Variation in Extreme Temperature and Its Instability in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Selection of Extreme Climate Indices
2.3. Methodology for the Study of Extreme Temperature Instability
3. Results
3.1. Extreme Low Temperatures Are More Sensitive to Global Warming
3.1.1. Spatial and Temporal Variation of TXx and TNn
3.1.2. Spatial and Temporal Variation of CTXx and CTNn
3.1.3. Extreme Temperature Changes Corresponding to Global Warming
3.2. Instability of the Extreme Temperature Intensity
3.3. Instability of Extreme Temperature Occurrence
4. Discussion
4.1. Effect of Temperature Change on Extreme Temperature Instability
4.2. Effects of Atmospheric Circulation on Extreme Temperature Instabilities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC; Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; ISBN 9781119130536. [Google Scholar]
- Murray, V.; Ebi, K.L. IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). J. Epidemiol. Community Health 2012, 66, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Du, H.; Wu, Z.; Li, M. Interdecadal changes of vegetation transition zones and their responses to climate in Northeast China. Theor. Appl. Climatol. 2011, 106, 179–188. [Google Scholar] [CrossRef]
- Ge, Q.; Zhang, X.; Zheng, J. Simulated effects of vegetation increase/decrease on temperature changes from 1982 to 2000 across the Eastern China. Int. J. Climatol. 2014, 34, 187–196. [Google Scholar] [CrossRef]
- Hsiang, S.; Kopp, R.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Rasmussen, D.J.; Muir-Wood, R.; Wilson, P.; Oppenheimer, M.; et al. Estimating economic damage from climate change in the United States. Science 2017, 356, 1362–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Tan, C.; Zhang, T. Spatial and temporal variations in air temperature and precipitation in the Chinese Himalayas during the 1971-2007. Int. J. Climatol. 2013, 33, 2622–2632. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, M.; Wang, S.; Che, C.; Ma, R.; Ma, Z. Changes in air temperature over China in response to the recent global warming hiatus. J. Geogr. Sci. 2019, 29, 496–516. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Gentine, P.; Zhou, S.; Sullivan, S.C.; Wang, R.; Zhang, Y.; Guo, S. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 2018, 9, 4389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, A.; Joshi, M.K.; Pandey, A.C. Variations in diurnal temperature range over India: Under global warming scenario. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Karl, T.R.; Kukla, G.; Razuvayev, V.N.; Changery, M.J.; Quayle, R.G.; Heim, R.R.; Easterling, D.R.; Fu, C. Bin Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett. 1991, 18, 2253–2256. [Google Scholar] [CrossRef]
- Mori, N.; Yasuda, T.; Mase, H.; Tom, T.; Oku, Y. Projection of Extreme Wave Climate Change under Global Warming. Hydrol. Res. Lett. 2010, 4, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Sillmann, J.; Roeckner, E. Indices for extreme events in projections of anthropogenic climate change. Clim. Chang. 2008, 86, 83–104. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Li, X. Recent trends in daily temperature extremes over northeastern China (1960-2011). Quat. Int. 2015, 380, 35–48. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55. [Google Scholar] [CrossRef]
- Wu, S.; Pan, T.; Liu, Y.; Deng, H.; Jiao, K.; Lu, Q.; Feng, A.; Yue, X.; Yin, Y.; Zhao, D.; et al. Comprehensive climate change risk regionalization of China. Dili Xuebao/Acta Geogr. Sin. 2017, 72, 3–17. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Cui, Y.; Xue, A.O.; Hou, Y.; Shen, Y.; Wang, X. The climate regionalization variation and its possible climate causes in Liaoning province over 1961-1987 and 1988-2014. Geogr. Res. 2019, 38, 794–806. [Google Scholar]
- Rodionov, S.N. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 2004, 31, 111–142. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.P. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chin. Sci. Bull. 2013, 58, 1462–1472. [Google Scholar] [CrossRef] [Green Version]
- Sui, Y.; Lang, X.; Jiang, D. Time of emergence of climate signals over China under the RCP4.5 scenario. Clim. Chang. 2014, 125, 265–276. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, Y.; Huang, J. Bin Evaluation and projection of temperature extremes over China based on CMIP5 model. Adv. Clim. Chang. Res. 2012, 3, 179–185. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, R. Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Clim. 2006, 19, 5843–5858. [Google Scholar] [CrossRef]
- Ying, Z. Projections of 2.0 °C Warming over the Globe and China under RCP4.5. Atmos. Ocean. Sci. Lett. 2012, 5, 514–520. [Google Scholar] [CrossRef]
- Bond, G.; Broecker, W.; Johnsen, S.; McManus, J.; Labeyrie, L.; Jouzel, J.; Bonani, G. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 1993, 365, 143–147. [Google Scholar] [CrossRef]
- Tan, M.; Hou, J.; Cheng, H. Methodology of quantitatively reconstructing paleoclimate from annualy laminated stalagmites. Quat. Sci. 2002, 22, 209–219. [Google Scholar]
- Prokopenko, A. Paleoclimate Record from Lake Baikal: A Link between Marine and Terrestrial Plio-Pleistocene Stratigraphies. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=5087e3250fde80d7ed18cb755afe59c8 (accessed on 12 March 2021).
- Mayewski, P.A.; Meeker, L.D.; Whitlow, S.; Twickler, M.S.; Morrison, M.C.; Bloomfield, P.; Bond, G.C.; Alley, R.B.; Gow, A.J.; Grootes, P.M.; et al. Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. Science 1994, 263, 1747–1751. [Google Scholar] [CrossRef] [PubMed]
- Grimm, E.C.; Jacobson, G.L.; Watts, W.A.; Hansen, B.C.S.; Maasch, K.A. A 50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich events. Science 1993, 261, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Bond, G.; Heinrich, H.; Broecker, W.; Labeyrie, L.; McManus, J.; Andrews, J.; Huon, S.; Jantschik, R.; Clasen, S.; Simet, C.; et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 1992, 360, 245–249. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Hu, R.; Yin, S.; Bao, Y.; Ayal, D.Y. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecol. Indic. 2018, 89, 101–109. [Google Scholar] [CrossRef]
- Yang, J.; Wu, J.; Li, M.; Wang, B. Extreme Temperature Events and Mortality/Morbidity in China. In Ambient Temperature and Health in China; Lin, H., Ma, W., Liu, Q., Eds.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Gong, H.; Wang, Z.; Zhao, C.; Feng, L. A new index for El Niño. Mar. Forecast. 2017, 19–27. [Google Scholar]
- Delgado, A.; Romero, I. Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru. Environ. Model. Softw. 2016, 77, 108–121. [Google Scholar] [CrossRef]
- Qin, D. The Second National Assessment Report on Climate Change; The Science Publishing Company: Beijing, China, 2011. [Google Scholar]
- Knight, P.J.; Kennedy, J.J.; Folland, C.; Harris, G.; Jones, G.S.; Palmer, M.; Parker, D.; Scaife, A.; Stott, P. Do Global Temperature Trends Over the Last Decade Falsify Climate. Bull. Am. Meteorol. Soc. 2009, 3, 22–23. [Google Scholar]
- Liu, B.; Zhou, T. Atmospheric footprint of the recent warming slowdown. Sci. Rep. 2017, 7, 40947. [Google Scholar] [CrossRef] [Green Version]
- Kerr, R.A. What happened to global warming? Scientists say just wait a bit. Science 2009, 326, 28–29. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; Volume 9781107057, ISBN 9781107415324. [Google Scholar] [CrossRef]
- McGregor, G.R.; Ferro, C.A.T.; Stephenson, D.B. Projected changes in extreme weather and climate events in Europe. Extrem. Weather Events Public Heal. Responses 2005, 13–23. [Google Scholar] [CrossRef]
- Ferro, C.A.T.; Hannachi, A.; Stephenson, D.B. Simple nonparametric techniques for exploring changing probability distributions of weather. J. Clim. 2005, 18, 4344–4354. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, C.Y.; Song, J. Arctic Oscillation anomaly in winter 2009/2010 and its impacts on weather and climate. Sci. China Earth Sci. 2012, 55, 567–579. [Google Scholar] [CrossRef]
- Renom, M.; Rusticucci, M.; Barreiro, M. Multidecadal changes in the relationship between extreme temperature events in Uruguay and the general atmospheric circulation. Clim. Dyn. 2011, 37, 2471–2480. [Google Scholar] [CrossRef] [Green Version]
Encoding | Name | Definition | Unit |
---|---|---|---|
1 | TNn | Annual minimum of daily minimum temperature | °C |
2 | TXx | Annual maximum of daily maximum temperature | °C |
3 | CTNn | TNn interannual date of occurrence | Day (d) |
4 | CTXx | TXx interannual date of occurrence | Day (d) |
H(TXx) | H(TNn) | H(CTXx) | H(CTNn) | |
---|---|---|---|---|
average temperature | 0.34 * | 0.35 * | −0.02 | 0.04 |
TXx | 0.64 ** | 0.07 | −0.02 | 0.22 |
TNn | 0.25 | 0.27 | 0.22 | 0.04 |
NAO | PNA | AO | PDO | El Niño T | |
---|---|---|---|---|---|
H(TXx) | −0.07 | 0.03 | 0.11 | −0.12 | 0.39 * |
H(CTXx) | 0.06 | 0.09 | 0.00 | 0.32 * | 0.1 |
H(TNn) | 0.20 * | 0.04 | 0.1 | 0.19 | 0.33 |
H(CTNn) | −0.13 | 0.03 | −0.13 | −0.12 | −0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Yang, J.; Ding, Y.; Tan, C.; He, Q.; Wang, Y.; Qin, J.; Tang, F.; Ge, Q. Variation in Extreme Temperature and Its Instability in China. Atmosphere 2022, 13, 19. https://doi.org/10.3390/atmos13010019
Chen H, Yang J, Ding Y, Tan C, He Q, Wang Y, Qin J, Tang F, Ge Q. Variation in Extreme Temperature and Its Instability in China. Atmosphere. 2022; 13(1):19. https://doi.org/10.3390/atmos13010019
Chicago/Turabian StyleChen, Hongju, Jianping Yang, Yongjian Ding, Chunping Tan, Qingshan He, Yanxia Wang, Ji Qin, Fan Tang, and Qiuling Ge. 2022. "Variation in Extreme Temperature and Its Instability in China" Atmosphere 13, no. 1: 19. https://doi.org/10.3390/atmos13010019