Reduced Sea-Surface Roughness Length at a Coastal Site
Abstract
:1. Introduction
2. Site Description and Data Collection
3. Results and Discussion
4. Concluding Remarks
- Comparison of wind roses shows that the wind direction at the offshore platform is turned parallel to the coastline. Meanwhile, a slight acceleration in wind speed is also observed. This can be related to the formation of a land-sea boundary;
- Based on the log-law profile fit, the estimated roughness lengths for the sector of 120°–240° (perpendicular to the shore) are larger than the constant value widely used for deepwater surface (z0 = 0.2 mm);
- In contrast, the roughness lengths for alongshore winds (i.e., sector of 60°–90°) are about two orders of magnitude less than that of typical deep-water surface, particularly at lower wind speed ranges.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Z.; Wang, Q.; Zhou, M. Wave-dependence of friction velocity, roughness length, and drag coefficient over coastal and open water surfaces by using three databases. Adv. Atmos. Sci. 2009, 26, 887–894. [Google Scholar] [CrossRef]
- Anctil, F.; Donelan, M.A. Air–Water Momentum Flux Observations over Shoaling waves. J. Phys. Oceanogr. 1996, 26, 1344–1353. [Google Scholar] [CrossRef] [Green Version]
- Vugts, H.F.; Cannemeijer, F. Measurements of Drag Coefficients and Roughness Length at a Sea-Beach Interface. J. Appl. Meteorol. 1981, 20, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Lange, B.; Larsen, S.E.; Højstrup, J.; Barthelmie, R.J. Importance of thermal effects and sea surface roughness for offshore wind resource assessment. J. Wind. Eng. Ind. Aerodyn. 2004, 92, 959–988. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Coastal Meteorology: A Review of the State of the Science; National Academies Press: Washington, DC, USA, 1992. [Google Scholar]
- Kim, S.-Y.; Hong, S.-Y.; Kwon, Y.C.; Lee, Y.H.; Kim, D.-E. Effects of Modified Surface Roughness Length over Shallow Waters in a Regional Model Simulation. Atmosphere 2019, 10, 818. [Google Scholar] [CrossRef] [Green Version]
- Rogers, D.P. Coastal meteorology. Rev. Geophys. 1995, 33, 889–895. [Google Scholar] [CrossRef]
- Fuentes, M.; Chen, L.; Davis, J.; Lackmann, G.M. Modeling and predicting complex space-time structures and patterns of coastal wind fields. Environmetrics 2005, 16, 449–464. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Badger, J.; Pryor, S.; Hasager, C.B.; Christiansen, M.; Jørgensen, B. Offshore Coastal Wind Speed Gradients: Issues for the design and development of large offshore windfarms. Wind. Eng. 2007, 31, 369–382. [Google Scholar] [CrossRef]
- Barthelmie, R.J. The effects of atmospheric stability on coastal wind climates. Meteorol. Appl. 1999, 6, 39–47. [Google Scholar] [CrossRef]
- Oost, W.A.; Oost, E.M. An Alternative Approach to the Parameterization the Momentum Flux Over the Sea. Bound. Layer Meteorol. 2004, 113, 411–426. [Google Scholar] [CrossRef]
- Oost, W.; Komen, G.; Jacobs, C.; Van Oort, C. New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound. Layer Meteorol. 2002, 103, 409–438. [Google Scholar] [CrossRef]
- He, Y.; Fu, J.; Shu, Z.; Chan, P.W.; Wu, J.; Li, Q. A comparison of micrometeorological methods for marine roughness estimation at a coastal area. J. Wind. Eng. Ind. Aerodyn. 2019, 195, 104010. [Google Scholar] [CrossRef]
- He, Y.; Shu, Z.; Li, Q.; Chan, P. Standardization of marine surface wind speeds at coastal islands. Ocean Eng. 2020, 213, 107652. [Google Scholar] [CrossRef]
- Lange, B.; Højstrup, J.; Larsen, S.E.; Barthelmie, R.J. Comparison of sea surface roughness models for offshore wind power utilisation. In Proceedings of the EWEA Special Topic Conference on Wind Power, Brussels, Belgium, 10–12 December 2001. [Google Scholar]
- Taylor, P.K.; Yelland, M. The Dependence of Sea Surface Roughness on the Height and Steepness of the Waves. J. Phys. Oceanogr. 2001, 31, 572–590. [Google Scholar] [CrossRef] [Green Version]
- Vickers, D.; Mahrt, L. Sea-surface roughness lengths in the midlatitude coastal zone. Q. J. R. Meteorol. Soc. 2010, 136, 1089–1093. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Q.; Wang, S. An alternative approach to sea surface aerodynamic roughness. J. Geophys. Res. Space Phys. 2006, 111, D22108. [Google Scholar] [CrossRef] [Green Version]
- Donelan, M.A. Air–sea interaction. In Ocean Engineering Science; LeMehaute, B., Hanes, D.M., Eds.; John Wiley and Sons: New York, NY, USA, 1990; pp. 239–292. [Google Scholar]
- Kara, A.B.; Wallcraft, A.J.; Bourassa, M.A. Air-sea stability effects on the 10 m winds over the global ocean: Evaluations of air-sea flux algorithms. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Sathe, A.; Bierbooms, W. Influence of different wind profiles due to varying atmospheric stability on the fatigue life of wind turbines. J. Phys. Conf. Ser. 2007, 75, 012056. [Google Scholar] [CrossRef] [Green Version]
- Holtslag, M.C.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W. Estimating atmospheric stability from observations and correcting wind shear models accordingly. J. Phys. Conf. Ser. 2014, 555, 012052. [Google Scholar] [CrossRef]
- Johnson, H.K.; Højstrup, J.; Vested, H.J.; Larsen, S.E. On the Dependence of Sea Surface Roughness on Wind Waves. J. Phys. Oceanogr. 1998, 28, 1702–1716. [Google Scholar] [CrossRef]
- Hwang, P.A.; Burrage, D.M.; Wang, D.W.; Wesson, J.C. Ocean Surface Roughness Spectrum in High Wind Condition for Microwave Backscatter and Emission Computations. J. Atmos. Ocean. Technol. 2013, 30, 2168–2188. [Google Scholar] [CrossRef]
- Hsu, S.A. A Dynamic Roughness Equation and Its Application to Wind Stress Determination at the Air-Sea Interface. J. Phys. Oceanogr. 1974, 4, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.D.; Anderson, R.J.; Oost, W.A.; Kraan, C.; Maat, N.; De Cosmo, J.; Katsaros, K.B.; Davidson, K.L.; Bumke, K.; Hasse, L.; et al. Sea surface wind stress and drag coefficients: The hexos results. Bound. Layer Meteorol. 1992, 60, 109–142. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, P.A.; Dudhia, J. On the Need to Modify the Sea Surface Roughness Formulation over Shallow Waters. J. Appl. Meteorol. Clim. 2018, 57, 1101–1110. [Google Scholar] [CrossRef]
- Mortensen, N.G.; Landberg, L.; Troen, I.; Lundtang Petersen, E. Wind Atlas Analysis and Application Program (WAsP)—User’s Guide; Report Risø-I-666(EN); Risø National Laboratory: Roskilde, Denmark, 1993; Volume 2. [Google Scholar]
- Wu, J. Wind-Stress coefficients over Sea surface near Neutral Conditions—A Revisit. J. Phys. Oceanogr. 1980, 10, 727–740. [Google Scholar] [CrossRef] [Green Version]
- Shu, Z.R.; Li, Q.S.; Chan, P.W.; He, Y.C. Seasonal and diurnal variation of marine wind characteristics based on lidar measurements. Meteorol. Appl. 2020, 27, 1918. [Google Scholar] [CrossRef]
- Shu, Z.; Li, Q.; He, Y.; Chan, P. Investigation of Marine Wind Veer Characteristics Using Wind Lidar Measurements. Atmosphere 2020, 11, 1178. [Google Scholar] [CrossRef]
- Hofsäß, M.; Clifton, A.; Cheng, P.W. Reducing the Uncertainty of Lidar Measurements in Complex Terrain Using a Linear Model Approach. Remote. Sens. 2018, 10, 1465. [Google Scholar] [CrossRef] [Green Version]
- Goit, J.P.; Yamaguchi, A.; Ishihara, T. Measurement and Prediction of Wind Fields at an Offshore Site by Scanning Doppler LiDAR and WRF. Atmosphere 2020, 11, 442. [Google Scholar] [CrossRef]
- Peña, A.; Hasager, C.B.; Gryning, S.-E.; Courtney, M.; Antoniou, I.; Mikkelsen, T. Offshore wind profiling using light detection and ranging measurements. Wind. Energy 2009, 12, 105–124. [Google Scholar] [CrossRef]
- Wagner, R.; Mikkelsen, T.; Courtney, M. Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR. Risoe DTU 2009, 1682, 1–22. [Google Scholar]
- Shu, Z.; Li, Q.; He, Y.; Chan, P.W. Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications. Appl. Energy 2016, 169, 150–163. [Google Scholar] [CrossRef]
- Basu, S. A simple recipe for estimating atmospheric stability solely based on surface-layer wind speed profile. Wind. Energy 2018, 21, 937–941. [Google Scholar] [CrossRef] [Green Version]
- Basu, S. Hybrid Profile–Gradient Approaches for the Estimation of Surface Fluxes. Bound. Layer Meteorol. 2019, 170, 29–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyer, A.J. A review of flux-profile relationships. Bound. Layer Meteorol. 1974, 7, 363–372. [Google Scholar] [CrossRef]
- Dyer, A.J.; Hicks, B.B. Flux-gradient relationships in the constant flux layer. Q. J. R. Meteorol. Soc. 1970, 96, 715–721. [Google Scholar] [CrossRef]
- Businger, J.A.; Wyngaard, J.C.; Izumi, Y.; Bradley, E.F. Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 1971, 28, 181–189. [Google Scholar] [CrossRef]
- Sathe, A.; Gryning, S.-E.; Peña, A. Comparison of the atmospheric stability and wind profiles at two wind farm sites over a long marine fetch in the North Sea. Wind. Energy 2011, 14, 767–780. [Google Scholar] [CrossRef]
- Schumann, E.H.; Martin, J.A. Climatological aspects of the coastal wind field at cape town, port elizabeth and durban. S. Afr. Geogr. J. 1991, 73, 48–51. [Google Scholar] [CrossRef]
- Hsu, S.A. Coastal Meteorology; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Shu, Z.; Chan, P.; Li, Q.; He, Y.; Yan, B. Investigation of chaotic features of surface wind speeds using recurrence analysis. J. Wind. Eng. Ind. Aerodyn. 2021, 210, 104550. [Google Scholar] [CrossRef]
- Shu, Z.R.; Chan, P.W.; Li, Q.S.; He, Y.C. Dynamic Characterization of Wind Speed under Extreme Conditions by Recurrence-Based Techniques: Comparative Study. J. Aerosp. Eng. 2021, 34, 04020114. [Google Scholar] [CrossRef]
- He, Y.; Lin, H.; Fu, J.; Chan, P.; Zheng, Q.; Deng, T. Dependence of wind load on air density for highrise buildings. J. Wind. Eng. Ind. Aerodyn. 2021, 211, 104558. [Google Scholar] [CrossRef]
- Mao, H.; Shu, Z.; Luo, Y.; Li, Q.; Chan, P.; He, Y. Revisiting Typhoon York (9915) at landfall. J. Wind. Eng. Ind. Aerodyn. 2021, 211, 104583. [Google Scholar] [CrossRef]
- He, Y.; He, J.; Chen, W.; Chan, P.; Fu, J.; Li, Q. Insights from Super Typhoon Mangkhut (1822) for wind engineering practices. J. Wind. Eng. Ind. Aerodyn. 2020, 203, 104238. [Google Scholar] [CrossRef]
- Chen, F.; Zhan, Z.; Zhou, J.; Shu, Z.; Li, Q. A fast partition method for wind pressure coefficient of large-span roof based on modified GK clustering. Structures 2021, 30, 518–530. [Google Scholar] [CrossRef]
- Shu, Z.; Chan, P.; Li, Q.; He, Y.; Yan, B.; Li, L.; Lu, C.; Zhang, L.; Yang, H. Characterization of vertical wind velocity variability based on fractal dimension analysis. J. Wind. Eng. Ind. Aerodyn. 2021, 213, 104608. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, T.; Yan, B.; Liu, M.; Van Phuc, P.; Shu, Z. LES study of topographical effects of simplified 3D hills with different slopes on ABL flows considering terrain exposure conditions. J. Wind. Eng. Ind. Aerodyn. 2021, 210, 104513. [Google Scholar] [CrossRef]
- Yan, B.; Chan, P.; Li, Q.; He, Y.; Shu, Z. Characterising the fractal dimension of wind speed time series under different terrain conditions. J. Wind. Eng. Ind. Aerodyn. 2020, 201, 104165. [Google Scholar] [CrossRef]
- Shu, Z.; Li, Q.; He, Y.; Chan, P. Vertical wind profiles for typhoon, monsoon and thunderstorm winds. J. Wind. Eng. Ind. Aerodyn. 2017, 168, 190–199. [Google Scholar] [CrossRef]
- Shu, Z.; Li, Q.; He, Y.; Chan, P.W. Investigation of low-level jet characteristics based on wind profiler observations. J. Wind. Eng. Ind. Aerodyn. 2018, 174, 369–381. [Google Scholar] [CrossRef]
- Shu, Z.; Li, Q.; He, Y.; Chan, P. Observational study of veering wind by Doppler wind profiler and surface weather station. J. Wind. Eng. Ind. Aerodyn. 2018, 178, 18–25. [Google Scholar] [CrossRef]
- Powell, M.D.; Vickery, P.J.; Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nat. Cell Biol. 2003, 422, 279–283. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Palutikof, J.P.; Davies, T.D. Estimation of sector roughness lengths and the effect on prediction of the vertical wind speed profile. Bound. Layer Meteorol. 1993, 66, 19–47. [Google Scholar] [CrossRef]
- Sozzi, R.; Favaron, M.; Georgiadis, T. Method for Estimation of Surface Roughness and Similarity Function of Wind Speed Vertical Profile. J. Appl. Meteorol. 1998, 37, 461–469. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology, 13th ed.; Atmospheric and Oceanographic Sciences Library; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Chen, X.; Hara, T.; Ginis, I. Impact of Shoaling Ocean Surface Waves on Wind Stress and Drag Coefficient in Coastal Waters: 1. Uniform Wind. J. Geophys. Res. Oceans 2020, 125, e2020JC016222. [Google Scholar] [CrossRef]
- Drennan, W.M.; Kahma, K.K.; Donelan, M.A. On momentum flux and velocity spectra over waves. Bound. Layer Meteorol. 1999, 92, 489–515. [Google Scholar] [CrossRef]
- Toffoli, A.; Loffredo, L.; Le Roy, P.; Lefèvre, J.-M.; Babanin, A. On the variability of sea drag in finite water depth. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- MacMahan, J. Increased Aerodynamic Roughness Owing to Surfzone Foam. J. Phys. Oceanogr. 2017, 47, 2115–2122. [Google Scholar] [CrossRef]
- Shabani, B.; Nielsen, P.; Baldock, T. Direct measurements of wind stress over the surf zone. J. Geophys. Res. Oceans 2014, 119, 2949–2973. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M. Coastal Waves, Water Levels, Beach Dynamics and Climate Change; CoastAdapt, National Climate Change Adaptation Research Facility: Gold Coast, Australia, 2016. [Google Scholar]
- Mahrt, L.; Andreas, E.L.; Edson, J.B.; Vickers, D.; Sun, J.; Patton, E. Coastal Zone Surface Stress with Stable Stratification. J. Phys. Oceanogr. 2016, 46, 95–105. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Observations of non-dimensional wind shear in the coastal zone. Q. J. R. Meteorol. Soc. 1999, 125, 2685–2702. [Google Scholar] [CrossRef]
- Fontana, R.E.; Elliott, M.L.; Largier, J.L.; Jahncke, J. Temporal variation in copepod abundance and composition in a strong, persistent coastal upwelling zone. Prog. Oceanogr. 2016, 142, 1–16. [Google Scholar] [CrossRef] [Green Version]
- García-Reyes, M.; Largier, J. Observations of increased wind-driven coastal upwelling off central California. J. Geophys. Res. Space Phys. 2010, 115, C04011. [Google Scholar] [CrossRef] [Green Version]
- Lentz, S.J. The Surface Boundary Layer in Coastal Upwelling Regions. J. Phys. Oceanogr. 1992, 22, 1517–1539. [Google Scholar] [CrossRef] [Green Version]
- Perlin, N.; Skyllingstad, E.D.; Samelson, R.M.; Barbour, P.L. Numerical Simulation of Air–Sea Coupling during Coastal Upwelling. J. Phys. Oceanogr. 2007, 37, 2081–2093. [Google Scholar] [CrossRef] [Green Version]
- Masters, F.J.; Vickery, P.J.; Bacon, P.; Rappaport, E.N. Toward Objective, Standardized Intensity Estimates from Surface Wind Speed Observations. Bull. Am. Meteorol. Soc. 2010, 91, 1665–1682. [Google Scholar] [CrossRef]
- Ashcroft, J. The relationship between the gust ratio, terrain roughness, gust duration and the hourly mean wind speed. J. Wind. Eng. Ind. Aerodyn. 1994, 53, 331–355. [Google Scholar] [CrossRef]
- Engineering Sciences Data Unit (ESDU). Strong Winds in the Atmospheric Boundary Layer, Part 2: Discrete Gust Speeds; ESDU Data Item 83045; HIS ESDU: London, UK, 1983. [Google Scholar]
- Sethuraman, S.; Raynor, G.S. Comparison of Mean Wind Speeds and Turbulence at a Coastal Site and Offshore Location. J. Appl. Meteorol. 1980, 19, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Yearsley, W.A.; Herzfeld, U.C.; McDonald, B.; Wallin, B.F.; Maslanik, J.A.; Fladeland, M.M.; Crocker, R.I. 2012, December. Surface roughness of sea ice in Fram Strait-A characteristic of the ice-atmosphere interface. AGU Fall Meet. Abstr. 2012, 2012, C43A-0584. [Google Scholar]
- Raman, N.N.; Varma, K.K. Computations of air-sea energy flux and stability of atmospheric boundary layer over Bay of Bengal. Indian J. Mar. Sci. 1991, 20, 102–105. [Google Scholar]
- Yusup, Y.; Kayode, J.S.; Alkarkhi, A.F. A methodological approach to the air-sea energy fluxes data collection and analysis at the tropical coastal ocean. MethodsX 2018, 5, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Benassai, G.; Montuori, A.; Migliaccio, M.; Nunziata, F. X-band COSMO-SkyMed© SAR data for sea wave simulations and coastal vulnerability assessment. Ocean Sci. Discuss. 2012, 9, 3281–3330. [Google Scholar] [CrossRef] [Green Version]
- Tiesi, A.; Pucillo, A.; Bonaldo, D.; Ricchi, A.; Carniel, S.; Miglietta, M.M. Initialization of WRF Model Simulations With Sentinel-1 Wind Speed for Severe Weather Events. Front. Mar. Sci. 2021, 8, 169. [Google Scholar] [CrossRef]
- Floors, R.; Vincent, C.; Gryning, S.-E.; Pena, A.; Batchvarova, E. The Wind Profile in the Coastal Boundary Layer: Wind Lidar Measurements and Numerical Modelling. Bound. Layer Meteorol. 2013, 147, 469–491. [Google Scholar] [CrossRef]
Category | Description | L (m) | R (−) | Percentage |
---|---|---|---|---|
A | Unstable | 1.5% | ||
B | Near-neutral unstable | 2.4% | ||
C | Neutral | 65.7% | ||
D | Near-neutral stable | 22.1% | ||
E | Stable | 8.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Fu, J.; Chan, P.W.; Li, Q.; Shu, Z.; Zhou, K. Reduced Sea-Surface Roughness Length at a Coastal Site. Atmosphere 2021, 12, 991. https://doi.org/10.3390/atmos12080991
He Y, Fu J, Chan PW, Li Q, Shu Z, Zhou K. Reduced Sea-Surface Roughness Length at a Coastal Site. Atmosphere. 2021; 12(8):991. https://doi.org/10.3390/atmos12080991
Chicago/Turabian StyleHe, Yuncheng, Jiyang Fu, Pak Wai Chan, Qiusheng Li, Zhenru Shu, and Kang Zhou. 2021. "Reduced Sea-Surface Roughness Length at a Coastal Site" Atmosphere 12, no. 8: 991. https://doi.org/10.3390/atmos12080991
APA StyleHe, Y., Fu, J., Chan, P. W., Li, Q., Shu, Z., & Zhou, K. (2021). Reduced Sea-Surface Roughness Length at a Coastal Site. Atmosphere, 12(8), 991. https://doi.org/10.3390/atmos12080991