Analysis of the Air Quality of a District Heating System with a Biomass Plant
Abstract
:1. Introduction
- Thermal conversion plant;
- Piping network;
- System of sub-exchanges.
2. Materials and Methods
2.1. Large Users Identification
2.2. Estimated Consumption Due to Heating
2.3. Emission Factors Definition
2.4. Air Quality
3. Results
3.1. Estimated Consumption per Analogy
3.2. Estimated Consumption with Coefficients
- For a hospital building (user A), a specific thermal consumption value of 15.93 thousandths of tons of oil equivalent (mTEP) per year per square meter was obtained, which is equal to approximately 185.3 kWh/m2 year [26];
- For primary and secondary schools (users D, E) a specific consumption, due to heating, of 130 kWh/m2 year was obtained [27];
- A value of 160 kWh/m2 year was obtained for a high school [27];
- For an outdoor swimming pool (user F) there is a specific consumption of 82 mTEP per year per square meter. However, this is due to both the heating and the electricity used. Assuming that the thermal rate is 50% of the total, a coefficient of 476.5 kWh/m2 year is obtained [28];
- The accommodation facilities (users G, H) and the municipal building (user B) share the same specific consumption as a house located in a climatic zone E (the same to which the municipality of Serra San Bruno belongs) with a high surface/volume form factor, i.e., 110 kWh/m2 year [29].
3.3. Comparison between Heat Consumption Estimated by Analogy and Obtained through Coefficients
3.4. Air Quality Analysis
3.5. Domestic Heating Contribution Evaluation
3.6. District Heating System Definition
- Fair replacement of wood and natural gas systems;
- Replacement of wood heating systems only.
3.6.1. Scenario 1
3.6.2. Scenario 2
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, H.; Luo, Z.; Xiong, R.; Liu, X.; Zhang, L.; Li, Y.; Du, W.; Chen, Y.; Cheng, H.; Shen, G.; et al. A critical review of pollutant emission factors from fuel combustion in home stoves. Environ. Int. 2021, 157, 106841. [Google Scholar] [CrossRef] [PubMed]
- Hanigan, I.C.; Rolfe, M.I.; Knibbs, L.D.; Salimi, F.; Cowie, C.T.; Heyworth, J.; Marks, G.B.; Guo, Y.; Cope, M.; Bauman, A.; et al. All-cause mortality and long-term exposure to low level air pollution in the ‘45 and up study’ cohort, Sydney, Australia, 2006–2015. Environ. Int. 2019, 126, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Apte, J.S.; Brauer, M.; Cohen, A.J.; Ezzati, M.; Pope, C.A. Ambient PM2.5 Reduces Global and Regional Life Expectancy. Environ. Sci. Technol. Lett. 2018, 5, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Lotrecchiano, N.; Montano, L.; Bonapace, I.M.; Giancarlo, T.; Trucillo, P.; Sofia, D. Comparison Process of Blood Heavy Metals Absorption Linked to Measured Air Quality Data in Areas with High and Low Environmental Impact. Processes 2022, 10, 1409. [Google Scholar] [CrossRef]
- Varol, G.; Tokuç, B.; Ozkaya, S.; Çağlayan, Ç. Air quality and preventable deaths in Tekirdağ, Turkey. Air Qual. Atmos. Health 2021, 14, 843–853. [Google Scholar] [CrossRef]
- Sofia, D.; Coca Llano, P.; Giuliano, A.; Iborra Hernández, M.; García Peña, F.; Barletta, D. Co-gasification of coal–petcoke and biomass in the Puertollano IGCC power plant. Chem. Eng. Res. Des. 2014, 92, 1428–1440. [Google Scholar] [CrossRef]
- Magnani, F. Carbonio, energia e biomasse forestali: Nuove opportunità e necessità di pianificazione. For.-Riv. Selvic Ecol. For. 2005, 2, 270–272. [Google Scholar] [CrossRef] [Green Version]
- Sofia, D.; Giuliano, A.; Poletto, M.; Barletta, D. Techno-economic analysis of power and hydrogen co-production by an IGCC plant with CO2 capture based on membrane technology. In Computer Aided Chemical Engineering; Gernaey, K.V., Huusom, J.K., Gani, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 37, pp. 1373–1378. [Google Scholar] [CrossRef]
- Bagaini, A.; Croci, E.; Molteni, T.; Pontoni, F.; Vaglietti, G. Valutazione Economica dei Beni Sociali dello Sviluppo del Teleriscaldamento; Bocconi Research Report N. 2; GREEN: Milan, Italy, 2020. [Google Scholar]
- Gong, M.; Zhao, Y.; Sun, J.; Han, C.; Sun, G.; Yan, B. Load forecasting of district heating system based on Informer. Energy 2022, 253, 124179. [Google Scholar] [CrossRef]
- Silveira, C.; Ferreira, J.; Monteiro, A.; Miranda, A.I.; Borrego, C. Emissions from residential combustion sector: How to build a high spatially resolved inventory. Air Qual. Atmos. Health 2018, 11, 259–270. [Google Scholar] [CrossRef]
- Assanov, D.; Zapasnyi, V.; Kerimray, A. Air Quality and Industrial Emissions in the Cities of Kazakhstan. Atmosphere 2021, 12, 314. [Google Scholar] [CrossRef]
- Zajacs, A.; Borodinecs, A.; Vatin, N. Environmental Impact of District Heating System Retrofitting. Atmosphere 2021, 12, 1110. [Google Scholar] [CrossRef]
- Haq, H.; Valisuo, P.; Kumpulainen, L.; Tuomi, V. An economic study of combined heat and power plants in district heat production. Clean. Eng. Technol. 2020, 1, 100018. [Google Scholar] [CrossRef]
- Sofia, D.; Giuliano, A.; Gioiella, F.; Barletta, D.; Poletto, M. Modeling of an air quality monitoring network with high space-time resolution. In Computer Aided Chemical Engineering; Friedl, A., Klemeš, J.J., Radl, S., Varbanov, P.S., Wallek, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 43, pp. 193–198. [Google Scholar] [CrossRef]
- Lotrecchiano, N.; Sofia, D.; Giuliano, A.; Barletta, D.; Poletto, M. Real-time on-road monitoring network of air quality. Chem. Eng. Trans. 2019, 74, 241–246. [Google Scholar] [CrossRef]
- Sofia, D.; Lotrecchiano, N.; Trucillo, P.; Giuliano, A.; Terrone, L. Novel air pollution measurement system based on ethereum blockchain. J. Sens. Actuator Netw. 2020, 9, 49. [Google Scholar] [CrossRef]
- Virdis, M.R.; Gaeta, M.; Ciorba, U.; D’Elia, I. Impatti Energetici e Ambientali dei Combustibili nel Riscaldamento Residenziale; ENEA Report; ENEA: Rome, Italy, 2017. [Google Scholar]
- Sofia, D.; Lotrecchiano, N.; Giuliano, A.; Barletta, D.; Poletto, M. Optimization of number and location of sampling points of an air quality monitoring network in an urban contest. Chem. Eng. Trans. 2019, 74, 277–282. [Google Scholar] [CrossRef]
- Baldazzi, S.; Beltrone, E.; D’Alessandris, P.; Mostacci, A.; Mura, A.; Napoleoni, D.; Pasquino, F.; Santangelo, A.; Stemperini, A.; Toso, F. Rapporto Sulla Raccolta Dati per la Determinazione e Caratterizzazione Delle Tipologie di Impianto per il Condizionamento Invernale ed Estivo Negli Edifici ad Uso Ospedaliero; Report RdS/PAR2013/115; ENEA: Rome, Italy, 2014. [Google Scholar]
- Italian Ministry of Health. Posti Letto per Struttura Ospedaliera dal 2010 al 2019. Available online: https://www.dati.salute.gov.it/dati/dettaglioDataset.jsp?menu=dati&idPag=18 (accessed on 20 January 2022).
- Comune di Dorgali. Diagnosi Energetica di un Edificio; Comunali: Nuoro, Italy, 2007. [Google Scholar]
- Apea CT. Censimento Edifici 2013. Available online: http://censimento.apea.ct.it/edifici/edificio/087021_01 (accessed on 20 January 2022).
- VA17; Veneto Agricoltura; Natali, G. Diagnosi Energetica della Scuola Elementare Giovanni XXIII di Polverara (PD). Available online: https://www.venetoagricoltura.org/upload/audit%20energetico%20scuola%20elementare.pdf (accessed on 20 January 2022).
- Comune di Motta Visconti. L’audit Energetico degli Edifici e il Risparmio Energetico. Available online: https://www.comune.mottavisconti.mi.it/comune/documenti/libretto_audit_motta.pdf (accessed on 20 January 2022).
- Grassi, W.; Testi, S.; Menchetti, E.; Della Vista, D.; Bandini, M.; Niccoli, L.; Grassini, G.L.; Fasano, G. Valutazione dei Consumi Nell’edilizia Esistente e Benchmark Mediante Codici Semplificati: Analisi di Edifici Ospedalieri; Report RSE/2009/117; ENEA: Rome, Italy, 2009. [Google Scholar]
- Bianchi, F.; Altomonte, M.; Cannata, M.E.; Fasano, G. Definizione Degli Indici e Livelli di Fabbisogno dei vari Centri di Consumo Energetico Degli Edifici Adibiti a Scuole-Consumi Energetici delle Scuole Primarie e Secondarie; Report RSE/2009/119; ENEA: Rome, Italy, 2009. [Google Scholar]
- Santini, E.; Elia, S. Modello Matematico e Strumento Informatico User-Friendly per la Valutazione del Consumo e degli Interventi di Risparmio Energetico dei Centri Sportivi; RdS/PAR2014/080; ENEA: Rome, Italy, 2014. [Google Scholar]
- Decreto Legislativo 29 Dicembre 2006, n. 311. Available online: https://www.gazzettaufficiale.it/eli/id/2007/02/01/007G0007/sg (accessed on 20 January 2022).
- National Statistical Institute (ISTAT). Censimento Popolazione e Abitazioni. Available online: http://dati-censimentopopolazione.istat.it/Index.aspx (accessed on 20 January 2022).
- Climate Data. Dati Climatici Sulle città del Mondo. Available online: https://it.climate-data.org/ (accessed on 20 January 2022).
- Istituto superiore per la protezione ambientale. La Qualità Dell’aria in Italia; Edizione 2020; Istituto Superiore Per la Protezione Ambientale: Ispra, Italy, 2020. [Google Scholar]
User | Total Area, m2 |
---|---|
San Bruno Hospital (A) | 12,387 |
Serra San Bruno Hall (B) | 1312 |
L. Einaudi High School (C) | 3224 |
Secondary Public School (D) | 1870 |
A. Tedeschi Primary School (E) | 1887 |
Serra San Bruno Pool (F) | 1894 |
Certosa (G) and Conte Ruggero (H) Hotels | 2304 |
Fuel | CO2 [kg/GJ] | CH4 [kg/GJ] | NOx [kg/GJ] | CO [kg/GJ] | NMVOC [kg/GJ] | SO2 [kg/GJ] | PM10 [g/GJ] | PM2.5 [g/GJ] |
---|---|---|---|---|---|---|---|---|
Coke | 105.93 | 0.015 | 0.07 | 5 | 0.005 | 0.682 | 439 | 219.5 |
Steam coal | 91.66 | 0.2 | 0.05 | 5 | 0.2 | 0.646 | 439 | 219.5 |
Wood | 92.71 | 0.32 | 0.06 | 5.39 | 0.638 | 0.013 | 403.9 | 400.2 |
Diesel | 73.69 | 0.007 | 0.05 | 0.02 | 0.003 | 0.047 | 3.6 | 3.6 |
GPL | 64.94 | 0.001 | 0.05 | 0.01 | 0.002 | - | 2 | 2 |
Natural gas | 56.76 | 0.003 | 0.03 | 0.03 | 0.005 | - | 0.2 | 0.2 |
User | Thermal Consumption Estimated, MWh/year |
---|---|
San Bruno Hospital (A) | 1239 |
Serra San Bruno Hall (B) | 128 |
L. Einaudi High School (C) | 617 |
Secondary Public School (D) | 112 |
A. Tedeschi Primary School (E) | 112 |
Serra San Bruno Pool (F) | 700 |
Certosa (G) and Conte Ruggero (H) Hotels | 759 |
User | Total Area [m2] | Consumption [kWh/m2 year] | Consumption [MWh/year] |
---|---|---|---|
San Bruno Hospital (A) | 12,387 | 185.3 | 2295.3 |
Serra San Bruno Hall (B) | 1312 | 110 | 144.3 |
L. Einaudi High School (C) | 3224 | 160 | 515.5 |
Secondary Public School (D) | 1870 | 130 | 243.1 |
A. Tedeschi Primary School (E) | 1887 | 130 | 245.3 |
Serra San Bruno Pool (F) | 1894 | 476.5 | 902.5 |
Certosa (G) and Conte Ruggero (H) Hotels | 2304 | 110 | 253.4 |
Domestic heating | |||
Residential buildings | 244,460 | 75 | 18,334.5 |
User | Consumption Estimated for Analogy, MWh/year | Consumption Estimated Considering the Surface, MWh/year | Critical Value, MWh/anno |
---|---|---|---|
San Bruno Hospital (A) | 1239 | 2295.3 | 2295.3 |
Serra San Bruno Hall (B) | 128 | 144.3 | 144.3 |
L. Einaudi High School (C) | 617 | 515.5 | 617 |
Secondary Public School (D) | 112 | 243.1 | 243.1 |
A. Tedeschi Primary School (E) | 112 | 245.3 | 245.3 |
Serra San Bruno Pool (F) | 700 | 902.5 | 902.5 |
Certosa (G) and Conte Ruggero (H) Hotels | 759 | 253.4 | 759 |
Winter Period | Summer Period | |
---|---|---|
PM2.5 average concentration, µg/m3 | 15.0 | 7.3 |
PM10 average concentration, µg/m3 | 16.0 | 8.5 |
User | Estimated Energy Consumption [MWh/year] | PM10 Emitted [kg/year] | PM2.5 Emitted [kg/year] |
---|---|---|---|
San Bruno Hospital (A) | 2295.3 | 29.75 | 29.75 |
Serra San Bruno Hall (B) | 144.3 | 1.97 | 1.87 |
L.Einaudi High School (C) | 515.5 | 8 | 8 |
Secondary Public School (D) | 243.1 | 3.15 | 3.15 |
A.Tedeschi Primary School (E) | 245.3 | 3.18 | 3.18 |
Serra San Bruno Pool (F) | 902.5 | 11.7 | 11.7 |
Certosa (G) and Conte Ruggero (H) Hotels | 253.4 | 9.84 | 9.84 |
Total | 5206.5 | 67.48 | 67.48 |
Residential buildings | |||
Wood | 7333.8 | 10,663.64 | 10,565.95 |
Natural gas | 11,000.7 | 7.92 | 7.92 |
Total | 18,334.5 | 10,671.56 | 10,573.87 |
User | Estimated Energy Consumption [MWh/year] | PM10 Emitted [kg/year] | PM2.5 Emitted [kg/year] |
---|---|---|---|
Wood | 5533.8 | 8046.4 | 7972.7 |
Natural gas | 9200.7 | 6.62 | 6.62 |
Total | 14,734.5 | 8053 | 7979.3 |
User | Estimated Energy Consumption [MWh/year] | PM10 Emitted [kg/year] | PM2.5 Emitted [kg/year] |
---|---|---|---|
Wood | 3733.8 | 5429.08 | 5379.38 |
Natural gas | 11,000.7 | 7.92 | 7.92 |
Total | 14,734.5 | 5437 | 5387.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotrecchiano, N.; Sofia, D. Analysis of the Air Quality of a District Heating System with a Biomass Plant. Atmosphere 2022, 13, 1636. https://doi.org/10.3390/atmos13101636
Lotrecchiano N, Sofia D. Analysis of the Air Quality of a District Heating System with a Biomass Plant. Atmosphere. 2022; 13(10):1636. https://doi.org/10.3390/atmos13101636
Chicago/Turabian StyleLotrecchiano, Nicoletta, and Daniele Sofia. 2022. "Analysis of the Air Quality of a District Heating System with a Biomass Plant" Atmosphere 13, no. 10: 1636. https://doi.org/10.3390/atmos13101636
APA StyleLotrecchiano, N., & Sofia, D. (2022). Analysis of the Air Quality of a District Heating System with a Biomass Plant. Atmosphere, 13(10), 1636. https://doi.org/10.3390/atmos13101636