Precision Processing and Accuracy Evaluation of Beidou Third-generation Satellite Positioning Data Based on GAMIT. Sci. Technol. Innov. 2022, 5, 66–68. [Google Scholar]
- Li, J.T.; Zhu, L.Y.; Shi, K.; Yu, F.J.; Wang, L.D.; Li, Y.M. Performance Test and Analysis of GLONASS/BDS Precision Relative Positioning with GAMIT (10.7). Eng. Surv. Mapp. 2020, 29, 60–66. [Google Scholar]
- Askne, J.; Nordius, H. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 1987, 22, 379–386. [Google Scholar] [CrossRef]
- Champolliona, C.; Massona, F.; Bouin, N. GPS water vapor tomography: Preliminary results from the ESCOMPTE field experiment. Atmos. Res. 2005, 74, 253–274. [Google Scholar] [CrossRef]
- Goff, J.A. Low-pressure Properties of Water From -160°F to 212°F. Trans. Actions Am. Soc. Heat. Vent. Eng. 1946, 52, 95–121. [Google Scholar]
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Total | |
---|---|---|---|---|---|---|---|---|
The number of GNSS/MET data collected | 58,986 | 40,662 | 59,090 | 57,650 | 46,600 | 59,687 | 116,531 | 439,206 |
The number of missing data on precipitation | 924 | 9299 | 10,530 | 10,642 | 8341 | 9979 | 10,504 | 60,219 |
The number of effective precipitation processes | 409 | 234 | 350 | 330 | 268 | 338 | 749 | 2678 |
Hour | Before Rainfall | After Rainfall | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variance | S.D. | Range | CC | F-Test | F-Dist | T-Test | T-Dist | Variance | S.D. | Range | CC | F-Test | F-Dist | T-Test | T-Dist | |
1 | 101.1 | 10.1 | 48.2 | 0.993 | 0.195 | 0.702 | 0.076 | 0.939 | 99.5 | 10.0 | 47.8 | 0.994 | 0.765 | 0.566 | 0.299 | 0.765 |
2 | 96.1 | 9.8 | 48.0 | 0.994 | 0.282 | 0.649 | 0.145 | 0.884 | 98.4 | 9.9 | 49.6 | 0.994 | 0.818 | 0.550 | 0.318 | 0.751 |
3 | 92.1 | 9.6 | 46.7 | 0.994 | 0.461 | 0.567 | 0.236 | 0.813 | 97.5 | 9.9 | 49.4 | 0.994 | 0.955 | 0.512 | 0.411 | 0.681 |
4 | 89.5 | 9.5 | 46.8 | 0.994 | 0.567 | 0.530 | 0.392 | 0.695 | 97.3 | 9.9 | 49.1 | 0.994 | 0.984 | 0.504 | 0.486 | 0.627 |
5 | 87.6 | 9.4 | 46.9 | 0.995 | 0.690 | 0.494 | 0.344 | 0.731 | 97.4 | 9.9 | 48.9 | 0.995 | 0.943 | 0.515 | 0.511 | 0.609 |
6 | 86.2 | 9.3 | 47.2 | 0.995 | 0.726 | 0.484 | 0.427 | 0.670 | 97.6 | 9.9 | 49.7 | 0.995 | 0.961 | 0.510 | 0.521 | 0.602 |
7 | 85.1 | 9.2 | 48.0 | 0.994 | 0.694 | 0.492 | 0.366 | 0.714 | 97.8 | 9.9 | 48.4 | 0.996 | 0.818 | 0.550 | 0.613 | 0.540 |
8 | 83.8 | 9.2 | 48.3 | 0.994 | 0.777 | 0.471 | 0.397 | 0.691 | 98.7 | 9.9 | 46.9 | 0.995 | 0.963 | 0.509 | 0.658 | 0.511 |
9 | 82.8 | 9.1 | 47.7 | 0.994 | 0.712 | 0.488 | 0.429 | 0.668 | 98.9 | 9.9 | 47.0 | 0.996 | 0.894 | 0.528 | 0.746 | 0.456 |
10 | 81.7 | 9.0 | 46.5 | 0.995 | 0.897 | 0.444 | 0.521 | 0.602 | 99.4 | 10.0 | 48.1 | 0.996 | 0.993 | 0.502 | 0.876 | 0.381 |
11 | 81.3 | 9.0 | 47.8 | 0.995 | 0.933 | 0.436 | 0.659 | 0.510 | 99.4 | 10.0 | 48.1 | 0.996 | 0.821 | 0.549 | 0.892 | 0.372 |
12 | 81.5 | 9.0 | 46.9 | 0.994 | 0.958 | 0.431 | 0.774 | 0.439 | 100.3 | 10.0 | 51.5 | 0.996 | 0.955 | 0.512 | 0.981 | 0.327 |
13 | 81.7 | 9.0 | 48.7 | 0.994 | 0.994 | 0.424 | 0.753 | 0.451 | 100.1 | 10.0 | 50.8 | 0.996 | 0.922 | 0.520 | 0.961 | 0.336 |
14 | 81.7 | 9.0 | 44.4 | 0.995 | 0.901 | 0.443 | 0.707 | 0.480 | 100.4 | 10.0 | 51.0 | 0.996 | 0.931 | 0.518 | 0.930 | 0.352 |
15 | 82.1 | 9.1 | 43.0 | 0.995 | 0.791 | 0.468 | 0.890 | 0.374 | 100.8 | 10.0 | 51.0 | 0.996 | 0.943 | 0.515 | 0.906 | 0.365 |
16 | 82.9 | 9.1 | 42.8 | 0.995 | 0.960 | 0.431 | 0.819 | 0.413 | 100.5 | 10.0 | 51.7 | 0.996 | 0.891 | 0.529 | 0.925 | 0.355 |
17 | 83.1 | 9.1 | 44.0 | 0.995 | 0.991 | 0.424 | 0.786 | 0.432 | 100.0 | 10.0 | 52.2 | 0.996 | 0.994 | 0.501 | 0.975 | 0.330 |
18 | 83.1 | 9.1 | 45.2 | 0.995 | 0.933 | 0.436 | 0.890 | 0.374 | 99.9 | 10.0 | 53.3 | 0.996 | 0.996 | 0.501 | 0.842 | 0.400 |
19 | 83.4 | 9.1 | 48.2 | 0.994 | 0.840 | 0.456 | 0.894 | 0.371 | 99.9 | 10.0 | 52.6 | 0.996 | 0.976 | 0.506 | 0.923 | 0.356 |
20 | 84.0 | 9.2 | 46.5 | 0.994 | 0.809 | 0.463 | 0.996 | 0.319 | 99.8 | 10.0 | 51.8 | 0.995 | 0.861 | 0.537 | 0.921 | 0.357 |
21 | 84.8 | 9.2 | 46.7 | 0.995 | 0.980 | 0.427 | 0.851 | 0.395 | 99.1 | 10.0 | 50.7 | 0.995 | 0.904 | 0.525 | 0.956 | 0.339 |
22 | 84.9 | 9.2 | 47.4 | 0.995 | 0.936 | 0.435 | 0.998 | 0.319 | 98.7 | 9.9 | 50.2 | 0.995 | 0.697 | 0.589 | 0.802 | 0.422 |
23 | 85.2 | 9.2 | 46.4 | 0.994 | 0.848 | 0.454 | 1.000 | 0.318 | 97.2 | 9.9 | 50.0 | 0.994 | 0.315 | 0.760 | 0.323 | 0.747 |
24 | 85.8 | 9.3 | 47.0 | 93.5 | 9.7 | 47.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, Z.; Tao, T.; Pu, D.; Wu, H.; Lin, T.; Zhu, H.; Sun, Y.; Sang, J.; Yue, Y. Analysis of Microtopography Atmospheric Precipitable Water Vapour over the Northeastern Margin of the Qinghai–Tibet Plateau. Atmosphere 2022, 13, 1635. https://doi.org/10.3390/atmos13101635
Shu Z, Tao T, Pu D, Wu H, Lin T, Zhu H, Sun Y, Sang J, Yue Y. Analysis of Microtopography Atmospheric Precipitable Water Vapour over the Northeastern Margin of the Qinghai–Tibet Plateau. Atmosphere. 2022; 13(10):1635. https://doi.org/10.3390/atmos13101635
Chicago/Turabian StyleShu, Zhiliang, Tao Tao, Dongyang Pu, Hao Wu, Tong Lin, Haoran Zhu, Yanqiao Sun, Jianren Sang, and Yong Yue. 2022. "Analysis of Microtopography Atmospheric Precipitable Water Vapour over the Northeastern Margin of the Qinghai–Tibet Plateau" Atmosphere 13, no. 10: 1635. https://doi.org/10.3390/atmos13101635
APA StyleShu, Z., Tao, T., Pu, D., Wu, H., Lin, T., Zhu, H., Sun, Y., Sang, J., & Yue, Y. (2022). Analysis of Microtopography Atmospheric Precipitable Water Vapour over the Northeastern Margin of the Qinghai–Tibet Plateau. Atmosphere, 13(10), 1635. https://doi.org/10.3390/atmos13101635