SCAMPER Monitoring Platform to Measure PM10 Emission Rates from Unpaved Roads in Real-Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. SCAMPER Description
- Tow vehicle and Trailer: A 2006 Ford Expedition was used to tow a small (3.1 m wide by 2 m long) open flatbed trailer. The trailer was fitted with a 1 m hitch extension to place the rear sampling inlet 3 m behind the tow vehicle at a height of 0.8 m above the ground on the centerline of the trailer. This position was found to give PM10 concentrations that were representative of the mean concentration of PM10 in the wake of the tow vehicle [24].
- PM10 Sensors: Thermo Systems Inc. (Shoreville, MN, USA) Model 8520 DustTrak™ optical PM sensors with PM10 inlets.
- Isokinetic Sampling Inlets: A custom made inlet where the inlet speed is matched to the air speed by a PC that monitors the static air pressure and adjusts the inlet pressure to match it by controlling a vacuum pump (mounted on the trailer). This condition creates a no-pressure-drop inlet; therefore, the sampled air stream has the same energy as the ambient air stream.
- Global Positioning System: Garmin (Kansas City, MO, USA) Map76 GPS to determine vehicle speed and location.
- Data Collection System: A laptop PC was used to collect GPS and DustTrak™ data at 1s intervals in addition to controlling the inlet vacuum pumps.
2.2. Public Unpaved Road PM10 Emission Measurements
2.3. Mine Haul Road PM10 Emission Measurements
3. Results
3.1. Arizona Public Roads
3.1.1. SR 88
3.1.2. SR 288
3.2. Mine Haul Road
3.3. Comparison of DustTrak™ with Filter Samples
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, C.A.; Thun, M.J.; Namboodiri, M.M.; Dockery, D.W.; Evans, J.S.; Speizer, F.E.; Heath, C.W. Particulate Air Pollution as a Predictor of Mortality in a Prospective Study of U.S. Adults. Am. J. Respir. Crit. Care Med. 1995, 151, 669–674. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.; Lowenthal, D.H.; Solomon, P.A.; Magliano, K.L.; Ziman, S.D.; Richards, L.W. PM10 source apportionment in California’s San Joaquin valley. Atmos. Environ. Part A Gen. Top. 1992, 26, 3335–3354. [Google Scholar] [CrossRef]
- Venkatram, A.; Fitz, D.; Bumiller, K.; Du, S.; Boeck, M.; Ganguly, C. Using a dispersion model to estimate emission rates of particulate matter from paved roads. Atmos. Environ. 1999, 33, 1093–1102. [Google Scholar] [CrossRef]
- Kauhaniemi, M.; Kukkonen, J.; Härkönen, J.; Nikmo, J.; Kangas, L.; Omstedt, G.; Ketzel, M.; Kousa, A.; Haakana, M.; Karppinen, A. Evaluation of a road dust suspension model for predicting the concentrations of PM10 in a street canyon. Atmos. Environ. 2011, 45, 3646–3654. [Google Scholar] [CrossRef]
- Denby, B.; Sundvor, I.; Johansson, C.; Pirjola, L.; Ketzel, M.; Norman, M.; Kupiainen, K.; Gustafsson, M.; Blomqvist, G.; Omstedt, G. A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 1: Road dust loading and suspension modelling. Atmos. Environ. 2013, 77, 283–300. [Google Scholar] [CrossRef]
- Abu-Allaban, M.; Gillies, J.A.; Gertler, A.W. Application of a multi-lag regression approach to determine on-road PM10 and PM2.5 emission rates. Atmos. Environ. 2003, 37, 5157–5164. [Google Scholar] [CrossRef]
- Abu-Allaban, M.; Gillies, J.A.; Gertler, A.W.; Clayton, R.; Proffitt, D. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles. Atmos. Environ. 2003, 37, 5283–5293. [Google Scholar] [CrossRef]
- Kumar, A.V.; Patil, R.; Nambi, K. A composite receptor and dispersion model approach for estimation of effective emission factors for vehicles. Atmos. Environ. 2004, 38, 7065–7072. [Google Scholar] [CrossRef]
- Claiborn, C.; Mitra, A.; Adams, G.; Bamesberger, L.; Allwine, G.; Kantamaneni, R.; Lamb, B.; Westberg, H. Evaluation of PM10 emission rates from paved and unpaved roads using tracer techniques. Atmos. Environ. 1995, 29, 1075–1089. [Google Scholar] [CrossRef]
- Kantamaneni, R.; Adams, G.; Bamesberger, L.; Allwine, E.; Westberg, H.; Lamb, B.; Claiborn, C. The measurement of roadway PM10 emission rates using atmospheric tracer ratio techniques. Atmos. Environ. 1996, 30, 4209–4223. [Google Scholar] [CrossRef]
- Ferm, M.; Sjöberg, K. Concentrations and emission factors for PM2.5 and PM10 from road traffic in Sweden. Atmos. Environ. 2015, 119, 211–219. [Google Scholar] [CrossRef]
- Sehmel, G. Particle resuspension from an asphalt road caused by car and truck traffic. Atmos. Environ. 1973, 7, 291–309. [Google Scholar] [CrossRef]
- Cowherd, C., Jr.; Englehart, P.J. Paved Road Particulate Emissions; U.S. Environmental Protection Agency Document EPA-600/7-84-077; U.S. Environmental Protection Agency: Washington, DC, USA, 1984.
- Xueli, J.; Dahe, J.; Simei, F.; Hui, Y.; Pinjing, H.; Boming, Y.; Zhongliang, L.; Chang, F. Road dust emission inventory for the metropolitan area of Shanghai City. Atmos. Environ. Part A Gen. Top. 1993, 27, 1735–1741. [Google Scholar] [CrossRef]
- Veranth, J.M.; Pardyjak, E.R.; Seshadri, G. Vehicle-generated fugitive dust transport: Analytic models and field study. Atmos. Environ. 2003, 37, 2295–2303. [Google Scholar] [CrossRef]
- Gillies, J.; Etyemezian, V.; Kuhns, H.; Nikolic, D.; Gillette, D. Effect of vehicle characteristics on unpaved road dust emissions. Atmos. Environ. 2005, 39, 2341–2347. [Google Scholar] [CrossRef]
- Qi, J.; Huang, Y.; Al-Ansari, N.; Knutsson, S. Dust Emission from unpaved roads in Luleå, Sweden. J. Earth Sci. Geotech. Eng. 2013, 3, 1–13. [Google Scholar]
- Fitz, D.R. Measurements on PM10 and PM2.5 Emission Factors from Paved Roads in California. Final Report to the California Air Resources Board under Contract No. 98-723. June 2001. Available online: https://ww2.arb.ca.gov/sites/default/files/classic/research/apr/reports/l819.pdf (accessed on 30 September 2021).
- Kuhns, H.; Etyemezian, V.; Landwehr, D.; MacDougall, C.; Pitchford, M.; Green, M. Testing re-entrained aerosol kinetic emissions from roads (TRAKER): A new approach to infer silt loading on roadways. Atmos. Environ. 2001, 35, 2815–2825. [Google Scholar] [CrossRef]
- Pirjola, L.; Johansson, C.; Kupiainen, K.; Stojiljkovic, A.; Karlsson, H.; Hussein, T. Road Dust Emissions from Paved Roads Measured Using Different Mobile Systems. J. Air Waste Manag. Assoc. 2010, 60, 1422–1433. [Google Scholar] [CrossRef] [Green Version]
- Mathissen, M.; Scheer, V.; Kirchner, U.; Vogt, R.; Benter, T. Non-exhaust PM emission measurements of a light duty vehicle with a mobile trailer. Atmos. Environ. 2012, 59, 232–242. [Google Scholar] [CrossRef]
- Kunz, B.K.; Green, N.S.; Albers, J.L.; Wildhaber, M.L.; Little, E.E. Use of Real-Time Dust Monitoring and Surface Condition to Evaluate Success of Unpaved Road Treatments. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 195–204. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. AP-42 Compilation of Air Emission Factors, Section 13.2.2 Unpaved Roads; U.S. Environmental Protection Agency: Washington, DC, USA, 2006.
- U.S. Environmental Protection Agency. AP-42 Compilation of Air Emission Factors, Section 13.2.1 Paved Roads; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Fitz, D.R.; Bumiller, K.; Bufalino, C.; James, D.E. Real-time PM10 emission rates from paved roads by measurement of concentrations in the vehicle’s wake using on-board sensors. Part 1. SCAMPER method characterization. Atmos. Environ. 2020, 230, 117483. [Google Scholar] [CrossRef]
- Fitz, D.R.; Bumiller, K.; Etyemesian, V.; Kuhns, H.D.; Gillies, J.A.; Nikolich, G.; James, D.E.; Langston, R.; Merle, R.S., Jr. Real-time PM10 emission rates from paved roads by measurement of concentrations in the vehicle’s wake using on-board sensors. Part 2. Comparison of SCAMPER, TRAKER™, flux measurements, and AP-42 silt sampling under controlled conditions. Atmos. Environ. 2021, 256, 118453. [Google Scholar] [CrossRef]
Segment, Direction | Circuit1 | Circuit2 | Circuit3 | Overall Means |
---|---|---|---|---|
Treated Time Eastbound | 09:41–10:06 | 15:55–16:18 | ||
Treated Mean ER Eastbound, mg/m | 8.9 | 8.1 | 8.5 | |
Treated Mean Speed Eastbound, km/h | 31.7 | 32.1 | 31.9 | |
Untreated Time Eastbound, MST | 10:07–10:19 | 12:26–12:36 | 16:25–16:35 | |
Untreated Mean ER Eastbound, mg/m | 51.6 | 60.5 | 42.8 | 51.6 |
Untreated Mean Speed Eastbound, km/h | 27.3 | 30.0 | 31.3 | 29.5 |
Untreated Time Westbound, MST | 1034–10:37 | 12:38–12:50 | 16:38–16:47 | |
Untreated Mean ER Westbound, mg/m | 47.2 | 61.4 | 63.0 | 57.2 |
Untreated Mean Speed Westbound, km/h | 28.0 | 26.6 | 33.5 | 29.3 |
Treated Time Westbound, MST | 10:39–11:02 | 12:51–13:27 | 16:54–17:15 | |
Treated Mean ER Westbound, mg/m | 8.5 | 13.8 | 13.3 | 11.9 |
Treated Mean Speed Westbound, km/h | 30.4 | 30.2 | 33.3 | 31.3 |
Paved Road Westbound Time, MST | 11:03–11:13 | 13:29–13:38 | 17:16–1725 | |
Paved ER Westbound to Tortilla Flats, mg/m | 0.3 | 0.7 | 0.3 | 0.4 |
Paved Speed Westbound to Tortilla Flats, km/h | 52.9 | 52.6 | 53.5 | 53.0 |
Paved Road Eastbound Time, MST | 11:42–11:52 | |||
Paved ER Eastbound from Tortilla Flats, mg/m | 0.3 | 0.3 | ||
Paved Speed Eastbound from Tortilla Flats, km/h | 50.9 | 50.9 | ||
Untreated Overall Mean Emission Rate, mg/m | 54.4 | |||
Treated Overall Mean Emission Rate, mg/m | 10.5 | |||
Paved Road Overall Mean Emission Rate, mg/m | 0.4 |
Direction, Segment | Circuit1 | Circuit2 | Circuit3 | Circuit4 | Circuit 5 | Overall Means |
---|---|---|---|---|---|---|
South Untreated Time Northbound, MST | 10:05–10:13 | 10:53–10:56 | 11:17–11:18 | 11:45–11:46 | 12:08–12:10 | |
South Untreated Mean ER Northbound, mg/m | 74.4 | 29.4 | 22.7 | ND* | ND | 42.2 |
South Untreated Mean Speed Northbound, km/h | 30.5 | 21.2 | 20.1 | NA | NA | 23.9 |
Treated Time Northbound, MST | 10:31–10:37 | 10:57–11:03 | 11:20–11:26 | 11:40–11:52 | 12:11–12:17 | |
Treated Mean ER Northbound, mg/m | 0.5 | 0.4 | 0.4 | ND* | 0.5 | 0.4 |
Treated Mean Speed Northbound, km/h | 49.0 | 51.3 | 52.6 | NA | 53.6 | 51.0 |
North Untreated Time Northbound, MST | 10:38–10:40 | 11:04–11:06 | 11:26–11:28 | 11:52–11:54 | 12:19–12:20 | |
North Untreated Mean ER Northbound, mg/m | 26.8 | 28.7 | 40.2 | ND* | 39.3 | 31.9 |
North Untreated Mean Speed Northbound, km/h | 21.7 | 42.6 | 22.5 | NA | 25.1 | 28.9 |
North Untreated Time Southbound, MST | 10:40–10:43 | 11:07–11:08 | 11:35–11:36 | 11:57–11:59 | 12:23–12:24 | |
North Untreated Mean ER Southbound, mg/m | 48.9 | 40.3 | ND* | 39.8 | 45.4 | 43.0 |
North Untreated Mean Speed Southbound, km/h | 24.3 | 24.4 | NA | 24.3 | 25.1 | 24.3 |
Treated Time Southbound, MST | 10:45–10:52 | 11:09–11:15 | 11:37–11:42 | 12:00–12:05 | 12:26–12:31 | |
Treated Mean ER Southbound, mg/m | 0.7 | 0.7 | ND* | 0.9 | ND | 0.8 |
Treated Mean Speed Southbound, km/h | 49.4 | 51.9 | NA | 55.8 | NA | 52.4 |
South Untreated Time Southbound, MST | 10:52–10:53 | 11:15–11:16 | 11:43–11:44 | 12:07–12:08 | 12:32–12:33 | |
South Untreated ER Southbound, mg/m | 16.4 | 18.0 | ND* | ND | ND | 17.2 |
South Untreated Speed Southbound, km/h | 20.5 | 20.7 | NA | NA | NA | 20.6 |
Untreated Overall Mean Emission Rate, mg/m | 36.2 | |||||
Treated Overall Mean Emission Rate, mg/m | 0.6 | |||||
Untreated Overall Mean Speed, km/h | 24.8 | |||||
Treated Overall Mean Speed, km/h | 51.9 |
Time (Local) | Direction | Emission Rate mg m−1 | Std Dev Emission Rate mg m−1 | Mean Speed km h−1 |
---|---|---|---|---|
Day 1 | ||||
10:47 | NW | 0.22 | 0.82 | 67 |
11:05 | NW | 0.09 | 0.12 | 70 |
12:02 | NW | 0.08 | 0.78 | 73 |
12:19 | NW | 0.17 | 0.92 | 75 |
12:39 | NW | 0.63 | 0.63 | 75 |
10:57 | SE | 0.01 | 0.15 | 69 |
11:15 | SE | 0.15 | 0.35 | 76 |
12:11 | SE | 0.15 | 1.16 | 76 |
12:33 | SE | 0.46 | 0.67 | 75 |
12:51 | SE | 0.68 | 1.01 | 77 |
Day 2 | ||||
12:46 | NW | 0.91 | 2.37 | 67 |
13:05 | NW | 1.21 | 3.58 | 64 |
13:23 | NW | 0.76 | 1.38 | 71 |
12:55 | SE | 1.19 | 3.81 | 70 |
13:15 | SE | 0.88 | 2.84 | 72 |
13:33 | SE | 0.61 | 1.84 | 71 |
Mean | NW | 0.51 | 70 | |
Std Dev | NW | 0.43 | 4 | |
Mean | SE | 0.52 | 73 | |
Std Dev | SE | 0.41 | 3 |
Date/Time (Local) | Direction | Emission Rate mg m−1 | Std Dev Emission Rate mg m−1 |
---|---|---|---|
Day 1 | |||
8:26 | NW | 1.5 | 3.2 |
9:13 | NW | 3.9 | 11.8 |
10:00 | NW | 2.6 | 7.9 |
10:47 | NW | 4.6 | 7.1 |
13:18 | NW | 8.2 | 3.1 |
16:02 | NW | 4.4 | 8.4 |
8:48 | SE | 4.9 | 13.7 |
9:35 | SE | 0.5 | 0.6 |
10:24 | SE | 1.4 | 3.1 |
13:41 | SE | 13.8 | 18.9 |
15:20 | SE | 12.9 | 8.2 |
16:26 | SE | 8.4 | 7.8 |
Day 2 | |||
8:25 | NW | 0.1 | 0.3 |
10:49 | NW | 1.3 | 3.6 |
11:36 | NW | 3.9 | 7.0 |
13:54 | NW | 2.9 | 2.8 |
14:51 | NW | 3.5 | 3.6 |
11:13 | SE | 2.9 | 5.8 |
11:58 | SE | 10.7 | 7.1 |
14:23 | SE | 15.9 | 22.4 |
15:29 | SE | 11.2 | 14.2 |
Day 3 | |||
7:22 | NW | 0.6 | 0.7 |
8:34 | NW | 1.6 | 2.1 |
9:36 | NW | 2.7 | 3.6 |
11:22 | NW | 4.7 | 4.0 |
12:21 | NW | 11.2 | 7.0 |
12:57 | NW | 10.7 | 5.9 |
8:04 | SE | 1.0 | 1.1 |
9:05 | SE | 2.1 | 2.0 |
10:07 | SE | 4.1 | 4.9 |
11:53 | SE | 13.3 | 22.6 |
12:40 | SE | 6.0 | 6.5 |
13:27 | SE | 7.3 | 7.7 |
Mean NW | 4.0 | ||
Std Dev | 3.2 | ||
Mean SE | 7.3 | ||
Std Dev | 5.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitz, D.R.; Bumiller, K. SCAMPER Monitoring Platform to Measure PM10 Emission Rates from Unpaved Roads in Real-Time. Atmosphere 2021, 12, 1301. https://doi.org/10.3390/atmos12101301
Fitz DR, Bumiller K. SCAMPER Monitoring Platform to Measure PM10 Emission Rates from Unpaved Roads in Real-Time. Atmosphere. 2021; 12(10):1301. https://doi.org/10.3390/atmos12101301
Chicago/Turabian StyleFitz, Dennis R., and Kurt Bumiller. 2021. "SCAMPER Monitoring Platform to Measure PM10 Emission Rates from Unpaved Roads in Real-Time" Atmosphere 12, no. 10: 1301. https://doi.org/10.3390/atmos12101301
APA StyleFitz, D. R., & Bumiller, K. (2021). SCAMPER Monitoring Platform to Measure PM10 Emission Rates from Unpaved Roads in Real-Time. Atmosphere, 12(10), 1301. https://doi.org/10.3390/atmos12101301