Screening Approach for Short-Term PM2.5 Health Co-Benefits: A Case Study from 15 Metropolitan Cities around the World during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Data Collection, Observations, and Methodologies
2.1. Study Areas and Air Quality Data
2.2. The Health Co-Benefit Model, AirQ+
3. Results and Discussion
3.1. Geospatial Variations of Air Quality Change before and during the Pandemic
Case Studies on the Relationship of Traffic Reduction and PM2.5 Concentration
3.2. Potential Health Co-Benefits and PM2.5 Reduction
3.2.1. Health Co-Benefits and PM2.5 Reduction
3.2.2. Discussion of Seasonal Variations of Air Quality on Health Co-Benefits
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2021, 8, nwaa137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lin, Y.; Wei, S.; Loo, B.P.Y.; Lai, P.C.; Lam, Y.F.; Wan, L.; Li, Y. Global association between satellite-derived nitrogen dioxide (NO2) and lockdown policies under the COVID-19 pandemic. Sci. Total Environ. 2021, 761, 144148. [Google Scholar] [CrossRef] [PubMed]
- Loo, B.P.Y.; Tsoi, K.H.; Wong, P.P.Y.; Lai, P.C. Identification of superspreading environment under COVID-19 through human mobility data. Sci. Rep. 2021, 11, 4699. [Google Scholar] [CrossRef]
- Statistica. Year-on-Year Traffic Reduction during a Period of National Emergency Related to Coronavirus in Selected Cities between 12 March and 25 October 2020. Available online: https://www.statista.com/statistics/1106135/change-in-daily-traffic-volume-amid-coronavirus-crisis-key-countries/ (accessed on 10 May 2020).
- Stone, T. Coronavirus: UK Traffic Levels Rise 10% in Lockdown Three Compared to First Lockdown in 2020. Available online: https://www.traffictechnologytoday.com/news/covid-19-news/coronavirus-uk-traffic-levels-rise-10-in-lockdown-three-compared-to-first-lockdown-in-2020.html (accessed on 11 March 2021).
- Huang, Y.; Zhou, J.L.; Yu, Y.; Mok, W.-C.; Lee, C.F.C.; Yam, Y.-S. Uncertainty in the Impact of the COVID-19 Pandemic on Air Quality in Hong Kong, China. Atmosphere 2020, 11, 914. [Google Scholar] [CrossRef]
- Lam, Y.F.; Loo, B.P.Y.; Zhang, H.S.; Leung, K.K.M.; Axhausen, K.W. People-environment Dynamics under COVID-19. In Proceedings of the Presented at the COVID-19 and Geography Forum, Hong Kong, China, 28 May 2020. [Google Scholar]
- Morris, D.Z. These U.S. cities led the world in reduced car traffic last year. Available online: https://fortune.com/2021/01/12/us-car-traffic-2020-covid-19-tomtom/ (accessed on 11 March 2021).
- Han, C.; Hong, Y.-C. Decrease in Ambient Fine Particulate Matter during COVID-19 Crisis and Corresponding Health Benefits in Seoul, Korea. Int. J. Environ. Res. Public Health 2020, 17, 5279. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hao, X.; Zhang, X.; Chen, F. Have traffic restrictions improved air quality? A shock from COVID-19. J. Clean. Prod. 2021, 279, 123622. [Google Scholar] [CrossRef]
- Liu, F.; Wang, M.; Zheng, M. Effects of COVID-19 lockdown on global air quality and health. Sci. Total Environ. 2021, 755, 142533. [Google Scholar] [CrossRef] [PubMed]
- Skirienė, A.F.; Stasiškienė, Ž. COVID-19 and Air Pollution: Measuring Pandemic Impact to Air Quality in Five European Countries. Atmosphere 2021, 12, 290. [Google Scholar] [CrossRef]
- Gautam, A.S.; Dilwaliya, N.K.; Srivastava, A.; Kumar, S.; Bauddh, K.; Siingh, D.; Shah, M.A.; Singh, K.; Gautam, S. Temporary reduction in air pollution due to anthropogenic activity switch-off during COVID-19 lockdown in northern parts of India. Environ. Dev. Sustain. 2021, 23, 8774–8797. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, H.; Zha, S.; Yu, N.; Liu, X.; Sun, R. Effects of COVID-19 Emergency Response Levels on Air Quality in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Aerosol Air Qual. Res. 2021, 21, 200416. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Wang, S.; He, S.; He, P. Heterogeneous effects of COVID-19 lockdown measures on air quality in Northern China. Appl. Energy 2021, 282, 116179. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984. [Google Scholar] [CrossRef]
- Gope, S.; Dawn, S.; Das, S.S. Effect of COVID-19 pandemic on air quality: A study based on Air Quality Index. Environ. Sci. Pollut. Res. 2021, 28, 35564–35583. [Google Scholar] [CrossRef] [PubMed]
- Keller, C.A.; Evans, M.J.; Knowland, K.E.; Hasenkopf, C.A.; Modekurty, S.; Lucchesi, R.A.; Oda, T.; Franca, B.B.; Mandarino, F.C.; Díaz Suárez, M.V.; et al. Global impact of COVID-19 restrictions on the surface concentrations of nitrogen dioxide and ozone. Atmos. Chem. Phys. 2021, 21, 3555–3592. [Google Scholar] [CrossRef]
- Chauhan, A.; Singh, R.P. Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environ. Res. 2020, 187, 109634. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Hama, S.; Omidvarborna, H.; Sharma, A.; Sahani, J.; Abhijith, K.V.; Debele, S.E.; Zavala-Reyes, J.C.; Barwise, Y.; Tiwari, A. Temporary reduction in fine particulate matter due to ‘anthropogenic emissions switch-off’ during COVID-19 lockdown in Indian cities. Sustain. Cities Soc. 2020, 62, 102382. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Wang, Q.; Liu, C.; Zhi, Q.; Cao, J. Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Sci. Total Environ. 2020, 731, 139133. [Google Scholar] [CrossRef]
- Mak, H.W.L.; Lam, Y.F. Comparative assessments and insights of data openness of 50 smart cities in air quality aspects. Sustain. Cities Soc. 2021, 69, 102868. [Google Scholar] [CrossRef]
- Mukherjee, A.; Toohey, D.W. A study of aerosol properties based on observations of particulate matter from the U.S. Embassy in Beijing, China. Earth’s Future 2016, 4, 381–395. [Google Scholar] [CrossRef]
- IQAir. 2019 World Air Quality Report. Available online: https://www.iqair.com/world-air-quality-ranking (accessed on 11 March 2021).
- TomTom. 2020 TomTom Traffic Index Ranking. Available online: https://www.tomtom.com/en_gb/traffic-index/ranking/ (accessed on 21 June 2020).
- Oliveri Conti, G.; Heibati, B.; Kloog, I.; Fiore, M.; Ferrante, M. A review of AirQ Models and their applications for forecasting the air pollution health outcomes. Environ. Sci. Pollut. Res. 2017, 24, 6426–6445. [Google Scholar] [CrossRef] [PubMed]
- Rovira, J.; Domingo, J.L.; Schuhmacher, M. Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Sci. Total Environ. 2020, 703, 135538. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Ehrampoush, M.H. Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran. Environ. Res. 2019, 170, 141–150. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs, Population Division. 2019 Revision of World Population Prospects. Available online: https://population.un.org/wpp/ (accessed on 21 June 2020).
- World Health Organization. Occupational and Environmental Health Team. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment. Available online: https://apps.who.int/iris/handle/10665/69477 (accessed on 21 June 2020).
- Mudu, P.; Gapp, C.; Dunbar, M. AirQ+-Example of Calculations; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2018. [Google Scholar]
- AppleMaps. Mobility Trends Reports. Available online: https://covid19.apple.com/mobility (accessed on 21 June 2020).
- HKU-Geog. COVID-19 Forum: People-environment Dynamics under COVID-19. 2020. Available online: https://www.matpp.hku.hk/post/f20200528 (accessed on 21 June 2020).
- Molloy, J.; Tchervenkov, C.; Hintermann, B.; Axhausen, K.W. Tracing the Sars-CoV-2 impact. The first month in Switzerland–March to April 2020. Arb. Verk.- Raumplan. 2020, 1503, 1–8. [Google Scholar] [CrossRef]
- CILTHK. Impact of COVID-19 on Hong Kong’s Transport; The Chartered Institute of Logistics and Transport: Hong Kong, China, 2020. [Google Scholar]
- Yao, Z.; Wei, H.; Perugu, H.; Liu, H.; Li, Z. Sensitivity analysis of project level MOVES running emission rates for light and heavy duty vehicles. J. Traffic Transp. Eng. 2014, 1, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Lou, D.; Liu, J.; Fang, L.; Huang, W. Evaluating nitrogen oxides and ultrafine particulate matter emission features of urban bus based on real-world driving conditions in the Yangtze River Delta Area, China. Sustainability 2018, 10, 2051. [Google Scholar] [CrossRef] [Green Version]
- Gardner, M.J. Lognormality of trace contaminant concentrations in sewage effluents. Environ. Monit. Assess. 2014, 186, 4819–4827. [Google Scholar] [CrossRef]
- Sansuddin, N.; Sansuddin, N.; Ramli, N.A.; Ramli, N.A.; Yahaya, A.S.; Yahaya, A.S.; Yusof, N.F.F.M.D.; Yusof, N.F.F.M.D.; Ghazali, N.A.; Ghazali, N.A.; et al. Statistical analysis of PM10 concentrations at different locations in Malaysia. Environ. Monit. Assess. 2011, 180, 573–588. [Google Scholar] [CrossRef]
Region | Cities | Sites | Sources |
---|---|---|---|
SEA, SA, EA, SAM, ME, NA, and AF | New Delhi, India; Jakarta, Indonesia; Beijing, China; Hanoi, Vietnam; Colombo, Sri Lanka; Lima, Peru; Pristina, Kosovo; Addis Ababa, Ethiopia, and Abu Dhabi, UAE | AIRNow, Department of State, USA: https://www.airnow.gov/international/us-embassies-and-consulates/ (accessed on 26 May 2020) | |
NA | Los Angeles, USA | Long Beach 1, LA-North, and Riverside-Rubidoux | South Coast Air Quality Management District: https://www.arb.ca.gov/aqmis2/aqdselect.php (accessed on 26 May 2020) |
NA | New York, USA | PS314 1, Queens Near Road 1, and Maspeth 1 | New York State Department of Environmental Conservation: http://www.nyaqinow.net (accessed on 26 May 2020) |
EA | Hong Kong, China | Shum Shui Po, Mongkok1, Shatin and Yuen Long | Hong Kong Environmental Protection Department https://cd.epic.epd.gov.hk/EPICDI/air/station/?lang=en (accessed on 26 May 2020) |
EA | Tokyo, Japan | Daiichi Keihin Takanawa 1, Takanawa, Minato-ku, and Daiba, Minato-ku | Minato City Council, Tokyo: https://www.city.minato.tokyo.jp/kankyoushidouasesutan/2016date.html (accessed on 26 May 2020) |
EU | London, UK | Marylebone Road 1, Kensington, Haringey Park 1, and Camden Kerbside 1 | Department for Environment Food & Rural Affairs https://uk-air.defra.gov.uk/data/data_selector (accessed on 26 May 2020) |
EU | Zurich, Switzerland | Zürich-Kaserne (only station in Zurich) | National Air Pollution Monitoring Network, Switzerland https://www.bafu.admin.ch/bafu/en/home/topics/air/state/data/historical-data.html (accessed on 26 May 2020) |
Group | Reg. 1 | City | St. Type 2 | Average PM25 Conc. (μg m−3) | % Change from 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2019 | 2018 | 2017 | 2019 | 2018 | 2017 | 2017–2019 | ||||
Heavily polluted city | EA | Beijing, CN | Amb. | 43 | 51.9 | 65.9 | 61.8 | −17 | −35 | −30 | −28 |
SEA | Jakarta, Indonesia 2 | Amb. | 50.4 | 46.5 | 51.8 | 32.2 | 8 | −3 | 57 | 16 | |
SEA | Hanoi, Vietnam | Amb. | 42.4 | - | 33.3 | - | - | 27 | - | - | |
SA | New Delhi, India | Amb. | 42.2 | 91 | 70.8 | 88.1 | −54 | −40 | −52 | −49 | |
ME | Abu Dhabi, UAE 2 | Amb. | 20.1 | 42.7 | 48.9 | - | −53 | −59 | - | −56 | |
Medium polluted city | EA | Hong Kong, CN 2 | Tra. | 19.3 | 21.2 | 23.4 | 29.6 | −9 | −18 | −35 | −22 |
Amb. | 15.6 | 14.9 | 19.6 | 21.8 | 5 | −20 | −28 | −17 | |||
EA | Tokyo, Japan | Tra. | 13.5 | 12.2 | 15.3 | 14.7 | 11 | −12 | −8 | −4 | |
Amb. | 10.5 | 11.8 | 17.7 | 14.3 | −11 | −41 | −27 | −28 | |||
SA | Colombo, Sri Lanka | Amb. | 14.6 | 21.7 | 22 | - | −33 | −34 | - | −33 | |
AF | Addis Ababa, Ethiopia | Amb. | 19.4 | 19.2 | 22.2 | 19.1 | 1 | −13 | 2 | −4 | |
EU | Pristina, Kosovo | Amb. | 18.3 | 16.3 | 15.3 | 16.3 | 12 | 20 | 12 | 15 | |
EU | London, UK | Tra. | 12.7 | 20.5 | 14.8 | 15.1 | −38 | −14 | −16 | −24 | |
Amb. | 11.7 | 16.5 | 11.3 | 12.2 | −29 | 4 | −4 | −12 | |||
NA | LA, USA | Tra. | 9.9 | 11.4 | 12.9 | 11.9 | −13 | −23 | −17 | −18 | |
Amb. | 11.1 | 11.1 | 15.5 | 11.9 | 0 | −28 | −7 | −14 | |||
SAM | Lima, Peru | Amb. | 15 | 24.4 | 29.8 | 32 | −39 | −50 | −53 | −48 | |
Relatively clean city | EU | Zurich, Switzerland 2 | Amb. | 8.5 | 10.4 | 9 | 8.6 | −18 | −6 | −1 | −9 |
NA | New York, USA | Tra. | 3.9 | 5.1 | 5.8 | 4.6 | −24 | −33 | −15 | −25 | |
Amb. | 3.3 | 3.5 | 5.2 | 4.3 | −6 | −39 | −23 | −24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, Y.-F.; Chang, J.M.H.; Loo, B.P.Y.; Zhang, H.-S.; Leung, K.K.M.; Axhausen, K.W. Screening Approach for Short-Term PM2.5 Health Co-Benefits: A Case Study from 15 Metropolitan Cities around the World during the COVID-19 Pandemic. Atmosphere 2022, 13, 18. https://doi.org/10.3390/atmos13010018
Lam Y-F, Chang JMH, Loo BPY, Zhang H-S, Leung KKM, Axhausen KW. Screening Approach for Short-Term PM2.5 Health Co-Benefits: A Case Study from 15 Metropolitan Cities around the World during the COVID-19 Pandemic. Atmosphere. 2022; 13(1):18. https://doi.org/10.3390/atmos13010018
Chicago/Turabian StyleLam, Yun-Fat, Jeffrey M. H. Chang, Becky P. Y. Loo, Hong-Sheng Zhang, Kenneth K. M. Leung, and Kay W. Axhausen. 2022. "Screening Approach for Short-Term PM2.5 Health Co-Benefits: A Case Study from 15 Metropolitan Cities around the World during the COVID-19 Pandemic" Atmosphere 13, no. 1: 18. https://doi.org/10.3390/atmos13010018
APA StyleLam, Y. -F., Chang, J. M. H., Loo, B. P. Y., Zhang, H. -S., Leung, K. K. M., & Axhausen, K. W. (2022). Screening Approach for Short-Term PM2.5 Health Co-Benefits: A Case Study from 15 Metropolitan Cities around the World during the COVID-19 Pandemic. Atmosphere, 13(1), 18. https://doi.org/10.3390/atmos13010018