Impacts of Nano SiO2 Addition on the Formation of Ultrafine Particulate Matter during Coal Combustion
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Coal Combustion and PM Measurement
3. Results and Discussion
3.1. Particle Size Distributions (PSDs) and Yields of Ultrafine PM Subsection
3.2. Composition of Ultrafine PM before and after Nano SiO2 Addition
3.3. Interactions between the Nano SiO2 and Minerals in Coal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, W.; Pudasainee, D.; Gupta, R.; Li, W.; Wang, B.; Sun, L. An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: Sampling and measurement, formation, distribution, inorganic composition and influencing factors. Fuel Process. Technol. 2021, 213, 106657. [Google Scholar] [CrossRef]
- Xu, M.; Yu, D.; Yao, H.; Liu, X.; Qiao, Y. Coal combustion-generated aerosols: Formation and properties. Proc. Combust. Inst. 2011, 33, 1681–1697. [Google Scholar] [CrossRef]
- Chen, S.; Cheng, M.; Xu, J.; Liu, X.; Yu, D.; Xu, M. Numerical Analysis on Reduction of Ultrafine Particulate Matter by a Kaolin Additive during Pulverized Coal Combustion. Energy Fuels 2021, 35, 9538–9549. [Google Scholar] [CrossRef]
- Cheng, W.; Zhu, Y.; Zhang, W.; Wu, G.; Jiang, H.; Hu, J.; Huang, Z.; Yang, H.; Chen, H. Others, Mitigation of ultrafine particulate matter emission from agricultural biomass pellet combustion by the additive of phosphoric acid modified kaolin. Renew. Energy 2021, 172, 177–187. [Google Scholar] [CrossRef]
- Akther, T.; Ahmed, M.; Shohel, M.; Ferdousi, F.K.; Salam, A. Particulate matters and gaseous pollutants in indoor environment and Association of ultra-fine particulate matters (PM1) with lung function. Environ. Sci. Pollut. Res. 2019, 26, 5475–5484. [Google Scholar] [CrossRef]
- Avogbe, P.H.; Ayi-Fanou, L.; Autrup, H.; Loft, S.; Fayomi, B.; Sanni, A.; Vinzents, P.; Møller, P. Ultrafine particulate matter and high-level benzene urban air pollution in relation to oxidative DNA damage. Carcinogenesis 2005, 26, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Liu, X.; Pelkowski, S.; Palmer, B.; Conrad, K.; Oberdörster, G.; Weston, D.; Mayer-Pröschel, M.; Cory-Slechta, D.A. Early postnatal exposure to ultrafine particulate matter air pollution: Persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. Environ. Health Perspect. 2014, 122, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Deng, F.; Wei, H.; Huang, J.; Wang, X.; Hao, Y.; Zheng, C.; Qin, Y.; Lv, H.; Shima, M. Association of cardiopulmonary health effects with source-appointed ambient fine particulate in Beijing, China: A combined analysis from the Healthy Volunteer Natural Relocation (HVNR) study. Environ. Sci. Technol. 2014, 48, 3438–3448. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Lee, L.J.; Luo, K.; Fang, P.; Yang, C.; Chuang, H. The Association of Carcinoembryonic Antigen (CEA) and Air Pollutants—A Population-Based Study. Atmosphere 2022, 13, 466. [Google Scholar] [CrossRef]
- Xiao, K.; Lin, Y.; Wang, Q.; Lu, S.; Wang, W.; Chowdhury, T.; Enyoh, C.E.; Rabin, M.H. Characteristics and Potential Inhalation Exposure Risks of Environmentally Persistent Free Radicals in Atmospheric Particulate Matter and Solid Fuel Combustion Particles in High Lung Cancer Incidence Area, China. Atmosphere 2021, 12, 1467. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Xiao, Y.; Chen, S.; Lu, C.; Luo, G.; Yao, H. Fate of chromium with the presence of HCl and steam during oxy-coal combustion: Quantum chemistry and experimental study. J. Hazard. Mater. 2021, 412, 125218. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhao, R.; Li, X.; Chen, J.; Dong, Y. Mechanism of CaO and Fe2O3 capture gaseous arsenic species in the flue gas: DFT combined thermodynamic study. Fuel 2022, 312, 122838. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, J.; Liu, X.; Qi, J.; Wang, H.; Cheng, X.; Xu, J. Insight into soot formed in coal combustion flame: Evolution of physiochemical structure, oxidation reactivity. Fuel 2022, 312, 122948. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Zhu, J.; Zhang, K.; Wang, H.; Xu, J.; Xu, M. Reducing the central mode particulate matter in coal combustion by additives: Impacts of nano Al2O3 and TiO2 addition. Fuel 2022, 312, 122989. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Qi, J.; Wang, H.; Zhang, T.; Xu, M. Effects of kaolin-limestone blended additive on the formation and emission of particulate matter: Field study on a 1000 MW coal-firing power station. J. Hazard. Mater. 2020, 399, 123091. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Wang, H.; Zhang, Y.; Qi, J.; Xu, M. Investigation of Simultaneously Reducing the Emission of Ultrafine Particulate Matter and Heavy Metals by Adding Modified Attapulgite During Coal Combustion. Energy Fuels 2019, 33, 1518–1526. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Wang, H.; Zeng, X.; Zhang, Y.; Han, J.; Xu, M.; Pan, S. Influences of In-Furnace Kaolin Addition on the Formation and Emission Characteristics of PM2.5 in a 1000 MW Coal-Fired Power Station. Environ. Sci. Technol. 2018, 52, 8718–8724. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, X.; Zhang, Y.; Sun, W.; Hu, Y.; Xu, M. A novel Ti-based sorbent for reducing ultrafine particulate matter formation during coal combustion. Fuel 2017, 193, 72–80. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Zhang, P.; Guo, J.; Han, J.; Zhou, Z.; Xu, M. Role of chlorine in ultrafine particulate matter formation during the combustion of a blend of high-Cl coal and low-Cl coal. Fuel 2016, 184, 185–191. [Google Scholar] [CrossRef]
- Kazanc, F.; Levendis, Y.A.; Maffei, T. Chemical Composition of Submicron Particulate Matter (PM1) Emitted from Combustion of Coals of Various Ranks in O2/N2 and O2/CO2 Environments. Energy Fuels 2013, 27, 4984–4998. [Google Scholar] [CrossRef]
- Ma, P.; Huang, Q.; Gao, Q.; Li, S. Effects of Na and Fe on the formation of coal-derived soot in a two-stage flat-flame burner. Fuel 2020, 265, 116914. [Google Scholar] [CrossRef]
- Huang, Q.; Li, S.; Li, G.; Yao, Q. Mechanisms on the size partitioning of sodium in particulate matter from pulverized coal combustion. Combust. Flame 2017, 182, 313–323. [Google Scholar] [CrossRef]
- Linak, W.P.; Miller, C.A.; Santoianni, D.A.; King, C.J.; Shinagawa, T.; Wendt, J.O.; Yoo, J.; Seo, Y. Formation of fine particles from residual oil combustion: Reducing nuclei through the addition of inorganic sorbent. Korean J. Chem. Eng. 2003, 20, 664–669. [Google Scholar] [CrossRef]
- Biswas, P.; Wu, C.Y. Control of toxic metal emissions from combustors using sorbents: A review. J. Air Waste Manag. Assoc. 1998, 48, 113–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gale, T.K.; Wendt, J.O. In-furnace capture of cadmium and other semi-volatile metals by sorbents. Proc. Combust. Inst. 2005, 30, 2999–3007. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Xu, Y.; Sun, W.; Xu, M. Investigation of reducing ultrafine particulate matter formation by adding modified montmorillonite during coal combustion. Fuel Process. Technol. 2017, 158, 264–271. [Google Scholar] [CrossRef]
- Chen, D.; Liu, X.; Wang, C.; Xu, Y.; Sun, W.; Cui, J.; Zhang, Y.; Xu, M. Effects of H2O and HCl on Particulate Matter Reduction by Kaolin under Oxy-coal Combustion. Energy Fuels 2017, 31, 6455–6462. [Google Scholar] [CrossRef]
- Chen, J.; Yao, H.; Zhang, P.A.; Xiao, L.; Luo, G.; Xu, M. Control of PM1 by kaolin or limestone during O2/CO2 pulverized coal combustion. Proc. Combust. Inst. 2011, 33, 2837–2843. [Google Scholar] [CrossRef]
- Yang, W.; Pudasainee, D.; Gupta, R.; Li, W.; Song, Z.; Wang, B.; Sun, L. Particulate emission from municipal solid waste combustion: Effect of Si-Al-based additives for its mitigation. Energy Fuels 2020, 34, 15399–15410. [Google Scholar] [CrossRef]
- Ruan, R.; An, Q.; Tan, H.; Jia, S.; Wang, X.; Peng, J.; Li, P. Effect of calcined kaolin on PM0. 4 formation from combustion of Zhundong lignite. Fuel 2022, 319, 123622. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Wang, Q.; Xu, S.; Mizuno, K.; Awaya, I. Effect of Additives on the Reduction of PM2.5 Emissions during Pulverized Coal Combustion. Energy Fuels 2009, 23, 3412–3417. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, J.; Yang, P.; Cheng, W.; Zeng, K.; Zhang, W.; Yang, H.; Shao, J.; Wang, X.; Chen, H. P-Based Additive for Reducing Fine Particulate Matter Emissions during Agricultural Biomass Combustion. Energy Fuels 2019, 33, 11274–11284. [Google Scholar] [CrossRef]
- Li, Y.; Tan, Z.; Zhu, Y.; Zhang, W.; Du, Z.; Shao, J.; Jiang, L.; Yang, H.; Chen, H. Effects of P-based additives on agricultural biomass torrefaction and particulate matter emissions from fuel combustion. Renew. Energy 2022, 190, 66–77. [Google Scholar] [CrossRef]
- Gao, Z.; Long, H.; Dai, B.; Gao, X. Investigation of reducing particulate matter (PM) and heavy metals pollutions by adding a novel additive from metallurgical dust (MD) during coal combustion. J. Hazard. Mater. 2019, 373, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Liu, X.; Xu, Y.; Zhang, Y.; Chen, D.; Chen, Z.; Xu, M. Effects of the modified kaolin sorbents on the reduction of ultrafine particulate matter (PM0.2) emissions during pulverized coal combustion. Fuel 2018, 215, 153–160. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Zhou, Z.; Sheng, L.; Wang, C.; Xu, M. The role of steam in silica vaporization and ultrafine particulate matter formation during wet oxy-coal combustion. Appl. Energy 2014, 133, 144–151. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Zhang, Y.; Sun, W.; Zhou, Z.; Xu, M.; Pan, S.; Gao, X. Field Measurements on the Emission and Removal of PM2.5 from Coal-Fired Power Stations: 3. Direct Comparison on the PM Removal Efficiency of Electrostatic Precipitators and Fabric Filters. Energy Fuels 2016, 30, 5930–5936. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Zeng, X.; Zhang, Y.; Xu, M.; Pan, S.; Zhang, K.; Li, L.; Gao, X. Field measurements on the emission and removal of PM2.5 from coal-fired power stations: 1. a case study for a 1000 MW ultra-supercritical utility boiler. Energy Fuels 2016, 30, 6547–6554. [Google Scholar] [CrossRef]
- Yu, D.; Xu, M.; Yao, H.; Liu, X.; Zhou, K.; Li, L.; Wen, C. Mechanisms of the central mode particle formation during pulverized coal combustion. Proc. Combust. Inst. 2009, 32, 2075–2082. [Google Scholar] [CrossRef]
- Yu, D.X.; Xu, M.H.; Yao, H.; Liu, X.W.; Zhou, K. A new method for identifying the modes of particulate matter from pulverized coal combustion. Powder Technol. 2008, 183, 105–114. [Google Scholar] [CrossRef]
- Yu, D.X.; Xu, M.H.; Yao, H.; Liu, X.W.; Zhou, K. Effective identification of the three particle modes generated during pulverized coal combustion. Chin. Sci. Bull. 2008, 53, 1593–1602. [Google Scholar] [CrossRef] [Green Version]
- Mwabe, P.O.; Wendt, J.O. Mechanisms governing trace sodium capture by kaolinite in a downflow combustor. Symp. Int. Combust. 1996, 26, 2447–2453. [Google Scholar] [CrossRef]
- Gale, T.K.; Wendt, J.O. High-temperature interactions between multiple-metals and kaolinite. Combust. Flame 2002, 131, 299–307. [Google Scholar] [CrossRef]
Proximate Analysis (wt.%) | Ultimate Analysis (wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Moisture | Ash | Volatile | Fixed Carbon | C | H | N | S | O | |
Coal SX | 3.66 | 17.92 | 12.80 | 65.61 | 69.57 | 2.91 | 1.01 | 0.60 | 4.32 |
Coal WCW | 8.25 | 4.57 | 36.67 | 50.5 | 66.46 | 3.55 | 0.53 | 0.44 | 16.19 |
Na2O | MgO | Al2O3 | SiO2 | SO3 | Cl2O | K2O | CaO | TiO2 | Fe2O3 | |
---|---|---|---|---|---|---|---|---|---|---|
Nano SiO2 | 0.9 | 0.5 | 1.6 | 96.19 | 0.17 | 0.42 | 0.05 | 0.04 | 0.08 | 0.05 |
Coal SX | 1.81 | 1.08 | 25.44 | 49.22 | 5.11 | 0.76 | 2.16 | 4.55 | 1.87 | 7.99 |
Coal SX + SiO2 | 2.81 | 0.76 | 23.40 | 52.80 | 4.95 | 0.89 | 1.43 | 6.16 | 1.48 | 5.31 |
Coal WCW | 4.46 | 3.71 | 4.96 | 8.47 | 26.22 | 1.65 | 0.22 | 44.55 | 0.80 | 4.95 |
Coal WCW + SiO2 | 5.86 | 2.04 | 3.89 | 29.38 | 20.72 | 1.83 | 0.36 | 31.62 | 0.53 | 3.76 |
Mass Yield, mg_PM/g_ash | Reduction Ratio, % | |||||
---|---|---|---|---|---|---|
Coal SX | Coal WCW | Coal SX | Coal WCW | |||
Blank | With Nano Si | Blank | With Nano Si | |||
PM0.1 | 0.743 | 0.515 | 5.408 | 4.705 | 30.70 | 13.01 |
PM0.1–2.5 | 4.039 | 3.663 | 16.082 | 17.550 | 9.30 | −9.13 |
PM2.5 | 4.781 | 4.178 | 21.491 | 22.255 | 12.62 | −3.56 |
PM2.5–10 | 48.176 | 53.087 | 48.530 | 76.951 | −10.19 | −58.56 |
PM10 | 52.957 | 57.264 | 70.020 | 99.206 | −8.13 | −41.68 |
DT, K | ST, K | FT, K | |
---|---|---|---|
coal | 1236 | 1419 | 1461 |
coal + 0.6%SiO2 | 1293 | 1356 | 1404 |
coal + 3%SiO2 | 1094 | 1255 | 1268 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Xu, Y.; Zhang, K.; Zhang, B.; Min, S.; Liu, Y.; Zhu, J.; Ma, J. Impacts of Nano SiO2 Addition on the Formation of Ultrafine Particulate Matter during Coal Combustion. Atmosphere 2022, 13, 1624. https://doi.org/10.3390/atmos13101624
Wang H, Xu Y, Zhang K, Zhang B, Min S, Liu Y, Zhu J, Ma J. Impacts of Nano SiO2 Addition on the Formation of Ultrafine Particulate Matter during Coal Combustion. Atmosphere. 2022; 13(10):1624. https://doi.org/10.3390/atmos13101624
Chicago/Turabian StyleWang, Huakun, Yishu Xu, Kai Zhang, Baohua Zhang, Shanshan Min, Yimin Liu, Jingji Zhu, and Jingjing Ma. 2022. "Impacts of Nano SiO2 Addition on the Formation of Ultrafine Particulate Matter during Coal Combustion" Atmosphere 13, no. 10: 1624. https://doi.org/10.3390/atmos13101624
APA StyleWang, H., Xu, Y., Zhang, K., Zhang, B., Min, S., Liu, Y., Zhu, J., & Ma, J. (2022). Impacts of Nano SiO2 Addition on the Formation of Ultrafine Particulate Matter during Coal Combustion. Atmosphere, 13(10), 1624. https://doi.org/10.3390/atmos13101624