A Contrast of Recent Changing Tendencies in Genesis Productivity of Tropical Cloud Clusters over the Western North Pacific in May and October
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Opposite Changing Tendency for GP of WNP TCCs in May and October
3.2. Possible Reasons for the Opposite Changing Tendency in May and October
3.2.1. Changing Tendencies in Low-Level Atmospheric Circulations, EKE, and BEC
3.2.2. Changing Tendencies in WNP Subtropical High and Monsoon
3.2.3. Changing Tendencies in SST Configurations across the Tropical Oceans
3.2.4. Possible Influences of the PDO
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maddox, R.A. Satellite Depiction of the life cycle of a mesoscale convective complex. Mon. Weather. Rev. 1981, 109, 1583–1586. [Google Scholar] [CrossRef] [Green Version]
- Hennon, C.C.; Helms, C.; Knapp, K.R.; Bowen, A.R. An objective algorithm for detecting and tracking tropical cloud clusters: Implications for tropical cyclogenesis prediction. J. Atmos. Ocean. Technol. 2011, 28, 1007–1018. [Google Scholar] [CrossRef]
- Hennon, C.C.; Papin, P.P.; Zarzar, C.; Michael, J.R.; Caudill, J.A.; Douglas, C.R.; Groetsema, W.C.; Lacy, J.H.; Maye, Z.D.; Reid, J.L.; et al. Tropical cloud cluster climatology, variability, and genesis productivity. J. Clim. 2013, 26, 3046–3066. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Chen, S.; Raga, G.B.; Klotzbach, P.J.; Wu, L. Recent decrease in genesis productivity of tropical cloud clusters over the Western North Pacific. Clim. Dyn. 2018, 52, 5819–5831. [Google Scholar] [CrossRef]
- Mcbride, J.L.; Zehr, R. Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci. 1981, 38, 1132–1151. [Google Scholar] [CrossRef] [Green Version]
- Gray, W.M. The formation of tropical cyclones. Theor. Appl. Clim. 1998, 67, 37–69. [Google Scholar] [CrossRef]
- Wang, L.; Lau, K.-H.; Zhang, Q.-H.; Fung, C.-H. Observation of non-developing and developing tropical disturbances over the South China Sea using SSM/I satellite. Geophys. Res. Lett. 2008, 35, 10. [Google Scholar] [CrossRef]
- Fu, B.; Peng, M.S.; Li, T.; Stevens, D.E. Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Weather Rev. 2012, 140, 1067–1080. [Google Scholar] [CrossRef] [Green Version]
- Kerns, B.W.; Chen, S.S. Cloud clusters and tropical cyclogenesis: Developing and nondeveloping systems and their large-scale environment. Mon. Weather Rev. 2013, 141, 192–210. [Google Scholar] [CrossRef] [Green Version]
- Teng, H.-F.; Lee, C.-S.; Hsu, H.-H.; Done, J.M.; Holland, G.J. Tropical cloud cluster environments and their importance for tropical cyclone formation. J. Clim. 2019, 32, 4069–4088. [Google Scholar] [CrossRef]
- Teng, H.-F.; Lee, C.-S.; Hsu, H.-H. Influence of ENSO on formation of tropical cloud clusters and their development into tropical cyclones in the western North Pacific. Geophys. Res. Lett. 2014, 41, 9120–9126. [Google Scholar] [CrossRef]
- Xu, S.; Wang, B. Enhanced western North Pacific tropical cyclone activity in may in recent years. Clim. Dyn. 2013, 42, 2555–2563. [Google Scholar] [CrossRef] [Green Version]
- Huangfu, J.; Huang, R.; Chen, W. Interdecadal increase of tropical cyclone genesis frequency over the western north Pacific in may. Int. J. Clim. 2016, 37, 1127–1130. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C.L. Inactive period of western north pacific tropical cyclone activity in 1998–2011. J. Clim. 2013, 26, 2614–2630. [Google Scholar] [CrossRef]
- Tu, J.-Y.; Chou, C.; Huang, P.; Huang, R. An abrupt increase of intense typhoons over the western North Pacific in early summer. Environ. Res. Lett. 2011, 6, 034013. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Chu, P.-S.; Murakami, H.; Zhao, X. An abrupt decrease in the late-season typhoon activity over the Western North Pacific. J. Clim. 2014, 27, 4296–4312. [Google Scholar] [CrossRef]
- Choi, Y.; Ha, K.; Jin, F. Seasonality and el niño diversity in the relationship between ENSO and Western North Pacific tropical cyclone activity. J. Clim. 2019, 32, 8021–8045. [Google Scholar] [CrossRef]
- Fan, T.; Xu, S.; Huang, F.; Zhao, J. The phase differences of the interdecadal variabilities of tropical cyclone activity in the peak and late seasons over the western North Pacific. Theor. Appl. Clim. 2018, 136, 77–83. [Google Scholar] [CrossRef]
- Basconcillo, J.; Moon, I.-J. Recent increase in the occurrences of Christmas typhoons in the Western North Pacific. Sci. Rep. 2021, 11, 7416. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, C.; Wang, J.; Chen, W.; Lian, T.; Yang, S.; Chen, D. Distinct interdecadal change contrasts between summer and autumn in latitude-longitude covariability of Northwest Pacific typhoon genesis locations. Geophys. Res. Lett. 2021, 48, e2021GL093494. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Smith, T.M.; Reynolds, R.; Peterson, T.; Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 2008, 21, 2283–2296. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Xiang, B.; Lee, J.-Y. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA 2013, 110, 2718–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Fan, Z. Choice of South Asian summer monsoon indices. Bull. Am. Meteorol. Soc. 1999, 80, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Zhang, Y.; Wallace, J.M.; Battisti, D.S. ENSO-like Interdecadal Variability: 1900–1993. J. Climate. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- Maloney, E.D.; Hartmann, D.L. The madden–julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci. 2001, 58, 2545–2558. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.-C.; Li, T. Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the Western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. J. Clim. 2011, 24, 942–961. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y.; Lei, X. Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency. J. Clim. 2011, 24, 509–521. [Google Scholar] [CrossRef]
- Wu, L.; Wen, Z.; Huang, R.; Wu, R. Possible linkage between the monsoon trough variability and the tropical cyclone activity over the Western North Pacific. Mon. Weather. Rev. 2012, 140, 140–150. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975; pp. 1–202. [Google Scholar]
- He, H.; Yang, J.; Gong, D.; Mao, R.; Wang, Y.; Gao, M. Decadal changes in tropical cyclone activity over the western North Pacific in the late 1990s. Clim. Dyn. 2015, 45, 3317–3329. [Google Scholar] [CrossRef]
- Huangfu, J.; Huang, R.; Chen, W.; Feng, T.; Wu, L. Interdecadal variation of tropical cyclone genesis and its relationship to the monsoon trough over the western North Pacific. Int. J. Clim. 2016, 37, 3587–3596. [Google Scholar] [CrossRef]
- Zhao, J.; Zhan, R.; Wang, Y.; Xu, H. Contribution of the interdecadal Pacific oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the Western North Pacific since 1998. J. Clim. 2018, 31, 8211–8224. [Google Scholar] [CrossRef]
- Kim, H.-K.; Seo, K.-H.; Yeh, S.-W.; Kang, N.-Y.; Moon, B.-K. Asymmetric impact of Central Pacific ENSO on the reduction of tropical cyclone genesis frequency over the western North Pacific since the late 1990s. Clim. Dyn. 2020, 54, 661–673. [Google Scholar] [CrossRef]
- Li, H.; Xu, F.; Sun, J.; Lin, Y.; Wright, J.S. Subtropical high affects interdecadal variability of tropical cyclone genesis in the South China Sea. J. Geophys. Res. Atmos. 2019, 124, 6379–6392. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Tao, L. Interannual and interdecadal impact of Western North Pacific subtropical high on tropical cyclone activity. Clim. Dyn. 2020, 54, 2237–2248. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.W.; Kim, B.J.; Zhang, R.; Park, K.J.; Kim, J.Y.; Cha, Y.; Nam, J.C. Possible relation of the western North Pacific monsoon to the tropical cyclone activity over western North Pacific. Int. J. Climatol. 2016, 36, 3334–3345. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Chen, S.; Klotzbach, P.J. Recent strengthening of the relationship between the Western North Pacific monsoon and Western North Pacific tropical cyclone activity during the boreal summer. J. Clim. 2019, 32, 8283–8299. [Google Scholar] [CrossRef]
- Basconcillo, J.; Cha, E.-J.; Moon, I.-J. Characterizing the highest tropical cyclone frequency in the Western North Pacific since 1984. Sci. Rep. 2021, 11, 14350. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Kim, H.-J.; Webster, P.J.; Yim, S.-Y.; Xiang, B. Northern hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA 2013, 110, 5347–5352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Xie, S.-P.; Gille, S.; Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Chang. 2016, 6, 275–279. [Google Scholar] [CrossRef]
- Gill, A.E. Some simple solutions for heat-induced tropical circulation. Meteorol. Atmos. Phys. 1980, 106, 447–462. [Google Scholar] [CrossRef]
- Xie, S.-P.; Hu, K.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Hong, C.-C.; Chang, T.-C.; Hsu, H.-H. Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res. Atmos. 2014, 119, 3715–3722. [Google Scholar] [CrossRef]
- Zhao, J.; Zhan, R.; Wang, Y.; Xie, S.-P.; Wu, Q. Untangling impacts of global warming and interdecadal Pacific oscillation on long-term variability of North Pacific tropical cyclone track density. Sci. Adv. 2020, 6, eaba6813. [Google Scholar] [CrossRef]
- Yu, J.; Chen, C.; Li, T.; Zhao, X.; Xue, H.; Sun, Q. Contribution of major SSTA modes to the climate variability of tropical cyclone genesis frequency over the western North Pacific. Q. J. R. Meteorol. Soc. 2016, 142, 1171–1181. [Google Scholar] [CrossRef]
- Cao, X.; Wu, R.; Xiao, X. A new perspective of intensified impact of El Niño-Southern Oscillation modoki on tropical cyclogenesis over the western North Pacific around 1990s. Int. J. Clim. 2018, 38, 4262–4275. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B. Tropical cyclone predictability shaped by western Pacific subtropical high: Integration of trans-basin sea surface temperature effects. Clim. Dyn. 2019, 53, 2697–2714. [Google Scholar] [CrossRef]
- Wu, M.; Wang, L.; Chen, B. Recent weakening in interannual variability of mean tropical cyclogenesis latitude over the Western North Pacific during boreal summer. J. Meteorol. Res. 2020, 34, 1183–1198. [Google Scholar] [CrossRef]
- Wang, C.; Wu, K.; Wu, L.; Zhao, H.; Cao, J. What caused the unprecedented absence of Western North Pacific Tropical cyclones in july 2020? Geophys. Res. Lett. 2021, 48, e2020GL092282. [Google Scholar] [CrossRef]
- Cai, W.; Wu, L.; Lengaigne, M.; Li, T.; McGregor, S.; Kug, J.-S.; Yu, J.-Y.; Stuecker, M.F.; Santoso, A.; Li, X.; et al. Pantropical climate interactions. Science 2019, 363, eaav4236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C. Three-ocean interactions and climate variability: A review and perspective. Clim. Dyn. 2019, 53, 5119–5136. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.-P.; Kosaka, Y.; Du, Y.; Hu, K.; Chowdary, J.S.; Huang, G. Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci. 2016, 33, 411–432. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yu, J.-Y.; Paek, H. Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun. 2017, 8, 14887. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guan, Y.; Wu, L.; Guan, X.; Cai, W.; Huang, J.; Dong, W.; Zhang, B. Changing lengths of the four seasons by global warming. Geophys. Res. Lett. 2021, 48, e2020GL091753. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Wang, L.; Wu, M.; Gan, Q. A Contrast of Recent Changing Tendencies in Genesis Productivity of Tropical Cloud Clusters over the Western North Pacific in May and October. Atmosphere 2021, 12, 1177. https://doi.org/10.3390/atmos12091177
Peng X, Wang L, Wu M, Gan Q. A Contrast of Recent Changing Tendencies in Genesis Productivity of Tropical Cloud Clusters over the Western North Pacific in May and October. Atmosphere. 2021; 12(9):1177. https://doi.org/10.3390/atmos12091177
Chicago/Turabian StylePeng, Xugang, Lei Wang, Minmin Wu, and Qiuying Gan. 2021. "A Contrast of Recent Changing Tendencies in Genesis Productivity of Tropical Cloud Clusters over the Western North Pacific in May and October" Atmosphere 12, no. 9: 1177. https://doi.org/10.3390/atmos12091177