Climate Change and Livestock Production: A Literature Review
Abstract
:1. Introduction
2. Impact of Climate Change on Livestock Production
2.1. Direct Effects
2.1.1. Feed Intake
2.1.2. Animal Production: Milk and Others
2.1.3. Reproduction
2.1.4. Disease and Parasite Stress
2.1.5. Mortality
2.2. Indirect Effects
2.2.1. Forage Quality
2.2.2. Water
2.2.3. Seasonal Variation and Extreme Climate Events
3. Impact of Livestock Production on GHG Emissions
3.1. Direct Effects: Enteric Fermentation and Manure Management
3.2. Indirect Effects: Feed Production and Land Use Change
3.2.1. Feed Production
3.2.2. Land Use Change
3.2.3. Energy Consumption
4. Adaptation
4.1. Animal Responses
4.2. Human Adaptation Strategies
4.2.1. Animal Genetics
4.2.2. Physical Modification
4.2.3. Feed and Pest Management
4.2.4. Livestock Management System
- (1)
- (2)
- Adjustment in stocking rates: Díaz-Solís et al. [141] found that adjusting stocking rate can be used to reduce the effect of drought on cow-calf in Mexican state of Coahuila. Mu et al. [142] found that in the U.S., the stocking rate of cattle decreases as THI increases and precipitation increases in summer.
- (3)
5. Mitigation
5.1. Land Resource Management
5.2. Enteric Fermentation Management
5.3. Manure Management
5.4. Fertilizer Management
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Livestock and Landscapes: Sustainability Pathways. Food and Agriculture Organizations of the United Nations. Available online: https://www.fao.org/3/ar591e/ar591e.pdf (accessed on 3 November 2021).
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Swanepoel, F.J.C.; Stroebel, A.; Moyo, S. The Role of Livestock in Developing Communities: Enhancing Multifunctionality. University of the Free State and CTA. 2010. Available online: https://cgspace.cgiar.org/handle/10568/3003 (accessed on 9 August 2021).
- Intergovernmental Panel on Climate Change. Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Escarcha, J.; Lassa, J.; Zander, K. Livestock under climate change: A systematic review of impacts and adaptation. Climate 2018, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities. 2013. Available online: https://www.cabdirect.org/cabdirect/abstract/20133417883 (accessed on 5 August 2021).
- Collier, R.J.; Baumgard, L.H.; Zimbelman, R.B.; Xiao, Y. Heat stress: Physiology of acclimation and adaptation. Anim. Front. 2019, 9, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Ames, D. Thermal Environment Affects Production Efficiency of Livestock. BioScience 1980, 30, 457–460. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Bernabucci, U. Climatic Effects on Productive Traits in Livestock. Vet. Res. Commun. 2006, 30, 75–81. [Google Scholar] [CrossRef]
- Bianca, W. The signifiance of meteorology in animal production. Int. J. Biometeorol. 1976, 20, 139–156. [Google Scholar] [CrossRef]
- Fregly, M.J. Adaptations: Some General Characteristics. In Comprehensive Physiology; American Cancer Society: Atlanta, GA, USA, 2011; pp. 3–15. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/cphy.cp040101 (accessed on 1 September 2021).
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Collier, R.J.; Beede, D.K.; Thatcher, W.W.; Israel, L.A.; Wilcox, C.J. Influences of Environment and Its Modification on Dairy Animal Health and Production. J. Dairy Sci. 1982, 65, 2213–2227. [Google Scholar] [CrossRef]
- Maibam, U.; Hooda, O.K.; Sharma, P.S.; Upadhyay, R.C.; Mohanty, A.K. Differential level of oxidative stress markers in skin tissue of zebu and crossbreed cattle during thermal stress. Livest. Sci. 2018, 207, 45–50. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- Daramola, J.O.; Abioja, M.O.; Onagbesan, O.M. Heat Stress Impact on Livestock Production. In Environmental Stress and Amelioration in Livestock Production; Sejian, V., Naqvi, S.M.K., Ezeji, T., Lakritz, J., Lal, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 53–73. [Google Scholar] [CrossRef]
- Rashamol, V.P.; Sejian, V.; Bagath, M.; Krishnan, G.; Archana, P.R.; Bhatta, R. Physiological Adaptability of Livestock to Heat Stress: An Updated Review. Periodikos. 2018. Available online: http://www.jabbnet.com/journal/jabbnet/article/doi/10.31893/2318-1265jabb.v6n3p62-71 (accessed on 20 July 2021).
- Baile, C.A.; Forbes, J.M. Control of feed intake and regulation of energy balance in ruminants. Physiol. Rev. 1974, 54, 160–214. [Google Scholar] [CrossRef]
- Yadav, B.; Singh, G.; Verma, A.K.; Dutta, N.; Sejian, V. Impact of heat stress on rumen functions. Vet. World 2013, 6, 992–996. [Google Scholar] [CrossRef] [Green Version]
- Kadzere, C.T.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Lu, C.D. Effects of heat stress on goat production. Small Rumin. Res. 1989, 2, 151–162. [Google Scholar] [CrossRef]
- Lopez, J.; Jesse, G.W.; Becker, B.A.; Ellersieck, M.R. Effects of temperature on the performance of finishing swine: I. Effects of a hot, diurnal temperature on average daily gain, feed intake, and feed efficiency. J. Anim. Sci. 1991, 69, 1843–1849. [Google Scholar] [CrossRef]
- Cervantes, M.; Antoine, D.; Valle, J.A.; Vásquez, N.; Camacho, R.L.; Bernal, H.; Morales, A. Effect of feed intake level on the body temperature of pigs exposed to heat stress conditions. J. Therm. Biol. 2018, 76, 1–7. [Google Scholar] [CrossRef]
- Syafwan, S.; Kwakkel, R.P.; Verstegen, M.W.A. Heat stress and feeding strategies in meat-type chickens. World’s Poult. Sci. J. 2011, 67, 653–674. [Google Scholar] [CrossRef] [Green Version]
- Lacetera, N.; Bernabucci, U.; Ronchi, B.; Nardone, A. Physiological and productive consequences of heat stress. The case of dairy ruminants. In Proceedings of the Symposium on interaction between Climate and Animal Production: EAAP Technical Series, Viterbo, Italy, 4 September 2003; pp. 45–60. [Google Scholar]
- Parkhurst, C.; Mountney, G.J. Poultry Meat and Egg Production; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; 307p. [Google Scholar]
- Pearce, S.C.; Sanz-Fernandez, M.V.; Hollis, J.H.; Baumgard, L.H.; Gabler, N.K. Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs. J. Anim. Sci. 2014, 92, 5444–5454. [Google Scholar] [CrossRef] [Green Version]
- Herbut, P.; Angrecka, S.; Godyń, D.; Hoffmann, G. The physiological and productivity effetcts of heat stress in cattle—A review. Ann. Anim. Sci. 2019, 19, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Rhoads, M.; Rhoads, R.; VanBaale, M.J.; Collier, R.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef] [Green Version]
- Ravagnolo, O.; Misztal, I.; Hoogenboom, G. Genetic component of heat stress in dairy cattle, development of heat index function. J. Dairy Sci. 2000, 83, 2120–2125. [Google Scholar] [CrossRef]
- Gorniak, T.; Meyer, U.; Südekum, K.-H.; Dänicke, S. Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Arch. Anim. Nutr. 2014, 68, 358–369. [Google Scholar] [CrossRef]
- Salama, A.A.K.; Contreras-Jodar, A.; Love, S.; Mehaba, N.; Such, X.; Caja, G. Milk yield, milk composition, and milk metabolomics of dairy goats intramammary-challenged with lipopolysaccharide under heat stress conditions. Sci. Rep. 2020, 10, 5055. [Google Scholar] [CrossRef] [Green Version]
- Seerapu, S.R.; Kancharana, A.R.; Chappidi, V.S.; Bandi, E.R. Effect of microclimate alteration on milk production and composition in Murrah buffaloes. Vet World 2015, 8, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Elam, N.A.; Vasconcelos, J.T.; Hilton, G.; VanOverbeke, D.L.; Lawrence, T.E.; Montgomery, T.H.; Montgomery, T.H.; Nichols, W.T.; Streeter, M.N.; Hutcheson, J.P.; et al. Effect of zilpaterol hydrochloride duration of feeding on performance and carcass characteristics of feedlot cattle1. J. Anim. Sci. 2009, 87, 2133–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summer, A.; Lora, I.; Formaggioni, P.; Gottardo, F. Impact of heat stress on milk and meat production. Anim. Front. 2019, 9, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Berihulay, H.; Abied, A.; He, X.; Jiang, L.; Ma, Y. Adaptation Mechanisms of Small Ruminants to Environmental Heat Stress. Animals 2019, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Pearce, S.C.; Gabler, N.K.; Ross, J.W.; Escobar, J.; Patience, J.F.; Rhoads, R.P.; Baumgard, L.H. The effects of heat stress and plane of nutrition on metabolism in growing pigs. J. Anim. Sci. 2013, 91, 2108–2118. [Google Scholar] [CrossRef] [Green Version]
- da Fonseca de Oliveira, A.C.; Vanelli, K.; Sotomaior, C.S.; Weber, S.H.; Costa, L.B. Impacts on performance of growing-finishing pigs under heat stress conditions: A meta-analysis. Vet. Res. Commun. 2019, 43, 37–43. [Google Scholar] [CrossRef]
- Zaboli, G.; Huang, X.; Feng, X.; Ahn, D.U. How can heat stress affect chicken meat quality?—A review. Poult. Sci. 2019, 98, 1551–1556. [Google Scholar] [CrossRef]
- Song, D.J.; King, A.J. Effects of heat stress on broiler meat quality. World’s Poult. Sci. J. 2015, 71, 701–709. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Jia, G.Q.; Zuo, J.J.; Zhang, Y.; Lei, J.; Ren, L.; Feng, D.Y. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult. Sci. 2012, 91, 2931–2937. [Google Scholar] [CrossRef]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Ringuet, M.; Furness, J.B.; Dunshea, F.R. Betaine and Antioxidants Improve Growth Performance, Breast Muscle Development and Ameliorate Thermoregulatory Responses to Cyclic Heat Exposure in Broiler Chickens. Animals 2018, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Mignon-Grasteau, S.; Moreri, U.; Narcy, A.; Rousseau, X.; Rodenburg, T.B.; Tixier-Boichard, M.; Zerjal, T. Robustness to chronic heat stress in laying hens: A meta-analysis. Poult. Sci. 2015, 94, 586–600. [Google Scholar] [CrossRef]
- Oguntunji, A.O.; Alabi, O.M. Influence of high environmental temperature on egg production and shell quality: A review. World’s Poult. Sci. J. 2010, 66, 739–750. [Google Scholar] [CrossRef]
- He, S.P.; Arowolo, M.A.; Medrano, R.F.; Li, S.; Yu, Q.F.; Chen, J.Y.; He, J. Impact of heat stress and nutritional interventions on poultry production. World’s Poult. Sci. J. 2018, 74, 647–664. [Google Scholar] [CrossRef]
- Ross, J.W.; Hale, B.J.; Seibert, J.T.; Romoser, M.R.; Adur, M.K.; Keating, A.F.; Baumgard, L.H. Physiological mechanisms through which heat stress compromises reproduction in pigs. Mol. Reprod. Dev. 2017, 84, 934–945. [Google Scholar] [CrossRef] [Green Version]
- Nawab, A.; Ibtisham, F.; Li, G.; Kieser, B.; Wu, J.; Liu, W.; Zhao, Y.; Nawab, Y.; Li, K.; Xiao, M.; et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 2018, 78, 131–139. [Google Scholar] [CrossRef]
- Ayo, J.O.; Obidi, J.A.; Rekwot, P.I. Effects of Heat Stress on the Well-Being, Fertility, and Hatchability of Chickens in the Northern Guinea Savannah Zone of Nigeria: A Review. ISRN Vet. Sci. 2011, 14, 838606. [Google Scholar] [CrossRef]
- Thornton, P.K.; Van de Steeg, J.; Notenbaert, A.; Herrero, M. The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agric. Syst. 2009, 101, 113–127. [Google Scholar] [CrossRef]
- Thompson-Crispi, K.A.; Mallard, B.A. Type 1 and type 2 immune response profiles of commercial dairy cows in 4 regions across Canada. Can. J. Vet. Res. 2012, 76, 120–128. [Google Scholar]
- Bagath, M.; Krishnan, G.; Devaraj, C.; Rashamol, V.P.; Pragna, P.; Lees, A.M.; Sejian, V. The impact of heat stress on the immune system in dairy cattle: A review. Res. Vet. Sci. 2019, 126, 94–102. [Google Scholar] [CrossRef]
- Chirico, J.; Jonsson, P.; Kjellberg, S.; Thomas, G. Summer mastitis experimentally induced by Hydrotaea irritans exposed to bacteria. Med. Vet. Entomol. 1997, 11, 187–192. [Google Scholar] [CrossRef]
- Mashaly, M.M.; Hendricks, G.L.; Kalama, M.A.; Gehad, A.E.; Abbas, A.O.; Patterson, P.H. Effect of Heat Stress on Production Parameters and Immune Responses of Commercial Laying Hens. Poult. Sci. 2004, 83, 889–894. [Google Scholar] [CrossRef]
- Dahl, G.E.; Tao, S.; Laporta, J. Heat Stress Impacts Immune Status in Cows Across the Life Cycle. Front. Vet. Sci. 2020, 7, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.J.; Feng, J.H.; Zhang, M.H.; Li, X.M.; Ma, D.D.; Chang, S.S. Effects of high ambient temperature on the community structure and composition of ileal microbiome of broilers. Poult. Sci. 2018, 97, 2153–2158. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liao, R.; Wu, N.; Zhu, G.; Yang, C. Heat stress mediates changes in fecal microbiome and functional pathways of laying hens. Appl. Microbiol. Biotechnol. 2019, 103, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Paull, S.H.; Raffel, T.R.; LaFonte, B.E.; Johnson, P.T.J. How temperature shifts affect parasite production: Testing the roles of thermal stress and acclimation. Funct. Ecol. 2015, 29, 941–950. [Google Scholar] [CrossRef] [Green Version]
- Grace, D.; Bett, B.K.; Lindahl, J.F.; Robinson, T.P. Climate and Livestock Disease: Assessing the Vulnerability of Agricultural Systems to Livestock Pests under Climate Change Scenarios. 2015. Available online: https://cgspace.cgiar.org/handle/10568/66595 (accessed on 4 September 2021).
- Vitali, A.; Felici, A.; Esposito, S.; Bernabucci, U.; Bertocchi, L.; Maresca, C.; Nardone, A.; Lacetera, N. The effect of heat waves on dairy cow mortality. J. Dairy Sci. 2015, 98, 4572–4579. [Google Scholar] [CrossRef] [Green Version]
- Bishop-Williams, K.E.; Berke, O.; Pearl, D.L.; Hand, K.; Kelton, D.F. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010–2012. BMC Vet. Res. 2015, 11, 291. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.; Hale, B.; Gabler, N.; Rhoads, R.; Keating, A.; Baumgard, L. Physiological consequences of heat stress in pigs. Anim. Prod. Sci. 2015, 1, 55. [Google Scholar] [CrossRef]
- Jeffrey, F.; Keown, R.J.G. How to Reduce Heat Stress in Dairy Cattle. University of Missouri Extension. Available online: https://extension.missouri.edu/publications/g3620 (accessed on 3 November 2021).
- Saeed, M.; Abbas, G.; Alagawany, M.; Kamboh, A.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Chao, S. Heat stress management in poultry farms: A comprehensive overview. J. Therm. Biol. 2019, 84, 414–425. [Google Scholar] [CrossRef]
- Reilly, J.M.; Hrubovcak, J.; Graham, J.; Abler, D.G.; Darwin, R.; Hollinger, S.E.; Izaurralde, R.C.; Jagtap, S.; Jones, J.W.; Kimble, J.; et al. Changing Climate and Changing Agriculture: Report of the Agricultural Sector Assessment Team, US National Assessment. In Prepared as Part of USGCRP National Assessment of Climate Variability; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, R.; Van Diemen, R. IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Impacts, Adaptation, and Vulnerability—Part B: Regional Aspects—Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; 688p. [Google Scholar] [CrossRef] [Green Version]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Papanastasis, V.P.; Yiakoulaki, M.D.; Decandia, M.; Dini-Papanastasi, O. Integrating woody species into livestock feeding in the Mediterranean areas of Europe. Anim. Feed Sci. Technol. 2008, 140, 1–17. [Google Scholar] [CrossRef]
- Hejcman, M.; Hejcmanová, P.; Pavlů, V.; Thorhallsdottir, A.G. Forage quality of leaf fodder from the main woody species in Iceland and its potential use for livestock in the past and present. Grass Forage Sci. 2016, 71, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Pearcy, R.W.; Ehleringer, J. Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ. 1984, 7, 1–13. [Google Scholar] [CrossRef]
- Rust, J.M. The impact of climate change on extensive and intensive livestock production systems. Anim. Front. 2019, 9, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.J.; McCarl, B.A. Climate change influences on crop mix shifts in the United States. Sci. Rep. 2017, 7, 40845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukal, M.S.; Irmak, S. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the, U.S. Great Plains Agricultural Production. Sci. Rep. 2018, 8, 3450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadi, A.; Naz, N.; Ur Rehman, F.; Kalsoom, M.; Tahir, R.; Adnan, M.; Saeed, M.S.; Khan, A.U.; Mehta, J. Impact of Climate Change Drivers on C4 Plants: A Review. Curr. Res. Agric. Farming 2020, 1, 13–18. [Google Scholar] [CrossRef]
- Hummel, M.; Hallahan, B.F.; Brychkova, G.; Ramirez-Villegas, J.; Guwela, V.; Chataika, B.; Curley, E.; McKeown, P.C.; Morrison, L.; Talsma, E.F.; et al. Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Sci. Rep. 2018, 8, 16187. [Google Scholar] [CrossRef]
- Ray, R.L.; Fares, A.; Risch, E. Effects of Drought on Crop Production and Cropping Areas in Texas. Agric. Environ. Lett. 2018, 3, 170037. [Google Scholar] [CrossRef] [Green Version]
- Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 2018, 9, 4249. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, A.; Prado, A.D. Implications of climate change for grassland in Europe: Impacts, adaptations and mitigation options: A review. Grass Forage Sci. 2007, 62, 118–126. [Google Scholar] [CrossRef]
- Ball, D.M.; Collins, M.; Lacefield, G.; Martin, N.; Mertens, D.; Olson, K.; Putnam, D.; Undersander, D.; Wolf, M. Understanding Forage Quality. American Farm Bureau Federation Publication. 2001. Available online: http://pss.uvm.edu/pdpforage/Materials/ForageQuality/Understanding_Forage_Quality_Ball.pdf (accessed on 3 November 2021).
- Collins, M.; Nelson, C.J.; Moore, K.J.; Barnes, R.F. Forages, Volume 1: An Introduction to Grassland Agriculture; John Wiley & Sons: Hoboken, NJ, USA, 2017; 432p. [Google Scholar]
- Dumont, B.; Andueza, D.; Niderkorn, V.; Lüscher, A.; Porqueddu, C.; Picon-Cochard, C. A meta-analysis of climate change effects on forage quality in grasslands: Specificities of mountain and Mediterranean areas. Grass Forage Sci. 2015, 70, 239–254. [Google Scholar] [CrossRef]
- Polley, H.W.; Briske, D.D.; Morgan, J.A.; Wolter, K.; Bailey, D.W.; Brown, J.R. Climate change and North American rangelands: Trends, projections, and implications. Rangel. Ecol. Manag. 2013, 66, 493–511. [Google Scholar] [CrossRef]
- Lee, M.A.; Davis, A.P.; Chagunda, M.G.G.; Manning, P. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences 2017, 14, 1403–1417. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. AQUASTAT Website. 2016. Available online: https://www.fao.org/aquastat/en/overview/methodology/water-use (accessed on 3 November 2021).
- Heinke, J.; Lannerstad, M.; Gerten, D.; Havlík, P.; Herrero, M.; Notenbaert, A.M.O.; Hoff, H.; Müller, C. Water Use in Global Livestock Production—Opportunities and Constraints for Increasing Water Productivity. Water Resour. Res. 2020, 56, e2019WR026995. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: New York, NY, USA, 2021. [Google Scholar]
- Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef] [Green Version]
- Gerten, D.; Heinke, J.; Hoff, H.; Biemans, H.; Fader, M.; Waha, K. Global Water Availability and Requirements for Future Food Production. J. Hydrometeorol. 2011, 12, 885–899. [Google Scholar] [CrossRef]
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H.; Dokken, D.J. The Regional Impacts of Climate Change: An Assessment of Vulnerability; Cambridge University Press: New York, NY, USA, 1998. [Google Scholar]
- Tully, K.; Gedan, K.; Epanchin-Niell, R.; Strong, A.; Bernhardt, E.S.; BenDor, T.; Mitchell, M.; Kominoski, J.; Jordan, T.E.; Neubauer, S.C.; et al. The invisible flood: The chemistry, ecology, and social implications of coastal saltwater intrusion. BioScience 2019, 69, 368–378. [Google Scholar] [CrossRef]
- Reynolds, C.; Crompton, L.; Mills, J. Livestock and Climate Change Impacts in the Developing World. Outlook Agric. 2010, 39, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- McCarl, B.A.; Villavicencio, X.; Wu, X.M. Climate Change and Future Analysis: Is Stationarity Dying? Am. J. Agric. Econ. 2008, 90, 1241–1247. [Google Scholar] [CrossRef]
- Knee, B.W.; Cummins, L.J.; Walker, P.; Warner, R. Seasonal variation in muscle glycogen in beef steers. Aust. J. Exp. Agric. 2004, 44, 729–734. [Google Scholar] [CrossRef]
- Hidosa, D.; Guyo, M. Climate change effects on livestock feed resources: A review. J. Fish. Livest. Prod. 2017, 5, 259. [Google Scholar]
- Bai, Y.; Deng, X.; Zhang, Y.; Wang, C.; Liu, Y. Does climate adaptation of vulnerable households to extreme events benefit livestock production? J. Clean. Prod. 2019, 210, 358–365. [Google Scholar] [CrossRef]
- Hajek, I.L.; Knapp, A.K. Shifting seasonal patterns of water availability: Ecosystem responses to an unappreciated dimension of climate change. N. Phytol. 2021, 233, 119–125. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Global Livestock Environmental Assessment Model (GLEAM). Available online: https://www.fao.org/gleam/results/en/ (accessed on 3 November 2021).
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow. 2006. Available online: http://www.fao.org/docrep/010/a0701e/a0701e00.HTM (accessed on 24 August 2017).
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.A. Dietary Mitigation of Enteric Methane from Cattle. CAB Rev. 2009, 4. Available online: http://www.cabi.org/cabreviews/review/20093276253 (accessed on 9 September 2021). [CrossRef]
- Johnson, D.E.; Ward, G.M. Estimates of animal methane emissions. Environ. Monit. Assess. 1996, 42, 133–141. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Sustainable Food and Agriculture. Available online: http://www.fao.org/sustainability/news/detail/en/c/1274219/ (accessed on 3 November 2021).
- Alexandratos, N.; Bruinsma, J. (Eds.) World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Papers 12-03; ESA: Paris, France, 2012. [Google Scholar]
- Yitbarek, M.B. Livestock and livestock product trends by 2050: Review. Int. J. Anim. Res. 2019, 4, 30. [Google Scholar]
- Flysjö, A.; Cederberg, C.; Henriksson, M.; Ledgard, S. The interaction between milk and beef production and emissions from land use change—Critical considerations in life cycle assessment and carbon footprint studies of milk. J. Clean. Prod. 2012, 28, 134–142. [Google Scholar] [CrossRef]
- Hong, C.; Burney, J.A.; Pongratz, J.; Nabel, J.E.M.S.; Mueller, N.D.; Jackson, R.B.; Davis, S.J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef]
- Gaughan, J.B.; Sejian, V.; Mader, T.L.; Dunshea, F.R. Adaptation strategies: Ruminants. Anim. Front. 2019, 9, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Ratnakara, P.A.; Sejian, V.; Jose, V.S.; Vaswani, S.; Bagath, M.; Krishnan, G.; Beena, V.; Devi, P.I.; Varma, G.; Bhatta, R. Behavioral Responses to Livestock Adaptation to Heat Stress Challenges. 2017. Available online: http://krishi.icar.gov.in/jspui/handle/123456789/27610 (accessed on 6 September 2021).
- Chambwera, M.; Heal, G.; Dubeux, C.; Hallegatte, S.; Leclerc, L.; Markandya, A.; McCarl, B.A.; Mechler, R.; Neumann, J.E. Economics of adaptation. In Climate Change 2014: Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; Chapter 17. [Google Scholar]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [Green Version]
- Daghir, N.J. (Ed.) Poultry Production in Hot Climates, 2nd ed.; CABI: Wallingford, UK, 2008; Available online: http://www.cabi.org/cabebooks/ebook/20083163627 (accessed on 26 October 2020).
- Zumbach, B.; Misztal, I.; Tsuruta, S.; Sanchez, J.P.; Azain, M.; Herring, W.; Holl, J.; Long, T.; Culbertson, M. Genetic components of heat stress in finishing pigs: Parameter estimation. J. Anim. Sci. 2008, 86, 2076–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, I. Adaptation to climate change–exploring the potential of locally adapted breeds. Animal 2013, 7, 346–362. [Google Scholar] [CrossRef] [PubMed]
- Hayes, B.J.; Lewin, H.A.; Goddard, M.E. The future of livestock breeding: Genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 2013, 29, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [Green Version]
- Barendse, W. Climate adaptation of tropical cattle. Annu. Rev. Anim. Biosci. 2017, 5, 133–150. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Hagerman, A.D.; McCarl, B.A. Influence of Climate Factors on Spatial Distribution of Texas Cattle Breeds. Clim. Change 2013, 118, 183–195. [Google Scholar] [CrossRef]
- Mitlöhner, F.M.; Morrow, J.L.; Dailey, J.W.; Wilson, S.C.; Galyean, M.L.; Miller, M.F.; McGlone, J.J. Shade and water misting effects on behavior, physiology, performance, and carcass traits of heat-stressed feedlot cattle. J. Anim. Sci. 2001, 79, 2327–2335. [Google Scholar] [CrossRef]
- Morrison, S.R.; Givens, R.L.; Lofgreen, G.P. Sprinkling Cattle for Relief from Heat Stress. J. Anim. Sci. 1973, 36, 428–431. [Google Scholar] [CrossRef]
- Huynh, T.T.T. Heat Stress in Growing Pigs: Wageningen University and Research. 2005. Available online: https://www.proquest.com/docview/2449468017/abstract/BAD39E82C2B7419EPQ/1 (accessed on 2 August 2021).
- Schauberger, G.; Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Knauder, W.; Anders, I.; Andre, K.; et al. Global warming impact on confined livestock in buildings: Efficacy of adaptation measures to reduce heat stress for growing-fattening pigs. Clim. Change 2019, 156, 567–587. [Google Scholar] [CrossRef] [Green Version]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Mader, T.L.; Davis, M.S. Effect of management strategies on reducing heat stress of feedlot cattle: Feed and water intake1. J. Anim. Sci. 2004, 82, 3077–3087. [Google Scholar] [CrossRef] [Green Version]
- Baumgard, L.; Abuajamieh, M.; Stoakes, S.; Sanz-Fernandez, M.; Johnson, J.; Rhoads, R.; Eastridge, M. Feeding and managing cows to minimize heat stress. In Proceedings of the 23rd Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 22–23 April 2014; pp. 14–16. Available online: http://kimiyaroshd.com/wp-content/uploads/2021/06/Feeding-and-Managing-Cows-to-Minimize-Heat-Stress.pdf (accessed on 10 January 2022).
- Cottrell, J.J.; Liu, F.; Hung, A.T.; DiGiacomo, K.; Chauhan, S.S.; Leury, B.J.; Furness, J.B.; Celi, P.; Dunshea, F.R. Nutritional strategies to alleviate heat stress in pigs. Anim. Prod. Sci. 2015, 55, 1391–1402. [Google Scholar] [CrossRef]
- Dos Santos, L.S.; Pomar, C.; Campos, P.H.R.F.; da Silva, W.C.; de Gobi, J.P.; Veira, A.M.; Fraga, A.Z.; Hauschild, L. Precision feeding strategy for growing pigs under heat stress conditions1. J. Anim. Sci. 2018, 96, 4789–4801. [Google Scholar] [CrossRef]
- Mayorga, E.J.; Kvidera, S.K.; Seibert, J.T.; Horst, E.A.; Abuajamieh, M.; Al-Qaisi, M.; Lei, S.; Ross, J.W.; Johnson, C.D.; Kremer, B.; et al. Effects of dietary chromium propionate on growth performance, metabolism, and immune biomarkers in heat-stressed finishing pigs1. J. Anim. Sci. 2019, 97, 1185–1197. [Google Scholar] [CrossRef]
- Lin, H.; Jiao, H.C.; Buyse, J.; Decuypere, E. Strategies for preventing heat stress in poultry. World’s Poult. Sci. J. 2006, 62, 71–86. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of Heat Stress on Poultry Health and Performances, and Potential Mitigation Strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Levchenko, M.; Silivanova, E.; Balabanova, G.; Bikinyaeva, R. Insecticide susceptibility of house flies (Musca domestica) from a livestock farm in Tyumen region, Russia. Bulg. J. Vet. Med. 2019, 22, 213–219. [Google Scholar] [CrossRef]
- Axtell, R.; Arends, J. Ecology and management of arthropod pests of poultry. Annu. Rev. Entomol. 1990, 35, 101–126. [Google Scholar] [CrossRef]
- Battu, R.S.; Singh, B.; Kang, B.K. Contamination of liquid milk and butter with pesticide residues in the Ludhiana district of Punjab state, India. Ecotoxicol. Environ. Saf. 2004, 59, 324–331. [Google Scholar] [CrossRef]
- Axtell, R.C. Livestock integrated pest management (IPM): Principles and prospects. Syst. Approach Anim. Health Prod. 1981, 31–40. [Google Scholar]
- Megersa, B.; Markemann, A.; Angassa, A.; Ogutu, J.O.; Piepho, H.-P.; Zárate, A.V. Livestock diversification: An adaptive strategy to climate and rangeland ecosystem changes in southern Ethiopia. Hum. Ecol. 2014, 42, 509–520. [Google Scholar] [CrossRef]
- Martin, G.; Barth, K.; Benoit, M.; Brock, C.; Destruel, M.; Dumont, B. Potential of multi-species livestock farming to improve the sustainability of livestock farms: A review. Agric. Syst. 2020, 181, 102821. [Google Scholar] [CrossRef]
- Díaz-Solís, H.; Grant, W.E.; Kothmann, M.M.; Teague, W.R.; Díaz-García, J.A. Adaptive management of stocking rates to reduce effects of drought on cow-calf production systems in semi-arid rangelands. Agric. Syst. 2009, 100, 43–50. [Google Scholar] [CrossRef]
- Mu, J.E.; McCarl, B.A.; Wein, A.M. Adaptation to climate change: Changes in farmland use and stocking rate in the, U.S. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 713–730. [Google Scholar] [CrossRef] [Green Version]
- Ryschawy, J.; Choisis, N.; Choisis, J.P.; Joannon, A.; Gibon, A. Mixed crop-livestock systems: An economic and environmental-friendly way of farming? Animal 2012, 6, 1722–1730. [Google Scholar] [CrossRef] [Green Version]
- Alves, B.J.R.; Madari, B.E.; Boddey, R.M. Integrated crop–livestock–forestry systems: Prospects for a sustainable agricultural intensification. Nutr. Cycl. Agroecosyst. 2017, 108, 1–4. [Google Scholar] [CrossRef]
- Thornton, P.K.; Herrero, M. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc. Natl. Acad. Sci. USA 2010, 107, 19667–19672. [Google Scholar] [CrossRef] [Green Version]
- Havlík, P.; Valin, H.J.P.; Herrero, M.; Obersteiner, M.; Schmid, E.; Rufino, M.C.; Mosnier, A.; Thornton, P.K.; Böttcher, H.; Conant, R.T.; et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. USA 2014, 111, 3709–3714. [Google Scholar] [CrossRef] [Green Version]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [Green Version]
- Caro, D.; Kebreab, E.; Mitloehner, F.M. Mitigation of enteric methane emissions from global livestock systems through nutrition strategies. Clim. Change 2016, 137, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Rebellon, L.F.M. Waste Management: An Integrated Vision; BoD—Books on Demand: Norderstedt, Germany, 2012; 363p. [Google Scholar]
- Montes, F.; Meinen, R.; Dell, C.; Rotz, A.; Hristov, A.N.; Oh, J.; Waghorn, G.; Gerber, P.J.; Henderson, B.; Makkar, H.P.S.; et al. SPECIAL TOPICS—Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options1. J. Anim. Sci. 2013, 91, 5070–5094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaparaju, P.; Rintala, J. Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland. Renew. Energy 2011, 36, 31–41. [Google Scholar] [CrossRef]
- Battini, F.; Agostini, A.; Boulamanti, A.K.; Giuntoli, J.; Amaducci, S. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. Sci. Total Environ. 2014, 481, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Stuart, D.; Schewe, R.L.; McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the U.S. Land Use Policy 2014, 36, 210–218. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; van der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Pikaar, I.; Matassa, S.; Bodirsky, B.L.; Weindl, I.; Humpenöder, F.; Rabaey, K.; Boon, N.; Bruschi, M.; Yuan, Z.; Van Zanten, H.; et al. Decoupling Livestock from Land Use through Industrial Feed Production Pathways. Environ. Sci. Technol. 2018, 52, 7351–7359. [Google Scholar] [CrossRef]
- Thornton, P.K.; Herrero, M. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Change 2015, 5, 830–836. [Google Scholar] [CrossRef]
- Karimi, V.; Karami, E.; Keshavarz, M. Vulnerability and Adaptation of Livestock Producers to Climate Variability and Change. Rangel. Ecol. Manag. 2018, 71, 175–184. [Google Scholar] [CrossRef]
Category | Sub-Category | Number of Papers Cited |
---|---|---|
By topic | Climate change impacts and adaptation | 95 |
Livestock emissions and mitigation | 27 | |
Comprehensive treatment | 31 | |
By year | Before 2000 | 12 |
2000 to 2010 | 39 | |
2011 to 2021 | 102 | |
By region | North America | 42 |
Europe | 14 | |
Asia | 8 | |
Africa and Australia | 8 | |
Region not specified | 40 | |
Multi-region/global | 41 | |
By livestock species | Ruminants | 41 |
Hogs | 15 | |
Poultry | 18 | |
Not livestock | 32 | |
Multiple livestock | 47 |
Impact Type | Observed Impacts | Major Influential Factors |
---|---|---|
Direct Impact | Reduced feed intake | Increased temperature (heat stress) |
Decline in animal milk and meat production | ||
Decreased reproductive performance | ||
Negatively affected immune functions | ||
Increased mortality | ||
Indirect Impact | Changes in feedstuff crop yields | Elevated CO2 level |
Changes in pasture composition and forage production | ||
Changes in forage quality | Increased temperature and elevated CO2 level | |
Shrinking water availability and increasing water use | Increased temperature | |
Larger seasonal variation in resource availability | More frequent extreme climate events | |
Increased disease, pest, and parasite stress | Increased temperature and changes in the precipitation pattern |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. https://doi.org/10.3390/atmos13010140
Cheng M, McCarl B, Fei C. Climate Change and Livestock Production: A Literature Review. Atmosphere. 2022; 13(1):140. https://doi.org/10.3390/atmos13010140
Chicago/Turabian StyleCheng, Muxi, Bruce McCarl, and Chengcheng Fei. 2022. "Climate Change and Livestock Production: A Literature Review" Atmosphere 13, no. 1: 140. https://doi.org/10.3390/atmos13010140
APA StyleCheng, M., McCarl, B., & Fei, C. (2022). Climate Change and Livestock Production: A Literature Review. Atmosphere, 13(1), 140. https://doi.org/10.3390/atmos13010140