Statistical Evidence for Managing Forest Density in Consideration of Natural Volatile Organic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Measurement Methods
2.2.1. Natural Volatile Organic Compounds (NVOCs)
2.2.2. Microclimate Environments
2.2.3. Calibration Curve
2.3. Analysis Methods
3. Results
3.1. Characteristics of NVOCs at P. Koraiensis Forests by Forest Density
3.2. Characteristics of Microclimate Environments at P. Koraiensis Forests by Forest Density
3.3. Correlation Analysis of NVOCs and Microclimate Environments
3.4. One-Way Analysis of Variance of NVOCs and Forest Density
3.5. Regression Analysis of NVOCs and Microclimate Environments by Forest Density
3.5.1. Control Site (0 Tree/ha)
3.5.2. Experimental Site 1 (500 Trees/ha)
3.5.3. Experimental Site 2 (600 Trees/ha)
3.5.4. Experimental Site 3 (700 Trees/ha)
3.5.5. Experimental Site 4 (900 Trees/ha)
3.5.6. Experimental Site 5 (1000 Trees/ha)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2020; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Yao, N.; van den Bosch, C.C.K.; Yang, J.; Devisscher, T.; Wirtz, Z.; Jia, L.; Duan, J.; Ma, L. Beijing’s 50 Million New Urban Trees: Strategic Governance for Large-Scale Urban Afforestation. Urban For. Urban Green. 2019, 44, 126392. [Google Scholar] [CrossRef]
- Takahashi, Y.; Ryota, Y.; Aiba, S.; Sugawara, K.; Suzuki, S.; Ito, T.; Kato, S.; Suganuma, H.; Kojima, T. Numerical Analysis of Water Movement in Arid Land for Afforestation. J. Arid Land Stud. 2018, 28, 185–188. [Google Scholar]
- Doelman, J.C.; Stehfest, E.; van Vuuren, D.P.; Tabeau, A.; Hof, A.F.; Braakhekke, M.C.; Gernaat, D.E.; van den Berg, M.; van Zeist, W.-J.; Daioglou, V. Afforestation for Climate Change Mitigation: Potentials, Risks and Trade-offs. Glob. Chang. Biol. 2020, 26, 1576–1591. [Google Scholar] [CrossRef] [PubMed]
- Brown, I. Challenges in Delivering Climate Change Policy through Land Use Targets for Afforestation and Peatland Restoration. Environ. Sci. Policy 2020, 107, 36–45. [Google Scholar] [CrossRef]
- Park, H.; Lee, J.Y.; Song, M. Scientific Activities Responsible for Successful Forest Greening in Korea. For. Sci. Technol. 2017, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.S.; Lim, C.-H.; Kim, S.J.; Lee, J.; Son, Y.; Lee, W.-K. Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010. Sustainability 2017, 9, 1017. [Google Scholar] [CrossRef] [Green Version]
- Bovio, G.; Marchetti, M.; Tonarelli, L.; Salis, M.; Vacchiano, G.; Lovreglio, R.; Elia, M.; Fiorucci, P.; Ascoli, D. Forest Fires Are Changing: Let’s Change the Fire Management Strategy. J. Silvic. For. Ecol. 2017, 14, 202–205. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, D.; Li, W.; Sun, D.; Jin, C.; Yuan, F.; Wang, A.; Wu, J. The Effects of Forest Thinning on Soil Carbon Stocks and Dynamics: A Meta-Analysis. For. Ecol. Manag. 2018, 429, 36–43. [Google Scholar] [CrossRef]
- Lindroth, A.; Holst, J.; Heliasz, M.; Vestin, P.; Lagergren, F.; Biermann, T.; Cai, Z.; Mölder, M. Effects of Low Thinning on Carbon Dioxide Fluxes in a Mixed Hemiboreal Forest. Agric. For. Meteorol. 2018, 262, 59–70. [Google Scholar] [CrossRef]
- Eriksson, E.; Gillespie, A.R.; Gustavsson, L.; Langvall, O.; Olsson, M.; Sathre, R.; Stendahl, J. Integrated Carbon Analysis of Forest Management Practices and Wood Substitution. Can. J. For. Res. 2007, 37, 671–681. [Google Scholar] [CrossRef]
- Deal, R.L.; Cochran, B.; LaRocco, G. Bundling of Ecosystem Services to Increase Forestland Value and Enhance Sustainable Forest Management. For. Policy Econ. 2012, 17, 69–76. [Google Scholar] [CrossRef]
- Mattsson, L.; Li, C.-Z. How Do Different Forest Management Practices Affect the Non-Timber Value of Forests?—An Economic Analysis. J. Environ. Manag. 1994, 41, 79–88. [Google Scholar] [CrossRef]
- Anderson, H.W.; Hoover, M.D.; Reinhart, K.G. Forests and Water: Effects of Forest Management on Floods, Sedimentation, and Water Supply; Pacific Southwest Forest and Range Experiment Station, Forest Service: Albany, CA, USA, 1976; Volume 18. [Google Scholar]
- Bawa, K.S.; Seidler, R. Natural Forest Management and Conservation of Biodiversity in Tropical Forests. Conserv. Biol. 1998, 12, 46–55. [Google Scholar] [CrossRef]
- Martens, D.; Gutscher, H.; Bauer, N. Walking in “Wild” and “Tended” Urban Forests: The Impact on Psychological Well-Being. J. Environ. Psychol. 2011, 31, 36–44. [Google Scholar] [CrossRef]
- Lee, K.J.; Hur, J.; Yang, K.-S.; Lee, M.-K.; Lee, S.-J. Acute Biophysical Responses and Psychological Effects of Different Types of Forests in Patients with Metabolic Syndrome. Environ. Behav. 2018, 50, 298–323. [Google Scholar] [CrossRef]
- Horner, G.J.; Baker, P.J.; Mac Nally, R.; Cunningham, S.C.; Thomson, J.R.; Hamilton, F. Forest Structure, Habitat and Carbon Benefits from Thinning Floodplain Forests: Managing Early Stand Density Makes a Difference. For. Ecol. Manag. 2010, 259, 286–293. [Google Scholar] [CrossRef]
- Finkral, A.J.; Evans, A.M. The Effects of a Thinning Treatment on Carbon Stocks in a Northern Arizona Ponderosa Pine Forest. For. Ecol. Manag. 2008, 255, 2743–2750. [Google Scholar] [CrossRef]
- Sohn, J.A.; Saha, S.; Bauhus, J. Potential of Forest Thinning to Mitigate Drought Stress: A Meta-Analysis. For. Ecol. Manag. 2016, 380, 261–273. [Google Scholar] [CrossRef]
- Sun, G.; Caldwell, P.V.; McNulty, S.G. Modelling the Potential Role of Forest Thinning in Maintaining Water Supplies under a Changing Climate across the Conterminous United States. Hydrol. Process. 2015, 29, 5016–5030. [Google Scholar] [CrossRef]
- Fulé, P.Z.; McHugh, C.; Heinlein, T.A.; Covington, W.W. Potential Fire Behavior Is Reduced Following Forest Restoration Treatments. In Ponderosa Pine Ecosystems Restoration and Conservation: Steps Toward Stewardship; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2001. [Google Scholar]
- Tyrväinen, L.; Silvennoinen, H.; Kolehmainen, O. Ecological and Aesthetic Values in Urban Forest Management. Urban For. Urban Green. 2003, 1, 135–149. [Google Scholar] [CrossRef]
- Silvennoinen, H. Metsämaiseman Kauneus Ja Metsänhoidon Vaikutus Koettuun Maisemaan Metsikkötasolla. Helsinki: Suomen Metsätieteellinen Seura. Diss. For. 2013, 242, 86. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.M.; Jay, M.; Jensen, F.S.; Lucas, B.; Marzano, M.; Montagné, C.; Peace, A.; Weiss, G. Public Preferences across Europe for Different Forest Stand Types as Sites for Recreation. Ecol. Soc. 2012, 17, 27. [Google Scholar] [CrossRef]
- An, K.W.; Kim, E.I.; Joen, K.S.; Setsu, T. Effects of Forest Stand Density on Human’s Physiopsychological Changes. J. Fac. Agric. Kyushu Univ. 2004, 49, 283–291. [Google Scholar] [CrossRef]
- Jiang, B.; Chang, C.-Y.; Sullivan, W.C. A Dose of Nature: Tree Cover, Stress Reduction, and Gender Differences. Landsc. Urban Plan. 2014, 132, 26–36. [Google Scholar] [CrossRef]
- Stoltz, J.; Lundell, Y.; Skärbäck, E.; van den Bosch, M.A.; Grahn, P.; Nordström, E.-M.; Dolling, A. Planning for Restorative Forests: Describing Stress-Reducing Qualities of Forest Stands Using Available Forest Stand Data. Eur. J. For. Res. 2016, 135, 803–813. [Google Scholar] [CrossRef]
- Edwards, D.; Jay, M.; Jensen, F.S.; Lucas, B.; Marzano, M.; Montagné, C.; Peace, A.; Weiss, G. Public Preferences for Structural Attributes of Forests: Towards a Pan-European Perspective. For. Policy Econ. 2012, 19, 12–19. [Google Scholar] [CrossRef]
- Hussain, R.I.; Walcher, R.; Eder, R.; Allex, B.; Wallner, P.; Hutter, H.-P.; Bauer, N.; Arnberger, A.; Zaller, J.G.; Frank, T. Management of Mountainous Meadows Associated with Biodiversity Attributes, Perceived Health Benefits and Cultural Ecosystem Services. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Horiuchi, M.; Takayama, N.; Fujiwara, A. Effects of Managed Forest versus Unmanaged Forest on Physiological Restoration from a Stress Stimulus, and the Relationship with Individual Traits. J. For. Res. 2019, 24, 77–85. [Google Scholar] [CrossRef]
- Takayama, N.; Fujiwara, A.; Saito, H.; Horiuchi, M. Management Effectiveness of a Secondary Coniferous Forest for Landscape Appreciation and Psychological Restoration. Int. J. Environ. Res. Public Health 2017, 14, 800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach, A.; Yáñez-Serrano, A.M.; Llusià, J.; Filella, I.; Maneja, R.; Penuelas, J. Human Breathable Air in a Mediterranean Forest: Characterization of Monoterpene Concentrations under the Canopy. Int. J. Environ. Res. Public Health 2020, 17, 4391. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Albanese, L.; Bartolini, G.; Zabini, F. Temporal and Spatial Variability of Volatile Organic Compounds in the Forest Atmosphere. Int. J. Environ. Res. Public Health 2019, 16, 4915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gershenzon, J.; Dudareva, N. The Function of Terpene Natural Products in the Natural World. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Mewalal, R.; Rai, D.K.; Kainer, D.; Chen, F.; Külheim, C.; Peter, G.F.; Tuskan, G.A. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels. Trends Biotechnol. 2017, 35, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.M.; Gershenzon, J.; Bohlmann, J. Induction of Volatile Terpene Biosynthesis and Diurnal Emission by Methyl Jasmonate in Foliage of Norway Spruce. Plant Physiol. 2003, 132, 1586–1599. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Kobayashi, M.; Wakayama, Y.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Shimizu, T.; Kawada, T.; Park, B.J. Effect of Phytoncide from Trees on Human Natural Killer Cell Function. Int. J. Immunopathol. Pharmacol. 2009, 22, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Hisama, M.; Tanimoto, S.; Shibayama, H.; Mihara, Y.; Nomura, M. Antioxidant Effects and Antimicrobial Activites of Phytoncide. Biocontrol Sci. 2008, 13, 23–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, E.-S.; Uhm, D.-C. Effects of Phytoncides Inhalation on Serum Cortisol Level and Life Stress of College Students. Korean J. Adult Nurs. 2008, 20, 697–706. [Google Scholar]
- Kawakami, K.; Kawamoto, M.; Nomura, M.; Otani, H.; Nabika, T.; Gonda, T. Effects of Phytoncides on Blood Pressure under Restraint Stress in SHRSP. Clin. Exp. Pharmacol. Physiol. 2004, 31, S27–S28. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, B.-J.; Tsunetsugu, Y.; Ohira, T.; Kagawa, T.; Miyazaki, Y. Effect of Forest Bathing on Physiological and Psychological Responses in Young Japanese Male Subjects. Public Health 2011, 125, 93–100. [Google Scholar] [CrossRef]
- Kim, C.-G.; Cho, M.-K.; Kim, J.-I. Effects of Phytoncide Aromatherapy on Stress, Symptoms of Stress and Heart Rate Variability among Nursing Students. J. Korean Biol. Nurs. Sci. 2012, 14, 249–257. [Google Scholar] [CrossRef]
- Cheng, W.-W.; Lin, C.-T.; Chu, F.-H.; Chang, S.-T.; Wang, S.-Y. Neuropharmacological Activities of Phytoncide Released from Cryptomeria Japonica. J. Wood Sci. 2009, 55, 27–31. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D.; Barbieri, G.; Valussi, M.; Maggini, V.; Firenzuoli, F. Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review. Int. J. Environ. Res. Public Health 2020, 17, 6506. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Lee, C.J. Sleep-Enhancing Effects of Phytoncide Via Behavioral, Electrophysiological, and Molecular Modeling Approaches. Exp. Neurobiol. 2020, 29, 120. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, A.L.; Figueiredo, C.R.; Arruda, D.C.; Pereira, F.V.; Scutti, J.A.B.; Massaoka, M.H.; Travassos, L.R.; Sartorelli, P.; Lago, J.H. α-Pinene Isolated from Schinus Terebinthifolius Raddi (Anacardiaceae) Induces Apoptosis and Confers Antimetastatic Protection in a Melanoma Model. Biochem. Biophys. Res. Commun. 2011, 411, 449–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Song, B.; Cho, K.S.; Lee, I.-S. Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases. Int. J. Mol. Sci. 2020, 21, 2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rufino, A.T.; Ribeiro, M.; Sousa, C.; Judas, F.; Salgueiro, L.; Cavaleiro, C.; Mendes, A.F. Evaluation of the Anti-Inflammatory, Anti-Catabolic and pro-Anabolic Effects of E-Caryophyllene, Myrcene and Limonene in a Cell Model of Osteoarthritis. Eur. J. Pharmacol. 2015, 750, 141–150. [Google Scholar] [CrossRef]
- Souto-Maior, F.N.; de Carvalho, F.L.; de Morais, L.C.S.L.; Netto, S.M.; de Sousa, D.P.; de Almeida, R.N. Anxiolytic-like Effects of Inhaled Linalool Oxide in Experimental Mouse Anxiety Models. Pharmacol. Biochem. Behav. 2011, 100, 259–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirota, R.; Nakamura, H.; Bhatti, S.A.; Ngatu, N.R.; Muzembo, B.A.; Dumavibhat, N.; Eitoku, M.; Sawamura, M.; Suganuma, N. Limonene Inhalation Reduces Allergic Airway Inflammation in Dermatophagoides Farinae-Treated Mice. Inhal. Toxicol. 2012, 24, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Yun, J. Limonene Inhibits Methamphetamine-Induced Locomotor Activity via Regulation of 5-HT Neuronal Function and Dopamine Release. Phytomedicine 2014, 21, 883–887. [Google Scholar] [CrossRef]
- Yoshida, N.; Takada, T.; Yamamura, Y.; Adachi, I.; Suzuki, H.; Kawakami, J. Inhibitory Effects of Terpenoids on Multidrug Resistance-Associated Protein 2-and Breast Cancer Resistance Protein-Mediated Transport. Drug Metab. Dispos. 2008, 36, 1206–1211. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Liu, Y.; Li, M.; Mao, J.; Zhang, L.; Huang, R.; Jin, X.; Ye, L. Anti-Tumor Effect of α-Pinene on Human Hepatoma Cell Lines through Inducing G2/M Cell Cycle Arrest. J. Pharmacol. Sci. 2015, 127, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Yáñez-Serrano, A.M.; Bach, A.; Bartolomé-Català, D.; Matthaios, V.; Seco, R.; Llusià, J.; Filella, I.; Peñuelas, J. Dynamics of Volatile Organic Compounds in a Western Mediterranean Oak Forest. Atmos. Environ. 2021, 257, 118447. [Google Scholar] [CrossRef]
- Kim, G.; Park, S.; Kwak, D. Is It Possible to Predict the Concentration of Natural Volatile Organic Compounds in Forest Atmosphere? Int. J. Environ. Res. Public Health 2020, 17, 7875. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, G.; Park, S.; Kim, E.; Kim, S. Prediction of Natural Volatile Organic Compounds Emitted by Bamboo Groves in Urban Forests. Forests 2021, 12, 543. [Google Scholar] [CrossRef]
- Goldstein, A.H.; McKay, M.; Kurpius, M.R.; Schade, G.W.; Lee, A.; Holzinger, R.; Rasmussen, R.A. Forest Thinning Experiment Confirms Ozone Deposition to Forest Canopy Is Dominated by Reaction with Biogenic VOCs. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Schade, G.W.; Goldstein, A.H. Increase of Monoterpene Emissions from a Pine Plantation as a Result of Mechanical Disturbances. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.; Park, S.; Jeong, M.; Lee, J.; Yoo, R.; Kim, C.; Lee, S. Analysis of Phytoncide Concentration and Micrometeorology Factors by Pinus Koraiensis Stand Density. J. Environ. Health Sci. 2018, 44, 205–216. [Google Scholar]
- Kim, C.S.; Nam, J.W.; Jo, J.W.; Kim, S.-Y.; Han, J.-G.; Hyun, M.W.; Sung, G.-H.; Han, S.-K. Studies on Seasonal Dynamics of Soil-Higher Fungal Communities in Mongolian Oak-Dominant Gwangneung Forest in Korea. J. Microbiol. 2016, 54, 14–22. [Google Scholar] [CrossRef]
- Kim, C.S.; Han, S.-K.; Nam, J.W.; Jo, J.W.; Kwag, Y.-N.; Han, J.-G.; Sung, G.-H.; Lim, Y.W.; Oh, S. Fungal Communities in a Korean Red Pine Stand, Gwangneung Forest, Korea. J. Asia-Pac. Biodivers. 2017, 10, 559–572. [Google Scholar] [CrossRef]
- Geonwoo, K.I.M.; Park, B.-J.; Joung, D.; Yeom, D.-G.; Shinya, K. Primary Concentration Measurements of Natural Volatile Organic Compounds in Atmosphere Using the Headspace Solid–Phase Microextraction Method within the Forest. J. Fac. Agric. Kyushu Univ. 2015, 60, 471–476. [Google Scholar]
- Geng, D.C.; Innes, J.; Wu, W.; Wang, G. Impacts of COVID-19 Pandemic on Urban Park Visitation: A Global Analysis. J. For. Res. 2021, 32, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.; Giessen, L.; Winkel, G. COVID-19-Induced Visitor Boom Reveals the Importance of Forests as Critical Infrastructure. For. Policy Econ. 2020, 118, 102253. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Park, B.-J.; Koga, S. Development of a Prediction Model for NVOC Concentration with Changing Microclimate in Camellia Japonica Temple Forest. Kyushu Univ. 2021, 66, 105–113. [Google Scholar]
- Ha, K.; Shin, W. Changes of the Forest Therapy Paradigm in the Post-Corona Era: Focusing on Analysis of News Search Words Related to Forest Therapy and COVID-19. J. Tour. Manag. Res. 2021, 25, 611–637. [Google Scholar]
- Chang, K.-H.; Yu, J.-Y.; Chen, T.-F.; Lin, Y.-P. Estimating Taiwan Biogenic VOC Emission: Leaf Energy Balance Consideration. Atmos. Environ. 2009, 43, 5092–5100. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, F.; He, S.; Qiu, Q.; Su, Y.; He, Q.; Li, J. Comprehensive Evaluation of Healthcare Benefits of Different Forest Types: A Case Study in Shimen National Forest Park, China. Forests 2021, 12, 207. [Google Scholar] [CrossRef]
- Llusia, J.; Peñuelas, J.; Seco, R.; Filella, I. Seasonal Changes in the Daily Emission Rates of Terpenes by Quercus Ilex and the Atmospheric Concentrations of Terpenes in the Natural Park of Montseny, NE Spain. J. Atmos. Chem. 2012, 69, 215–230. [Google Scholar] [CrossRef]
- Yatagai, M.; Ohira, M.; Ohira, T.; Nagai, S. Seasonal Variations of Terpene Emission from Trees and Influence of Temperature, Light and Contact Stimulation on Terpene Emission. Chemosphere 1995, 30, 1137–1149. [Google Scholar] [CrossRef]
- Llusià, J.; Peñuelas, J. Pinus Halepensis and Quercus Ilex Terpene Emission as Affected by Temperature and Humidity. Biol. Plant. 1999, 42, 317–320. [Google Scholar] [CrossRef]
- Oishi, Y.; Kanehama, S.; Hiyane, A.; Taguchi, H. Comparison of Forest Image and Mood Psychological Examination in a Forest Environment Using Profile of Mood States and Semantic Differential Method. J. Jpn. For. Soc. 2003, 85, 70–77. [Google Scholar]
- Simkin, J.; Ojala, A.; Tyrväinen, L. Restorative Effects of Mature and Young Commercial Forests, Pristine Old-Growth Forest and Urban Recreation Forest-A Field Experiment. Urban For. Urban Green. 2020, 48, 126567. [Google Scholar] [CrossRef]
- Khan, D.; Muneer, M.A.; Nisa, Z.-U.; Shah, S.; Amir, M.; Saeed, S.; Uddin, S.; Munir, M.Z.; Lushuang, G.; Huang, H. Effect of Climatic Factors on Stem Biomass and Carbon Stock of Larix Gmelinii and Betula Platyphylla in Daxing’anling Mountain of Inner Mongolia, China. Adv. Meteorol. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Bak, C.; Choe, S.; Gim, T.; Yu, S.; Gim, P. Monitoring Guideline at the Forests against Attenuation of Particulate Matters; National Institute of Forest Science: Seoul, Korea, 2019; Volume 836. [Google Scholar]
- Bernatzky, A. The Effects of Trees on the Urban Climate. In Trees in the 21st Century; Academic Publishers: Berkhamster, UK, 1983; pp. 59–76. [Google Scholar]
- Dalpé, B.; Masson, C. Numerical Study of Fully Developed Turbulent Flow within and above a Dense Forest. Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. 2008, 11, 503–515. [Google Scholar] [CrossRef]
NVOCs | Microclimate Environment |
---|---|
3-Carene, Camphene, Camphor, d-Fenchone, d-Limonene, Farnesene, p-Cymene, Phellandrene, Pulegone, Sabinene, Valencene, α-Pinene, α-Terpinene, α-Terpinolene, β-Myrcene, β-Pinene, γ-Terpinene | Temperature, Humidity, Solar Radiation, PAR (Photosynthetically Active Radiation), Wind Speed |
Parameters | Conditions | |||||
---|---|---|---|---|---|---|
Column | HP-INNOWAX (60 m × 0.25 mmL D × 0.25 μm, film thickness) | |||||
Carrier gas flow | He at 1 mL/min | |||||
Injection mode | Pulsed Splitless | |||||
Injection port temp. | 210 °C | |||||
Transfer line temp. | 210 °C | |||||
Over temp. program | Initial | Rate | Final | |||
40 °C | 3 min | 8 °C/min | 220 °C | 3 min | 40 °C | |
Post run | 220 °C, 5 min |
Bartlett’s Test of Homogeneity of Variances | |||||
Bartlett’s K-squared | df | p-value | |||
625.78 | 5 | 0.000 | *** | ||
Welch’s One-Way Analysis of Variance | |||||
F | num df | denom df | p-value | ||
36.046 | 5.0 | 1040.5 | 0.000 | *** | |
Dunnett’s T3 Test for Post Hoc Analysis (95% Confidence Level) | |||||
0/ha | 500/ha | 600/ha | 700/ha | 900/ha | |
500/ha | 0.224 | - | - | - | - |
600/ha | 0.565 | 1.000 | - | - | - |
700/ha | 0.000 *** | 0.189 | 0.081 | - | - |
900/ha | 0.912 | 0.000 *** | 0.000 *** | 0.000 *** | - |
1000/ha | 0.080 | 0.000 *** | 0.000 *** | 0.000 *** | 0.149 |
Multiple Linear Regression and F-Test of Model 1 and Model 2 | |||||||||
Indicators | B | SE | β | t | p 2 | Adjusted R 2 | F | p 3 | |
Model 1 | (Constant) | −2.604 | 5.101 | 0.000 | −0.511 | 0.623 | 0.161 | 1.498 | 0.291 |
Temp. | 0.096 | 0.094 | 0.164 | 1.027 | 0.335 | ||||
Humidity | 0.034 | 0.060 | 0.202 | 0.570 | 0.585 | ||||
Wind Speed | 9.640 | 11.633 | 0.714 | 0.829 | 0.431 | ||||
Solar Rad. | −0.065 | 0.075 | −0.519 | −0.855 | 0.418 | ||||
PAR | −0.035 | 0.082 | −0.448 | −0.428 | 0.680 | ||||
Model 2 | (Constant) | −0.237 | 0.456 | 0.000 | −0.521 | 0.027 * | 0.582 | 3.588 | 0.036 * |
Temp. | 0.047 | 0.020 | 0.568 | 2.411 | 0.035 * | ||||
Solar Rad. | −0.009 | 0.006 | −0.327 | −1.390 | 0.192 | ||||
Multicollinearity Test and Durbin–Watson Statistics | |||||||||
Variance Inflation Factor | Durbin–Watson Statistics | ||||||||
Temperature | Solar Radiation | Lag | Autocorrelation | D–W | p | ||||
1.01 | 1.01 | 1 | 0.12 | 1.57 | 0.31 |
Multiple Linear Regression and F-Test of Model 1 and Model 2 | |||||||||
Indicators | B | SE | β | t | p 2 | Adjusted R 2 | F | p 3 | |
Model 1 | (Constant) | −12.503 | 14.239 | 0.000 | −0.878 | 0.406 | 0.016 | 1.043 | 0.455 |
Temp. | 0.058 | 0.050 | 0.657 | 1.158 | 0.280 | ||||
Humidity | 0.138 | 0.162 | 0.856 | 0.850 | 0.420 | ||||
Wind Speed | 10.133 | 12.660 | 0.716 | 0.800 | 0.447 | ||||
Solar Rad. | 0.011 | 0.042 | 0.233 | 0.255 | 0.805 | ||||
PAR | −0.011 | 0.031 | −0.443 | −0.362 | 0.727 | ||||
Model 2 | (Constant) | −0.501 | 0.449 | 0.000 | −1.117 | 0.028 * | 0.566 | 3.589 | 0.043 * |
Temp. | 0.012 | 0.009 | 0.480 | 1.002 | 0.046 * | ||||
Humidity | 0.014 | 0.007 | 0.317 | 1.895 | 0.053 | ||||
Multicollinearity Test and Durbin–Watson Statistics | |||||||||
Variance Inflation Factor | Durbin–Watson Statistics | ||||||||
Temperature | Humidity | Lag | Autocorrelation | D–W | p | ||||
2.38 | 2.38 | 1 | 0.20 | 1.52 | 0.37 |
Multiple Linear Regression and F-Test of Model 1 and Model 2 | |||||||||
Indicators | B | SE | β | t | p 2 | Adjusted R 2 | F | p 3 | |
Model 1 | (Constant) | −3.745 | 4.680 | 0.000 | −0.800 | 0.447 | 0.174 | 0.613 | 0.694 |
Temp. | 0.072 | 0.055 | 0.669 | 1.312 | 0.226 | ||||
Humidity | 0.030 | 0.047 | 0.768 | 0.640 | 0.540 | ||||
Wind Speed | 1.486 | 2.114 | 0.646 | 0.703 | 0.502 | ||||
Solar Rad. | −0.023 | 0.029 | −0.802 | −0.779 | 0.459 | ||||
PAR | 0.026 | 0.040 | 0.598 | 0.650 | 0.534 | ||||
Model 2 | (Constant) | −0.410 | 0.601 | 0.000 | −0.683 | 0.091 | 0.764 | 2.077 | 0.017 * |
Temp. | 0.041 | 0.029 | 0.384 | 1.411 | 0.047 * | ||||
Humidity | 0.029 | 0.011 | 0.472 | 1.779 | 0.018 * | ||||
Multicollinearity Test and Durbin–Watson Statistics | |||||||||
Variance Inflation Factor | Durbin–Watson Statistics | ||||||||
Temperature | Humidity | Lag | Autocorrelation | D–W | p | ||||
2.09 | 2.09 | 1 | 0.02 | 1.77 | 0.56 |
Multiple Linear Regression and F-Test of Model 1 and Model 2. | |||||||||
Indicators | B | SE | β | t | p 2 | Adjusted R 2 | F | p 3 | |
Model 1 | (Constant) | −0.206 | 0.421 | 0.000 | −2.861 | 0.021 * | 0.667 | 6.218 | 0.012 * |
Temp. | 0.043 | 0.016 | 0.822 | 2.677 | 0.028 * | ||||
Humidity | 0.001 | 0.006 | 0.111 | 0.172 | 0.867 | ||||
Wind Speed | −0.566 | 0.634 | −0.784 | −0.893 | 0.398 | ||||
Solar Rad. | 0.019 | 0.012 | 0.674 | 1.613 | 0.145 | ||||
PAR | 0.006 | 0.004 | 0.488 | 1.561 | 0.157 | ||||
Model 2 | (Constant) | −1.192 | 0.391 | 0.000 | −3.050 | 0.014 * | 0.703 | 8.703 | 0.003 ** |
Temp. | 0.046 | 0.010 | 0.731 | 4.426 | 0.002 ** | ||||
Wind Speed | −0.664 | 0.269 | −0.706 | −2.470 | 0.036 * | ||||
Solar Rad. | 0.020 | 0.010 | 0.518 | 2.031 | 0.073 | ||||
PAR | 0.007 | 0.003 | 0.520 | 2.159 | 0.059 | ||||
Multicollinearity Test and Durbin–Watson Statistics | |||||||||
Variance Inflation Factor | Durbin–Watson Statistics | ||||||||
Temperature | Wind Speed | Solar Rad. | PAR | Lag | Autocorrelation | D–W | p | ||
3.78 | 7.70 | 8.95 | 2.54 | 1 | −0.56 | 2.07 | 0.08 |
Multiple Linear Regression and F-Test of Model 1 and Model 2 | |||||||||
Indicators | B | SE | β | t | p 2 | Adjusted R 2 | F | p 3 | |
Model 1 | (Constant) | −0.870 | 0.131 | 0.000 | −6.656 | 0.000 *** | 0.943 | 43.77 | 0.000 *** |
Temp. | 0.035 | 0.004 | 0.837 | 8.961 | 0.000 *** | ||||
Humidity | −0.001 | 0.002 | −0.170 | −0.703 | 0.502 | ||||
Wind Speed | −0.568 | 0.168 | −0.754 | −3.381 | 0.009 ** | ||||
Solar Rad. | 0.016 | 0.003 | 0.589 | 4.465 | 0.002 ** | ||||
PAR | 0.005 | 0.001 | 0.347 | 5.036 | 0.001 ** | ||||
Model 2 | (Constant) | −0.902 | 0.119 | 0.000 | −7.562 | 0.000 *** | 0.946 | 57.84 | 0.000 *** |
Temp. | 0.033 | 0.003 | 0.803 | 11.552 | 0.000 *** | ||||
Wind Speed | −0.466 | 0.083 | −0.547 | −5.593 | 0.000 *** | ||||
Solar Rad. | 0.015 | 0.003 | 0.434 | 4.689 | 0.001 ** | ||||
PAR | 0.005 | 0.001 | 0.123 | 5.216 | 0.000 *** | ||||
Multicollinearity Test and Durbin–Watson Statistics | |||||||||
Variance Inflation Factor | Durbin–Watson Statistics | ||||||||
Temperature | Wind Speed | Solar Rad. | PAR | Lag | Autocorrelation | D–W | p | ||
3.08 | 6.90 | 7.60 | 2.42 | 1 | −0.52 | 1.96 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Kim, G.; Park, S.; Lee, S.; Kim, S.; Kim, E. Statistical Evidence for Managing Forest Density in Consideration of Natural Volatile Organic Compounds. Atmosphere 2021, 12, 1113. https://doi.org/10.3390/atmos12091113
Choi Y, Kim G, Park S, Lee S, Kim S, Kim E. Statistical Evidence for Managing Forest Density in Consideration of Natural Volatile Organic Compounds. Atmosphere. 2021; 12(9):1113. https://doi.org/10.3390/atmos12091113
Chicago/Turabian StyleChoi, Yeji, Geonwoo Kim, Sujin Park, Sangtae Lee, Soojin Kim, and Eunsoo Kim. 2021. "Statistical Evidence for Managing Forest Density in Consideration of Natural Volatile Organic Compounds" Atmosphere 12, no. 9: 1113. https://doi.org/10.3390/atmos12091113
APA StyleChoi, Y., Kim, G., Park, S., Lee, S., Kim, S., & Kim, E. (2021). Statistical Evidence for Managing Forest Density in Consideration of Natural Volatile Organic Compounds. Atmosphere, 12(9), 1113. https://doi.org/10.3390/atmos12091113