Climate Change Mitigation in Forestry: Paying for Carbon Stock or for Sequestration?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculation of Carbon Stock and Sequestration
2.2. Valuation of Carbon Stock and Sequestration
2.3. Case Studies
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Riahi, K.; Schaeffer, R.; Arango, J.; Calvin, K.; Guivarch, C.; Hasegawa, T.; Jiang, K.; Kriegler, E.; Matthews, R.; Peters, G.P.; et al. Mitigation Pathways Compatible with Long-Term Goals. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- MITERD. Informe de Inventario Nacional de Emisiones de Gases de Efecto Invernadero. Edición 2022 (1990–2020); Ministerio Para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2022.
- MITERD. Nota Informativa Sobre el Avance de Emisiones de Gases de Efecto Invernadero Correspondientes al año 2021; Ministerio Para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2022.
- UN. Paris Agreement; United Nations: New York, NY, USA, 2015; Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 5 September 2022).
- Körner, C. A matter of tree longevity. Science 2017, 355, 130–131. [Google Scholar] [CrossRef] [PubMed]
- Tonn, B.; Marland, G. Carbon sequestration in wood products: A method for attribution to multiple parties. Environ. Sci. Pol. 2007, 10, 162–168. [Google Scholar] [CrossRef]
- Johnston, C.M.T.; Radeloff, V.C. Global mitigation potential of carbon stored in harvested wood products. Proc. Natl. Acad. Sci. USA 2019, 116, 14526–14531. [Google Scholar] [CrossRef] [PubMed]
- Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef] [PubMed]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Marland, G.; Fruit, K.; Sedjo, R. Accounting for sequestered carbon: The question of permanence. Environ. Sci. Policy 2001, 4, 259–268. [Google Scholar] [CrossRef]
- Sohngen, B.; Mendelsohn, R. An optimal control model of forest carbon sequestration. Am. J. Agric. Econ. 2003, 85, 448–457. [Google Scholar] [CrossRef]
- Tipper, R.; de Jong, B.H. Quantification and regulation of carbon offsets from forestry: Comparison of alternative methodologies, with special reference to Chiapas, Mexico. Commonw. For. Rev. 1998, 77, 219–228. [Google Scholar]
- Enríquez-de-Salamanca, Á. Valuation of ecosystem services: A source of financing Mediterranean loss-making forests. Small-Scale For. 2022, 1–26. [Google Scholar] [CrossRef]
- Larjavaara, M.; Kanninen, M.; Gordillo, H.; Koskinen, J.; Kukkonen, M.; Käyhkö, N.; Larson, A.M.; Wunder, S. Global variation in the cost of increasing ecosystem carbon. Nat. Clim. Chang. 2018, 8, 38–42. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendía, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006. [Google Scholar]
- Enríquez-de-Salamanca, Á. Contribution to climate change of forest fires in Spain: Emissions and loss of sequestration. J. Sustain. For. 2020, 39, 417–431. [Google Scholar] [CrossRef]
- MITERD. Estadísticas de Incendios Forestales; Ministerio para la Transición Demográfica y el Reto Demográfico: Madrid, Spain. Available online: https://www.miteco.gob.es/es/biodiversidad/estadisticas/Incendios_default.aspx (accessed on 3 July 2022).
- Zhang, D.; Stenger, A. Value and valuation of forest ecosystem services. J. Environ. Econ. Policy 2015, 4, 129–140. [Google Scholar] [CrossRef]
- IBRD-IDA. Carbon Pricing Dashboard; International Bank for Reconstruction and Development—International Development Association. 2022. Available online: https://carbonpricingdashboard.worldbank.org/map_data (accessed on 15 August 2022).
- Pietzcker, R.C.; Osorio, S.; Rodrigues, R. Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector. Appl. Energy 2021, 293, 116914. [Google Scholar] [CrossRef]
- Simon, F. Analyst: EU Carbon Price on Track to Reach €90 by 2030. Euractiv. 2021. Available online: https://www.euractiv.com/section/emissions-trading-scheme/interview/analyst-eu-carbon-price-on-track-to-reach-e90-by-2030/ (accessed on 6 September 2022).
- Heukowska, E. Europe CO2 Prices May Rise More than 50% by 2030, EU Draft Shows. Bloomberg. 2021. Available online: https://www.bloomberg.com/news/articles/2021-06-29/europe-co2-prices-may-rise-more-than-50-by-2030-eu-draft-shows (accessed on 6 September 2022).
- Credit Suisse. Treeprint. Carbon Markets. The Beginning of the Big Carbon Age; Credit Suisse: Zürich, Switzerland, 2022; Available online: https://www.credit-suisse.com/media/assets/sustainability/treeprint-carbon-markets.pdf (accessed on 6 September 2022).
- Tingyao, M. Record-High Prices Forecast across Global Carbon Markets, and Still Room for More. S&P Global. 2022. Available online: https://cleanenergynews.ihsmarkit.com/research-analysis/recordhigh-price-forecasts-across-global-carbon-markets-and-st.html (accessed on 6 September 2022).
- EY Net Zero Centre. Essential, Expensive and Evolving: The Outlook for Carbon Credits and Offsets. Ernst & Young. 2022. Available online: https://assets.ey.com/content/dam/ey-sites/ey-com/en_au/topics/sustainability/ey-net-zero-centre-carbon-offset-publication-20220530.pdf (accessed on 6 September 2022).
- Noble, I.; Apps, M.; Houghton, R.; Lashof, D.; Makundi, W.; Murdiyarso, D.; Murray, B.; Sombroek, W.; Valentini, R. Implications of different definitions and generic issues. In Land Use, Land-Use Change and Forestry; Watson, R.T., Noble, I., Bolin, B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J., Eds.; IPCC-Cambridge University Press: Cambridge, UK, 2000; pp. 53–126. [Google Scholar]
- Moura Costa, P.; Wilson, C. An equivalence factor between CO2 avoided emissions and sequestration: Description and applications in forestry. Mitig. Adapt. Strateg. Glob. Chang. 2000, 5, 51–60. [Google Scholar] [CrossRef]
- Fearnside, P.M.; Lashof, D.A.; Moura-Costa, P. Accounting for time in mitigating global warming through land-use change and forestry. Mitig. Adapt. Strateg. Glob. Chang. 2000, 5, 239–270. [Google Scholar] [CrossRef]
- Joos, F.; Roth, R.; Fuglestvedt, J.S.; Peters, G.P.; Enting, I.G.; von Bloh, W.; Brovkin, V.; Burke, E.J.; Eby, M.; Edwards, N.R.; et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmos. Chem. Phys. 2013, 13, 2793–2825. [Google Scholar] [CrossRef]
- Dobes, L.; Enting, I.; Mitchell, C. Accounting for carbon sinks: The problem of time. In Trading Greenhouse Emissions: Some Australian Perspectives; Dobes, L., Ed.; Bureau of Transport Economics: Canberra, Australia, 1998. [Google Scholar]
- Korhonen, R.; Pingoud, K.; Savolainen, I.; Matthews, R. The role of carbon sequestration and the tonne-year approach in fulfilling the objective of climate convention. Environ. Sci. Policy 2002, 5, 429–441. [Google Scholar] [CrossRef]
- Wise, L.; Marland, E.; Marland, G.; Hoyle, J.; Kowalczyk, T.; Ruseva, T.; Colby, J.; Kinlaw, T. Optimizing sequestered carbon in forest offset programs: Balancing accounting stringency and participation. Carbon Balance Manag. 2019, 14, 16. [Google Scholar] [CrossRef]
- Regan, C.M.; Connor, J.D.; Summers, D.M.; Settre, C.; O’Connor, P.J.; Cavagnaro, T.R. The influence of crediting and permanence periods on Australian forest-based carbon offset supply. Land Use Policy 2020, 97, 104800. [Google Scholar] [CrossRef]
- MITERD. Información Sobre la Sección de Proyectos de Absorción de Dióxido de Carbono, Version 10; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2022. Available online: https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/documentoapoyopa_tcm30-479077.pdf (accessed on 10 August 2022).
- CREAF. Inventari Ecologic i Forestal de Catalunya; Sistema D’Informació Dels Boscos de Catalunya; Generalitat de Catalunya: Barcelona, Spain, 2004.
- Montero, G.; Ruiz-Peinado, R.; Muñoz, M. Producción de Biomasa y Fijación de CO2 Por Los Bosques Españoles; INIA: Madrid, Spain, 2005. [Google Scholar]
- Montero, G.; López-Leiva, C.; Ruiz-Peinado, R.; López-Senespleda, E.; Onrubia, R.; Pasalodos, M. Producción de Biomasa y Fijación de Carbono Por los Matorrales Españoles y por el Horizonte Orgánico Superficial de los Suelos Forestales; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2020.
- MITERD. Tercer Inventario Forestal Nacional; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2000. Available online: https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/ (accessed on 14 August 2022).
- Vignote, S. Principales Maderas de Coníferas en España. Características, Tecnología y Aplicaciones; Universidad Politécnica de Madrid: Madrid, Spain, 2014. [Google Scholar]
- Dooley, K.; Nicholls, Z.; Meinshausen, M. Carbon removals from nature restoration are no substitute for steep emission reductions. One Earth 2022, 5, 812–824. [Google Scholar] [CrossRef]
- Vickers, B.; Trines, E.; Pohnan, E. Community Guidelines for Accessing Forestry Voluntary Carbon Markets; FAO: Bangkok, Thailand, 2012. [Google Scholar]
- Enríquez-de-Salamanca, Á.; Martín-Aranda, R.M.; Diaz-Sierra, R. Towards an integrated environmental compensation scheme in Spain: Linking biodiversity and carbon offsets. J. Environ. Assess. Policy Manag. 2017, 19, 1750006. [Google Scholar] [CrossRef]
- Keith, H.; Vardon, M.; Lindenmayer, D.; Mackey, B. Accounting for carbon stocks and flows: Storage and sequestration are both ecosystem services. In Proceedings of the 25th Meeting of the London Group on Environmental Accounting, Melbourne, Australia, 7–10 October 2019. [Google Scholar]
- Mendelsohn, R.; Sedjo, R.; Sohngen, B. Forest Carbon Sequestration. In Fiscal Policy to Mitigate Climate Change: A Guide for Policymakers; Parry, I.W.H., de Mooij, R., Keen, M., Eds.; International Monetary Fund: Washington, DC, USA, 2012; pp. 89–102. [Google Scholar]
- Nabuurs, G.J.; Masera, O.; Andrasko, K.; Benitez-Ponce, P.; Boer, R.; Dutschke, M.; Elsiddig, E.; Ford-Robertson, J.; Frumhoff, P.; Karjalainen, T.; et al. Forestry. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 541–584. [Google Scholar]
- Bellassen, V.; Luyssaert, S. Carbon sequestration: Managing forests in uncertain times. Nature 2014, 506, 153–155. [Google Scholar] [CrossRef]
- Favero, A.; Daigneault, A.; Sohngen, B. Forests: Carbon sequestration, biomass energy, or both? Sci. Adv. 2020, 6, eaay6792. [Google Scholar] [CrossRef]
- Fahey, T.J.; Woodbury, P.B.; Battles, J.J.; Goodale, C.L.; Hamburg, S.P.; Ollinger, S.V.; Woodall, C.W. Forest carbon storage: Ecology, management, and policy. Front. Ecol. Environ. 2010, 8, 245–252. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M. Forest management and carbon sequestration in the Mediterranean region: A review. For. Syst. 2017, 26, eR04S. [Google Scholar] [CrossRef]
- Collalti, A.; Trotta, C.; Keenan, T.F.; Ibrom, A.; Bond-Lamberty, B.; Grote, R.; Vicca, S.; Reyer, C.P.O.; Migliavacca, M.; Veroustraete, F.; et al. Thinning can reduce losses in carbon use efficiency and carbon stocks in managed forests under warmer climate. J. Adv. Model. Earth Syst. 2018, 10, 2427–2452. [Google Scholar] [CrossRef] [PubMed]
- Chazdon, R.L.; Broadbent, E.N.; Rozendaal, D.M.A.; Bongers, F.; Almeyda, A.M.; Aide, T.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2016, 2, e1501639. [Google Scholar] [CrossRef]
- Balderas, A.; Marchant, R.; Lovett, J.C.; Smart, J.C.R.; Tipper, R. Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation. Ecol. Econ. 2010, 6, 469–477. [Google Scholar] [CrossRef]
- Dempsey, J.; Chiu, D. Arrested development? The promises and paradoxes of ‘Selling nature to save it’. Ann. Am. Assoc. Geogr. 2016, 106, 653–671. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Anderson, C.M.; Bartuska, A.; Ciais, P.; Cullenward, D.; Field, C.B.; Freeman, J.; Goetz, S.J.; et al. Climate-driven risks to the climate mitigation potential of forests. Science 2020, 368, eaaz7005. [Google Scholar] [CrossRef]
- Lefebvre, D.; Williams, A.G.; Kirk, G.J.D.; Burgess, P.J.; Meersmans, J.; Silman, M.R.; Román-Dañobeytia, F.; Farfan, J.; Smith, P. Assessing the carbon capture potential of a reforestation project. Sci. Rep. 2021, 11, 19907. [Google Scholar] [CrossRef] [PubMed]
- Enríquez-de-Salamanca, Á. Carbon versus timber economy in Mediterranean forests. Atmosphere 2021, 12, 746. [Google Scholar] [CrossRef]
Property Name | Area (ha) | Main Species | Coordinates | |
---|---|---|---|---|
Total | Pine Forest | |||
Cuerda Herrera | 207 | 144 | Pinus pinea | 4°01′17.28″ W, 40°30′12.52″ N |
Jurisdicción | 848 | 458 | Pinus sylvestris, P. pinaster, P. nigra | 4°09′05.77″ W, 40°36′09.34″ N |
Monte Agudillo | 1212 | 543 | Pinus pinea, P. pinaster | 4°18′04.40″ W, 40°26′31.11″ N |
Ventilla-Vinatea | 610 | 370 | Pinus pinea | 3°57′40.51″ W, 40°31′26.97″ N |
Species | BCEF (Mg/m3) | R | L (Mg/ha) | cf-t | cf-l | CST (Mg CO2/ha) |
---|---|---|---|---|---|---|
Pinus nigra | 0.640 | 0.244 | 15.100 | 0.509 | 0.401 | 1.486 VC + 22.202 |
Pinus pinaster | 0.550 | 0.284 | 13.200 | 0.511 | 0.394 | 1.323 VC + 19.070 |
Pinus pinea | 0.730 | 0.183 | 8.500 | 0.508 | 0.413 | 1.609 VC + 12.872 |
Pinus sylvestris | 0.620 | 0.272 | 48.200 | 0.509 | 0.401 | 1.472 VC + 70.870 |
Species | IV (m3/ha Year) | CSQ (Mg CO2/ha Year) |
---|---|---|
Pinus nigra | 5.840 + 0.0147345·VC − 0.0000011·VC2 | 1.486 IV |
Pinus pinaster | 4.500 + 0.0137175·VC + 0.0000002·VC2 | 1.323 IV |
Pinus pinea | 4.010 + 0.0079149·VC + 0.0000024·VC2 | 1.609 IV |
Pinus sylvestris | 3.500 + 0.0114846·VC − 0.0000037·VC2 | 1.472 IV |
Species | CH (Mg CO2/ha Year) | rt | D (Mg/m3) | CF (Mg CO2/ha Year) |
---|---|---|---|---|
Pinus nigra | 1.194 VH | 0.725 | 0.576 | 0.415 VF + 22.202 |
Pinus pinaster | 1.031 VH | 0.769 | 0.455 | 0.375 VF + 19.070 |
Pinus pinea | 1.360 VH | 0.569 | 0.596 | 0.728 VF + 12.872 |
Pinus sylvestris | 1.157 VH | 0.751 | 0.502 | 0.453 VF + 70.870 |
Property Name | TEq | N (Tree/ha) | Dbh (cm) | Ht (m) | VC (m3/ha) | CST (t CO2/ha) | CSQ (t CO2/ha) |
---|---|---|---|---|---|---|---|
Cuerda Herrera | 32.9 | 381 | 22.6 | 6.0 | 67.17 | 124.59 | 3.64 |
Jurisdicción | 101.1 | 531 | 35.0 | 15.9 | 431.18 | 662.99 | 6.01 |
Monte Agudillo | 49.6 | 211 | 30.5 | 11.8 | 95.65 | 165.91 | 3.20 |
Ventilla-Vinatea | 39.3 | 324 | 18.1 | 6.1 | 54.54 | 103.14 | 2.51 |
p-value | - | 0.2910 | 0.1702 | 0.0785 | 0.0131 * | 0.0135 * | 0.0893 |
R2 | - | 50.26% | 68.86% | 84.92% | 97.40% | 97.32% | 82.94% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enríquez-de-Salamanca, Á. Climate Change Mitigation in Forestry: Paying for Carbon Stock or for Sequestration? Atmosphere 2022, 13, 1611. https://doi.org/10.3390/atmos13101611
Enríquez-de-Salamanca Á. Climate Change Mitigation in Forestry: Paying for Carbon Stock or for Sequestration? Atmosphere. 2022; 13(10):1611. https://doi.org/10.3390/atmos13101611
Chicago/Turabian StyleEnríquez-de-Salamanca, Álvaro. 2022. "Climate Change Mitigation in Forestry: Paying for Carbon Stock or for Sequestration?" Atmosphere 13, no. 10: 1611. https://doi.org/10.3390/atmos13101611
APA StyleEnríquez-de-Salamanca, Á. (2022). Climate Change Mitigation in Forestry: Paying for Carbon Stock or for Sequestration? Atmosphere, 13(10), 1611. https://doi.org/10.3390/atmos13101611