WRF Sensitivity for Seasonal Climate Simulations of Precipitation Fields on the CORDEX South America Domain
Abstract
:1. Introduction
2. Data and Methodology
2.1. Model Configuration and Numerical Experiments
2.2. Model Evaluation
3. Results
3.1. Seasonal Analysis
3.2. Evaluation of Sub-Domain Annual Cycle
3.2.1. Amazon Basin (AMZN + AMZS)
3.2.2. Northeast of Brazil (NEBN + NEBS)
3.2.3. South of Brazil and Uruguay (SURU)
3.2.4. Peru/Equator (PEQU), Chaco (CHAC), and Southeast of Brazil (SUDE)
3.2.5. Average over All Domains (TOTL)
4. Best Sub-Domain Settings—Taylor Diagrams Analysis
4.1. Amazonia
4.2. Northeast of Brazil
4.3. Andes
4.4. South of Brazilian and Uruguay
4.5. Southeast Brazil
4.6. Chaco
4.7. All Sub-Domains (TOTL)
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solman, S.A. Regional climate modeling over South America: A review. Adv. Meteorol. 2013, 2013, 504357. [Google Scholar] [CrossRef]
- Grimm, A.M.; Saboia, J.P.J. Interdecadal variability of the South American precipitation in the monsoon season. J. Clim. 2015, 28, 755–775. [Google Scholar] [CrossRef]
- Misra, V.; Dirmeyer, P.A.; Kirtman, B.P. Dynamic Downscaling of Seasonal Simulations over South America. J. Clim. 2003, 16, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Mearns, L.O. Introduction to special section: Regional climate modeling revisited. J. Geophys. Res. Atmos. 1999, 104, 6335–6352. [Google Scholar] [CrossRef]
- Giorgi, F.; Bi, X.; Pal, J. Mean, interannual variability and trends in a regional climate change experiment over Europe. II: Climate change scenarios (2071–2100). Clim. Dyn. 2004, 23, 839–858. [Google Scholar] [CrossRef]
- Solman, S.A.; Cabré, M.F.; Núñez, M.N. Regional climate change experiments over southern South America. I: Present climate. Clim. Dyn. 2007, 30, 533–552. [Google Scholar] [CrossRef]
- Giorgi, F.; Jones, C.; Asrar, G. Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull. 2009, 58, 175–183. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; Tech. Rep. TN-475+STR; University Corporation for Atmospheric Research (NCAR): Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Boulanger, J.P.; Brasseur, G.; Carril, A.F.; De Castro, M.; Degallier, N.; Ereño, C.; Le Treut, H.; Marengo, J.A.; Menendez, C.G.; Nuñez, M.N.; et al. A Europe—South America network for climate change assessment and impact studies. Clim. Chang. 2010, 98, 307–329. [Google Scholar] [CrossRef]
- Marengo, J.A.; Nobre, C.A.; Salazar, L.F. Regional Climate Change Scenarios in South America in the Late XXI Century: Projections and Expected Impacts. Nov. Act. Leopol. 2010, 112, 384. [Google Scholar]
- Pesquero, J.F.; Chou, S.C.; Nobre, C.A.; Marengo, J.A. Climate downscaling over South America for 1961–1970 using the Eta Model. Theor. Appl. Clim. 2010, 99, 75–93. [Google Scholar] [CrossRef]
- Chou, S.C.; Marengo, J.A.; Lyra, A.A.; Sueiro, G.; Pesquero, J.F.; Alves, L.M.; Kay, G.; Betts, R.; Chagas, D.J.; Gomes, J.L.; et al. Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim. Dyn. 2012, 38, 635–653. [Google Scholar] [CrossRef]
- Krüger, L.F.; da Rocha, R.P.; Reboita, M.S.; Ambrizzi, T. RegCM3 nested in HadAM3 scenarios A2 and B2: Projected changes in extratropical cyclogenesis, temperature and precipitation over the South Atlantic Ocean. Clim. Chang. 2012, 113, 599–621. [Google Scholar] [CrossRef]
- Menéndez, C.G.; de Castro, M.; Boulanger, J.P.; D’onofrio, A.; Sanchez, E.; Sörensson, A.A.; Blazquez, J.; Elizalde, A.; Jacob, D.; Le Treut, H.; et al. Downscaling extreme month-long anomalies in southern South America. Clim. Chang. 2010, 98, 379–403. [Google Scholar] [CrossRef]
- Carril, A.F.; Menéndez, C.G.; Remedio, A.R.C.; Robledo, F.; Sörensson, A.; Tencer, B.; Boulanger, J.P.; de Castro, M.; Jacob, D.; Le Treut, H.; et al. Performance of a multi-RCM ensemble for South Eastern South America. Clim. Dyn. 2012, 39, 2747–2768. [Google Scholar] [CrossRef]
- da Rocha, R.P.; Reboita, M.S.; Dutra, L.M.M.; Llopart, M.P.; Coppola, E. Interannual variability associated with ENSO: Present and future climate projections of RegCM4 for South America-CORDEX domain. Clim. Chang. 2014, 125, 95–109. [Google Scholar] [CrossRef]
- Llopart, M.; Coppola, E.; Giorgi, F.; Da Rocha, R.P.; Cuadra, S.V. Climate change impact on precipitation for the Amazon and La Plata basins. Clim. Chang. 2014, 125, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Llopart, M.; Reboita, M.S.; da Rocha, R.P. Assessment of multi-model climate projections of water resources over South America CORDEX domain. Clim. Dyn. 2020, 55, 99–116. [Google Scholar] [CrossRef]
- Schumacher, V.; Fernández, A.; Justino, F.; Comin, A. WRF High Resolution Dynamical Downscaling of Precipitation for the Central Andes of Chile and Argentina. Front. Earth Sci. 2020, 8, 328. [Google Scholar] [CrossRef]
- Bettolli, M.L.; Solman, S.A.; da Rocha, R.P.; Llopart, M.; Gutierrez, J.M.; Fernández, J.; Olmo, M.E.; Lavin-Gullon, A.; Chou, S.C.; Rodrigues, D.C.; et al. The CORDEX flagship pilot study in southeastern South America: A comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events. Clim. Dyn. 2021, 56, 1589–1608. [Google Scholar] [CrossRef]
- Ambrizzi, T.; Reboita, M.S.; da Rocha, R.P.; Llopart, M. The state of the art and fundamental aspects of regional climate modeling in South America. Ann. N. Y. Acad. Sci. 2019, 1436, 98–120. [Google Scholar] [CrossRef]
- Baker, J.C.; Castilho de Souza, D.; Kubota, P.Y.; Buermann, W.; Coelho, C.A.; Andrews, M.B.; Gloor, M.; Garcia-Carreras, L.; Figueroa, S.N.; Spracklen, D.V. An Assessment of Land—Atmosphere Interactions over South America Using Satellites, Reanalysis, and Two Global Climate Models. J. Hydrometeorol. 2021, 22, 905–922. [Google Scholar] [CrossRef]
- Silva Dias, P.L.; Schubert, W.H.; DeMaria, M. Large-scale response of the tropical atmosphere to transient convection. J. Atmos. Sci. 1983, 40, 2689–2707. [Google Scholar] [CrossRef]
- Lin, W.; Liu, Y.; Vogelmann, A.M.; Fridlind, A.; Endo, S.; Song, H.; Feng, S.; Toto, T.; Li, Z.; Zhang, M. RACORO continental boundary layer cloud investigations: 3. Separation of parameterization biases insingle-column model CAM5 simulations of shallow cumulus. J. Geophys. Res. Atmos. 2015, 120, 6015–6033. [Google Scholar] [CrossRef] [Green Version]
- Müller, O.V.; Lovino, M.A.; Berbery, E.H. Evaluation of WRF Model Forecasts and Their Use for Hydroclimate Monitoring over Southern South America. Weather Forecast. 2016, 31, 1001–1017. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.M.; Candido, L.A.; Silva, J.T.; Andreoli, R.V.; Kayano, M.T.; Manzi, A.O.; Souza, R.A.F.D.; Souza, E.B.D.; Vieira, S.D.O. Avaliação da Habilidade do Modelo WRF em Representar a Precipitação na Amazônia Usando Diferentes Escalas. Rev. Bras. Meteorol. 2019, 34, 255–273. [Google Scholar] [CrossRef] [Green Version]
- Politi, N.; Nastos, P.T.; Sfetsos, A.; Vlachogiannis, D.; Dalezios, N.R. Evaluation of the AWR-WRF model configuration at high resolution over the domain of Greece. Atmos. Res. 2018, 208, 229–245. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Uppala, S.M.; Kallberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.D.C.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Beck, V.; Gerbig, C.; Koch, T.; Bela, M.M.; Longo, K.M.; Freitas, S.R.; Kaplan, J.O.; Prigent, C.; Bergamaschi, P.; Heimann, M. WRF-Chem simulations in the Amazon region during wet and dry season transitions: Evaluation of methane models and wetland inundation maps. Atmos. Chem. Phys. 2013, 13, 7961–7982. [Google Scholar] [CrossRef] [Green Version]
- Betts, A.K.; Miller, M.J. The Betts–Miller scheme. The representation of cumulus convection in numerical models. Am. Meteor. Soc. 1993, 24, 107–121. [Google Scholar]
- Janjíc, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Monin, A.; Obukhov, A. Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst. 1954, 151, 163–187. [Google Scholar]
- Janjic, Z.I. The Surface Layer Parameterization in the NCEP Eta Model. In Research Activities in Atmospheric and Oceanic Modelling; WMO: Geneva, Switzerland, 1996; pp. 4.16–4.17. [Google Scholar]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State—NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S.; Fritsch, J.M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2748–2802. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain-Fritsch convective parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Devenyi, D. A Generalized Approach to Parameterizing Convection Combining Ensemble and Data Assimilation Techniques. Geophys. Res. Lett. 2002, 29, 381–384. [Google Scholar] [CrossRef] [Green Version]
- Janjic, Z.I. Comments on Development and Evaluation of a Convective Scheme for Use in Climate Models. J. Atmos. Sci. 2000, 57, 3686. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Collins, W.D.; Rasch, P.J.; Boville, B.A.; Hack, J.J.; McCaa, J.R.; Williamson, D.L.; Briegleb, B.P.; Bitz, C.M.; Lin, S.J.; Zhang, M. The Formulation and Atmospheric Simulation of the Community Atmosphere Model, Version 3 (CAM3). J. Clim. 2006, 19, 2144–2161. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Lim, J.O.J. The WRF Single Moment 6 Class Microphysics Scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Lim, K.S.S.; Hong, S.Y. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Boers, N.; Rheinwalt, A.; Bookhagen, B.; Barbosa, H.M.J.; Marwan, N.; Marengo, J.; Kurths, J. The South American rain-fall dipole: A complex networkanalysis of extreme events. Geophys. Res. Lett. 2014, 41, 7397–7405. [Google Scholar] [CrossRef]
- Rozante, J.R.; Moreira, D.S.; de Goncalves, L.G.G.; Vila, D.A. Combining TRMM and Surface Observations of Precipitation: Technique and Validation over South America. Weather Forecast. 2010, 25, 885–894. [Google Scholar] [CrossRef] [Green Version]
- Rozante, J.R.; Vila, D.A.; Barboza Chiquetto, J.; Fernandes, A.D.A.; Souza Alvim, D. Evaluation of TRMM/GPM Blended Daily Products over Brazil. Remote Sens. 2018, 10, 882. [Google Scholar] [CrossRef] [Green Version]
- Afonso, J.M.d.S.; Vila, D.A.; Gan, M.A.; Quispe, D.P.; Barreto, N.d.J.d.C.; Huamán Chinchay, J.H.; Palharini, R.S.A. Precipitation Diurnal Cycle Assessment of Satellite-Based Estimates over Brazil. Remote Sens. 2020, 12, 2339. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Figueroa, S.; Bonatti, J.; Kubota, P.Y.; Grell, G.; Morrison, H.; Barros, S.; Fernandez, J.; Ramirez, E.; Siqueira, L.; Luzia, G.; et al. The brazilian global atmospheric model american meteorological society (BAM). Performance for Tropical Rainfall forecasting and sensitivity to convective scheme and horizontal resolution. Weather Forecast. 2016, 31, 1547–1572. [Google Scholar] [CrossRef]
- Chou, S.C.; Dereczynski, C.; Gomes, J.L.; Pesquero, J.F.; AVILA, A.; Resende, N.C.; Alves, L.F.; Ruiz-Cardenas, R.; Souza, C.R.D.; Bustamante, J.F.F. Ten-year seasonal climate reforecasts over South America using the Eta Regional Climate Model. An. Acad. Bras. Cienc. 2020, 92, e20181242. [Google Scholar] [CrossRef]
- Coelho, C.A.S.; de Souza, D.C.; Kubota, P.Y.; Costa, S.M.; Menezes, L.; Guimarães, B.S.; Figueroa, S.N.; Bonatti, J.P.; Cavalcanti, I.F.; Sampaio, G.; et al. Evaluation of climate simulations produced with the Brazilian global atmospheric model version 1.2. Clim. Dyn. 2020, 56, 873–898. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Saeed, F.; Saeed, S.; Ismail, M.; Ehsan, M.A.; Diallo, I.; O’Brien, E.; Ashfaq, M.; Martínez-Castro, D.; et al. Projected changes in temperature and precipitation over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Syst. Environ. 2021, 5, 1–24. [Google Scholar] [CrossRef]
- Kousky, V.E. Diurnal rainfall variation in Northeast Brazil. Mon. Weather Rev. 1980, 108, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Gomes, H.B.; Ambrizzi, T.; Herdies, D.L.; Hodges, K.; Pontes da Silva, B.F. Easterly Wave Disturbances over Northeast Brazil: An Observational Analysis. Adv. Meteorol. 2015, 2015, 176238. [Google Scholar] [CrossRef] [Green Version]
- Gomes, H.B.; Ambrizzi, T.; Pontes da Silva, B.F.; Hodges, K.; Dias, P.L.S.; Herdies, D.L.; Silva, M.C.L.; Gomes, H.B. Climatology of easterly wave disturbances over the tropical South Atlantic. Clim. Dyn. 2019, 53, 1393–1411. [Google Scholar] [CrossRef] [Green Version]
- Souza, E.B.; Ambrizzi, T. Pentad precipitation climatology over Brazil and the associated atmospheric mechanisms. Climanálise–Boletim de Monitoramento e Análise Climática. Rev. Climanálise 2003, 1, 1–20. [Google Scholar]
- Itterly, K.F.; Taylor, P.C.; Dodson, J.B.; Tawfik, A.B. On the sensitivity of the diurnal cycle in the Amazon to convective intensity. J. Geophys. Res. Atmos. 2016, 121, 8186–8208. [Google Scholar] [CrossRef]
- Solman, S.A.; Pessacg, N.L. Evaluating uncertainties in regional climate simulations over South America at the seasonal scale. Clim. Dyn. 2012, 39, 59–76. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, H.B.; Lemos da Silva, M.C.; Barbosa, H.d.M.J.; Ambrizzi, T.; Baltaci, H.; Gomes, H.B.; Silva, F.D.d.S.; Costa, R.L.; Figueroa, S.N.; Herdies, D.L.; et al. WRF Sensitivity for Seasonal Climate Simulations of Precipitation Fields on the CORDEX South America Domain. Atmosphere 2022, 13, 107. https://doi.org/10.3390/atmos13010107
Gomes HB, Lemos da Silva MC, Barbosa HdMJ, Ambrizzi T, Baltaci H, Gomes HB, Silva FDdS, Costa RL, Figueroa SN, Herdies DL, et al. WRF Sensitivity for Seasonal Climate Simulations of Precipitation Fields on the CORDEX South America Domain. Atmosphere. 2022; 13(1):107. https://doi.org/10.3390/atmos13010107
Chicago/Turabian StyleGomes, Helber Barros, Maria Cristina Lemos da Silva, Henrique de Melo Jorge Barbosa, Tércio Ambrizzi, Hakki Baltaci, Heliofábio Barros Gomes, Fabrício Daniel dos Santos Silva, Rafaela Lisboa Costa, Silvio Nilo Figueroa, Dirceu Luis Herdies, and et al. 2022. "WRF Sensitivity for Seasonal Climate Simulations of Precipitation Fields on the CORDEX South America Domain" Atmosphere 13, no. 1: 107. https://doi.org/10.3390/atmos13010107
APA StyleGomes, H. B., Lemos da Silva, M. C., Barbosa, H. d. M. J., Ambrizzi, T., Baltaci, H., Gomes, H. B., Silva, F. D. d. S., Costa, R. L., Figueroa, S. N., Herdies, D. L., & Pauliquevis Júnior, T. M. (2022). WRF Sensitivity for Seasonal Climate Simulations of Precipitation Fields on the CORDEX South America Domain. Atmosphere, 13(1), 107. https://doi.org/10.3390/atmos13010107