Analysis of Mineral Aerosol in the Surface Layer over the Caspian Lowland Desert by the Data of 12 Summer Field Campaigns in 2002–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Measurements
2.2.1. Weather Conditions
2.2.2. Dust Number Concentration
2.3. Dust Flux Computation
2.4. Trajectory Analysis
2.4.1. Forward Trajectory Modelling
2.4.2. Air Transport Probability Reconstruction
3. Results and Discussion
3.1. Mass Concentration and Aerosol Flux
3.2. Aerosol Composition
3.3. Aerosol Transport
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreae, M.O. Climate effects of changing atmospheric aerosol levels. World Surv. Climatol. 1995, 16, 347–398. [Google Scholar] [CrossRef]
- Textor, C.; Schulz, M.; Guibert, S.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, O.; Chin, M.; et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 2006, 6, 1777–1813. [Google Scholar] [CrossRef] [Green Version]
- Zender, C.S.; Miller, R.L.L.; Tegen, I. Quantifying mineral dust mass budgets: Terminology, constraints, and current estimates. Eos Trans. Am. Geophys. Union 2011, 85, 509–512. [Google Scholar] [CrossRef]
- Schepanski, K.; Heinold, B.; Tegen, I. Harmattan, Saharan heat flow, and West African monsoon circulation: Modulations on the Saharan dust outflow towards the North Atlantic. Atmos. Chem. Phys. 2017, 17, 10223–10243. [Google Scholar] [CrossRef] [Green Version]
- Lu, H. An Integrated Wind Erosion Modelling System with Emphasis on Dust Emission and Transport. Ph.D. Thesis, University of New South Wales, Sydney, Australia, 1999. [Google Scholar]
- Shao, Y.; Ishizuka, M.; Mikami, M.; Leys, J.F. Parameterization of size-resolved dust emission and validation with measurements. J. Geophys. Res. Atmos. 2011, 116, D08203. [Google Scholar] [CrossRef]
- Ezhova, E.; Ylivinkka, I.; Kuusk, J.; Komsaare, K.; Vana, M.; Krasnova, A.; Noe, S.; Arshinov, M.; Belan, B.; Park, S.-B.; et al. Direct effect of aerosols on solar radiation and gross primary production in boreal and hemiboreal forests. Atmos. Chem. Phys. 2018, 18, 17863–17881. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Huang, J.; Zhang, R.; Chen, B.; Bi, J. Surface measurements of aerosol properties over northwest China during ARM China 2008 deployment. J. Geophys. Res. 2010, 115, D00K27. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, J.; Chen, M.; Xu, X.T.; Wang, Z.H.; Wang, B.; Wang, C.Z.; Piao, S.L.; Lin, W.L.; Miao, G.F.; et al. Field evidences for the positive effects of aerosols on tree growth. Glob. Chang. Biol. 2018, 24, 4983–4992. [Google Scholar] [CrossRef]
- Mercado, L.M.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P.M. Impact of changes in diffuse radiation on the global land carbon sink. Nature 2009, 458, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
- Schepanski-Homscheidt, M.; Oumbe, A.; Benedetti, A. Aerosols for concentrating solar electricity production forecasts: Requirement quantification and ECMWF/MACC aerosol forecast assessment. Bull. Am. Meteorol. Soc. 2013, 94, 903–914. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.Y.; Wu, J. Main progress in research on reduced light rain in China during recent decades. Torrential Rain Disasters 2014, 33, 202–207. [Google Scholar] [CrossRef]
- Sokolik, I.N.; Toon, O.B. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 1996, 381, 681–683. [Google Scholar] [CrossRef]
- Querol, X.; Tobías, A.; Pérez, N.; Karanasiou, A.; Amato, F.; Stafoggia, M.; Pérez García-Pando, C.; Ginoux, P.; Forastiere, F.; Gumy, S.; et al. Monitoring the impact of desert dust outbreaks for air quality for health studies. Environ. Int. 2019, 130, 104867. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016, 8, E8. [Google Scholar] [CrossRef]
- Sokolik, I.N.; Winker, D.M.; Bergametti, G.; Gillette, D.A.; Carmichael, G.; Kaufman, Y.J.; Gomes, L.; Schuetz, L.; Penner, J.E. Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust. J. Geophys. Res. Space Phys. 2001, 106, 18015–18027. [Google Scholar] [CrossRef]
- Peng, J. Tentative discussion on the impact of aerosol on cloud and precipitation over Shanghai and its surrounding areas. Torrential Rain Disasters 2015, 34, 324–334. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sands and Desert Dunes, 1st ed.; Chapman & Hall Ltd.: New Fetter Lane, London, UK, 1973; 265p. [Google Scholar]
- Marinou, E.; Amiridis, V.; Binietoglou, I.; Tsikerdekis, A.; Solomos, S.; Proestakis, E.; Konsta, D.; Papagiannopoulos, N.; Tsekeri, A.; Vlastou, G.; et al. Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset. Atmos. Chem. Phys. 2017, 17, 5893–5919. [Google Scholar] [CrossRef] [Green Version]
- Proestakis, E.; Amiridis, V.; Marinou, E.; Georgoulias, A.K.; Solomos, S.; Kazadzis, S.; Chimot, J.; Che, H.; Alexandri, G.; Binietoglou, I.; et al. Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP. Atmos. Chem. Phys. 2018, 18, 1337–1362. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Koren, I.; Remer, L.A.; Tanré, D.; Ginoux, P.; Fan, S. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res. Atmos. 2005, 110, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Wang, Z.; Liu, Z.; Winker, D.; Trepte, C. A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res. Atmos. 2008, 113, D16214. [Google Scholar] [CrossRef]
- Peyridieu, S.; Chédin, A.; Capelle, V.; Tsamalis, C.; Pierangelo, C.; Armante, R.; Crevoisier, C.; Crépeau, L.; Siméon, M.; Ducos, F.; et al. Characterisation of dust aerosols in the infrared from IASI and comparison with PARASOL, MODIS, MISR, CALIOP, and AERONET observations. Atmos. Chem. Phys. 2013, 13, 6065–6082. [Google Scholar] [CrossRef] [Green Version]
- Rashki, A.; Kaskaoutis, D.G.; Francois, P.; Kosmopoulos, P.G.; Legrand, M. Dust-storm dynamics over Sistan region, Iran: Seasonality, transport characteristics and affected areas. Aeol. Res. 2015, 16, 35–48. [Google Scholar] [CrossRef]
- Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N.; Katsoulis, V.; Kazadzis, S.; Pey, J.; Querol, X.; Torres, O. The regime of intense desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements. Atmos. Chem. Phys. 2013, 13, 12135–12154. [Google Scholar] [CrossRef] [Green Version]
- Gkikas, A.; Basart, S.; Hatzianastassiou, N.; Marinou, E.; Amiridis, V.; Kazadzis, S.; Pey, J.; Querol, X.; Jorba, O.; Gassó, S.; et al. Mediterranean intense desert dust outbreaks and their vertical structure based on remote sensing data. Atmos. Chem. Phys. 2016, 16, 8609–8642. [Google Scholar] [CrossRef] [Green Version]
- Gillette, D.A. Fine particle emissions due to wind erosion. Trans. Am. Soc. Agric. Eng. 1977, 20, 890–897. [Google Scholar] [CrossRef]
- Gillette, D.A.; Walker, T.R. Characteristics of airborne particles produced by wind erosion of sandy soil, high plains of west Texas. Soil Sci. 1977, 123, 97–110. [Google Scholar] [CrossRef]
- Nickling, W.G.; Gillies, J.A. Dust emission and transport in Mali, West Africa. Sedimentology 1993, 40, 859–868. [Google Scholar] [CrossRef]
- Gillette, D.A.; Passi, R. Modeling dust emission caused by wind erosion. J. Geophys. Res. 1988, 93, 14233–14242. [Google Scholar] [CrossRef] [Green Version]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 1995, 100, 16415–16430. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.P.; Raupach, M.R.; Leys, J.F. A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Soil Res. 1996, 34, 309–342. [Google Scholar] [CrossRef] [Green Version]
- Gillette, D.A.; Fryrear, D.W.; Gill, T.E.; Ley, T.; Cahill, T.A.; Gearhart, E.A. Relation of vertical flux of particles smaller than 10 μm to total aeolian horizontal mass flux at Owens Lake. J. Geophys. Res. Atmos. 1997, 102, 26009–26015. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y. A model for mineral dust emission. J. Geophys. Res. 2001, 106, 20239–20254. [Google Scholar] [CrossRef]
- Shao, Y. Physics and Modelling of Wind Erosion, 2nd ed.; Springer Science & Business Media; University of Cologne: Cologne, Germany, 2008; Volume 37, 452p. [Google Scholar]
- Klose, M.; Shao, Y.; Li, X.; Zhang, H.; Ishizuka, M.; Mikami, M.; Leys, J.F. Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J. Geophys. Res. Atmos. 2014, 119, 10441–10457. [Google Scholar] [CrossRef]
- Greeley, R.; Iversen, J.D. Wind as a Geological Process: On Earth, Mars, Venus and Titan (No. 4); CUP Archive: Cambridge, UK, 1987; 333p. [Google Scholar]
- Zheng, X. Mechanics of Wind-Blown sand Movements; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; 309p. [Google Scholar]
- Shao, Y.; Zhang, J.; Ishizuka, M.; Mikami, M.; Leys, J.; Huang, N. Dependency of particle size distribution at dust emission on friction velocity and atmospheric boundary-layer stability. Atmos. Chem. Phys. 2020, 20, 12939–12953. [Google Scholar] [CrossRef]
- Gillette, D.A. Production of dust that may be carried great distances. Geol. Soc. Am. 1981, 186, 11–26. [Google Scholar] [CrossRef]
- Shao, Y.; Raupach, M.R.; Findlater, P.A. Effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. Atmos. 1993, 98, 12719–12726. [Google Scholar] [CrossRef] [Green Version]
- Sow, M.; Alfaro, S.C.; Rajot, J.L.; Marticorena, B. Size resolved dust emission fluxes measured in Niger during 3 dust storms of the AMMA experiment. Atmos. Chem. Phys. 2009, 9, 3881–3891. [Google Scholar] [CrossRef] [Green Version]
- Khalfallah, B.; Bouet, C.; Labiadh, M.; Alfaro, S.; Bergametti, G.; Marticorena, B.; Lafon, S.; Chevaillier, S.; Féron, A.; Hease, P.; et al. Influence of atmospheric stability on the size distribution of the vertical dust flux measured in eroding conditions over a flat bare sandy field. J. Geophys. Res. Atmos. 2020, 125, e2019JD031185. [Google Scholar] [CrossRef]
- Rosenberg, P.D.; Parker, D.J.; Ryder, C.L.; Marsham, J.H.; Garcia-Carreras, L.; Dorsey, J.R.; Briiks, I.M.; Dean, A.R.; Crosier, J.; McQuaid, J.B.; et al. Quantifying particle size and turbulent scale dependence of dust flux in the Sahara using aircraft measurements. J. Geophys. Res. Atmos. 2014, 119, 7577–7598. [Google Scholar] [CrossRef] [Green Version]
- Gorchakov, G.I.; Shishkov, P.O.; Kopeikin, V.M.; Emilenko, A.S.; Isakov, A.A.; Zakharova, P.V.; Sidorov, V.N.; Shukurov, K.A. Lidar-nephelometric sounding of arid aerosol. Atmos. Ocean. Opt. 1998, 11, 958–962. [Google Scholar]
- Golitsyn, G.S.; Granberg, I.G.; Aloyan, A.E.; Andronova, A.V.; Gorchakov, G.I.; Ponomarev, V.M.; Shishkov, P.O. Study of emissions and transport of dust aerosol in Kalmykia Black Lands. J. Aerosol. Sci. 1997, 28 (Suppl. 1), S725–S726. [Google Scholar] [CrossRef]
- Golitsyn, G.S.; Granberg, I.G.; Andronova, A.V.; Ponomarev, V.M.; Zilitinkevich, S.S.; Smirnov, V.V.; Yablokov, M.Y. Investigation of boundary layer fine structure in arid regions: Injection of fine dust into the atmosphere. Water Air Soil Pollut. 2003, 3, 245–257. [Google Scholar] [CrossRef]
- Chkhetiani, O.G.; Gledzer, E.B.; Artamonova, M.S.; Iordanskii, M.A. Dust resuspension under weak wind conditions: Direct observations and model. Atmos. Chem. Phys. 2012, 12, 5147–5162. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Klose, M.; Shao, Y.; Zhang, H.S. Convective turbulent dust emission (CTDE) observed over Horqin Sandy Land area and validation of a CTDE scheme. J. Geophys. Res. Atmos. 2014, 119, 9980–9992. [Google Scholar] [CrossRef]
- Gledzer, E.B.; Granberg, I.G.; Chkhetiani, O.G. Air dynamics near the soil surface and convective emission of aerosol. Izv. Atmos. Ocean. Phys. 2010, 46, 29–40. [Google Scholar] [CrossRef]
- Chkhetiani, O.G.; Gledzer, E.B.; Vazaeva, N.V. Measurements and approximations for submicron-aerosol size distribution functions. Earth Space Sci. 2021, 8, e2020EA001616. [Google Scholar] [CrossRef]
- Han, Z.W.; Ueda, H.; Matsuda, K.; Zhang, R.J.; Arao, K.; Kanai, Y.; Hasome, H. Model study on particle size segregation and deposition during Asian dust events in March 2002. J. Geophys. Res. Atmos. 2004, 109, D19205. [Google Scholar] [CrossRef]
- Sun, J.M.; Zhang, M.Y.; Liu, T.S. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J. Geophys. Res. Atmos. 2001, 106, 10325–10333. [Google Scholar] [CrossRef]
- Qian, Y.; Gustafson, W.I., Jr.; Fast, J.D. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling. Atmos. Chem. Phys. 2010, 10, 6917–6946. [Google Scholar] [CrossRef] [Green Version]
- Shukurov, K.A.; Chkhetiani, O.G. Probability of transport of air parcels from the arid lands in the Southern Russia to Moscow region. In Proceedings of the 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Irkutsk, Russia, 30 November; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10466, p. 104663V. [Google Scholar] [CrossRef]
- Mikami, M.; Shi, G.; Uno, I.; Yabuki, S.; Iwasaka, Y.; Yasui, M.; Aoki, T.; Tanaka, T.; Kurosaki, Y.; Masuda, K.; et al. Aeolian dust experiment on climate impact: An overview of Japan–China joint project ADEC. Glob. Planet. Chang. 2006, 52, 142–172. [Google Scholar] [CrossRef]
- Huebert, B.J.; Bates, T.; Russell, P.B.; Shi, G.; Kim, Y.J.; Kawamura, K.; Carmichael, G.; Nakajima, T. An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Arimoto, R.; Kim, Y.; Quinn, P.; Bates, T.; Anderson, T.; Gong, S.; Uno, I.; Chin, M.; Huebert, B.; Clarke, A.; et al. Characterization of Asian dust during ACE-Asia. Glob. Planet. Chang. 2006, 52, 23–56. [Google Scholar] [CrossRef]
- Clerbaux, N.; Ipe, A.; De Bock, V.; Urbain, M.; Baudrez, E.; Velazquez-Blazquez, A.; Akkermans, T.; Moreels, J.; Hollmann, R.; Selbach, N. CM SAF Aerosol Optical Depth (AOD) Data Record–Edition 1. Satell. Appl. Facil. Clim. Monit. 2017. [Google Scholar] [CrossRef]
- Zolotokrylin, A.N.; Cherenkova, E.A.; Titkova, T.B. Aridization of drylands in the european part of Russia: Secular trends and links to droughts. Izv. Ser. Geogr. 2020, 84, 207–217. [Google Scholar] [CrossRef]
- Gubanova, D.P.; Kuderina, T.M.; Chkhetiani, O.G.; Iordanskii, M.A.; Obvintsev, Y.I.; Artamonova, M.S. Experimental Studies of Aerosols in the Atmosphere of Semiarid Landscapes of Kalmykia: 2. Landscape–Geochemical Composition of Aerosol Particles. Izv. Atmos. Ocean. Phys. 2018, 54, 1430–1448. [Google Scholar] [CrossRef]
- Kok, J.F. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc. Natl. Acad. Sci. USA 2011, 108, 1016–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillette, D.A.; Blifford, I.H., Jr.; Fenster, C.R. Measurements of aerosol size distributions and vertical fluxes of aerosols on land subject to wind erosion. J. Appl. Meteorol. Climatol. 1972, 11, 977–987. [Google Scholar] [CrossRef]
- Bulygina, O.N.; Veselov, V.M.; Razuvaev, V.N.; Aleksandrova, T.M. Opisanie Massiva Srochnyh Dannyh ob Osnovnyh Meteorologicheskih Parametrah Rossii (Description of the Array of Urgent data on the Main Meteorological Parameters at Russian Stations). Database State Regist. Certif. 2014, 2014620549. Available online: http://meteo.ru/data/163-basic-parameters#описание-массива-данных (accessed on 27 July 2021). (In Russian).
- RIHMI-WDS. Available online: http://meteo.ru/english/climate/cl_data.php (accessed on 21 May 2021).
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, e187. [Google Scholar]
- Kurgansky, M.V. On the vertical lifting of dust in a convective unstable atmospheric boundary layer. Izv. Atmos. Ocean. Phys. 2014, 50, 337–342. [Google Scholar] [CrossRef]
- Klose, M.; Shao, Y. Large-eddy simulation of turbulent dust emission. Aeolian Res. 2013, 8, 49–58. [Google Scholar] [CrossRef]
- Prospero, J.M. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. USA 1999, 96, 3396–3403. [Google Scholar] [CrossRef] [Green Version]
- Schütz, L. Long range transport of desert dust with special emphasis on the Sahara. Ann. N. Y. Acad. Sci. 1980, 338, 515–532. [Google Scholar] [CrossRef]
- DeMott, P.J.; Cziczo, D.J.; Prenni, A.J.; Murphy, D.M.; Kreidenweis, S.M.; Thomson, D.S.; Borys, R.; Rogers, D.C. Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA 2003, 100, 14655–14660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sassen, K.; DeMott, P.J.; Prospero, J.M.; Poellot, M.R. Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett. 2003, 30, 1633. [Google Scholar] [CrossRef] [Green Version]
- Min, Q.-L.; Li, R.; Lin, B.; Joseph, E.; Wang, S.; Hu, Y.; Morris, V.; Chang, F. Evidence of mineral dust altering cloud microphysics and precipitation. Atmos. Chem. Phys. 2009, 9, 3223–3231. [Google Scholar] [CrossRef] [Green Version]
- Weinzierl, B.; Ansmann, A.; Prospero, J.M.; Althausen, D.; Benker, N.; Chouza, F.; Dollner, M.; Farrell, D.; Fomba, W.K.; Freudenthaler, V.; et al. The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment: Overview and selected highlights. Bull. Am. Meteorol. Soc. 2017, 98, 1427–1451. [Google Scholar] [CrossRef] [Green Version]
- Hashizume, M.; Ueda, K.; Nishiwaki, Y.; Michikawa, T.; Onozuka, D. Health effects of Asian dust events: A review of the literature. Jpn. J. Hyg. 2010, 65, 413–421. [Google Scholar] [CrossRef] [Green Version]
- de Longueville, F.; Ozer, P.; Doumbia, S.; Henry, S. Desert dust impacts on human health: An alarming worldwide reality and a need for studies in West Africa. Int. J. Biometeorol. 2013, 57, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Morman, S.A.; Plumlee, G.S. The role of airborne mineral dusts in human disease. Aeolian Res. 2013, 9, 203–212. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Gorchakov, G.I.; Koprov, B.M.; Shukurov, K.A. Vertical turbulent aerosol fluxes over desertized areas. Izvestiya. Atmos. Ocean. Phys. 2002, 38 (Suppl. 1), 138–147. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woolen, J.; et al. The NCEP/NCAR 40–year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woolen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP/NCAR 50–year reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteor. Soc. 2001, 82, 247–268. [Google Scholar] [CrossRef]
- Wang, Y.Q. MeteoInfo: GIS software for meteorological data visualization and analysis. Meteorol. Appl. 2014, 21, 360–368. [Google Scholar] [CrossRef]
- Shinkarenko, S.S.; Tkachenko, N.A.; Bartalev, S.А.; Yuferev, V.G.; Kulik, K.N. Dust storms in the south of the European part of Russia in September–October 2020. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2020, 17, 291–296. (In Russian) [Google Scholar] [CrossRef]
Year | 2002 | 2003 | 2004 | 2007 | 2009 | 2010 | 2011 | 2013 | 2014 | 2016 | 2018 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Days | 18.06–26.06, 28.06–10.07 | 28.06–10.07 | 29.06–04.07 | 20.07–31.07 | 19.07–27.07 | 17.07–20.07 | 20.07–29.07 | 17.07–28.07 | 22.07–31.07 | 19.07–30.07 | 23.07–03.08 | 21.07–01.08 |
Month | June | July | August | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 1 | 2 | 3 | 4 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 1 | 2 | 3 |
2002 | + | + | + | + | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
2003 | − | − | − | + | + | + | + | + | + | + | + | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
2004 | − | − | − | − | − | − | + | + | − | + | + | + | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
2007 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | + | + | + | − | − | − |
2009 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | + | + | − | − | − | − | − | − | − |
2010 | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
2011 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | + | + | + | + | − | − | − | − | − |
2013 | − | − | − | − | − | − | − | − | − | − | − | − | + | − | − | + | + | + | + | + | + | + | − | − | − | − | − | − | − |
2014 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | + | + | + | + | − | − | − |
2016 | − | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | + | + | + | + | + | − | − | − | − | − |
2018 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + |
2020 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | + | + | + | + | − | − | − |
1949–2018 | 1949–1989 | 1990–2018 | ||||
---|---|---|---|---|---|---|
Season | k | p | k | p | k | c |
winter | −0.15 | 0.34 | −0.55 | 0.13 | 1.1 | 0.05 |
spring | −0.19 | 0.07 | −0.29 | 0.29 | 0 | 0.96 |
summer | −0.26 | 0.008 | −0.66 | 0.01 | 0.1 | 0.8 |
autumn | 0.01 | 0.91 | −0.24 | 0.31 | 0.1 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chkhetiani, O.G.; Vazaeva, N.V.; Chernokulsky, A.V.; Shukurov, K.A.; Gubanova, D.P.; Artamonova, M.S.; Maksimenkov, L.O.; Kozlov, F.A.; Kuderina, T.M. Analysis of Mineral Aerosol in the Surface Layer over the Caspian Lowland Desert by the Data of 12 Summer Field Campaigns in 2002–2020. Atmosphere 2021, 12, 985. https://doi.org/10.3390/atmos12080985
Chkhetiani OG, Vazaeva NV, Chernokulsky AV, Shukurov KA, Gubanova DP, Artamonova MS, Maksimenkov LO, Kozlov FA, Kuderina TM. Analysis of Mineral Aerosol in the Surface Layer over the Caspian Lowland Desert by the Data of 12 Summer Field Campaigns in 2002–2020. Atmosphere. 2021; 12(8):985. https://doi.org/10.3390/atmos12080985
Chicago/Turabian StyleChkhetiani, Otto G., Natalia V. Vazaeva, Alexander V. Chernokulsky, Karim A. Shukurov, Dina P. Gubanova, Maria S. Artamonova, Leonid O. Maksimenkov, Fedor A. Kozlov, and Tatyana M. Kuderina. 2021. "Analysis of Mineral Aerosol in the Surface Layer over the Caspian Lowland Desert by the Data of 12 Summer Field Campaigns in 2002–2020" Atmosphere 12, no. 8: 985. https://doi.org/10.3390/atmos12080985
APA StyleChkhetiani, O. G., Vazaeva, N. V., Chernokulsky, A. V., Shukurov, K. A., Gubanova, D. P., Artamonova, M. S., Maksimenkov, L. O., Kozlov, F. A., & Kuderina, T. M. (2021). Analysis of Mineral Aerosol in the Surface Layer over the Caspian Lowland Desert by the Data of 12 Summer Field Campaigns in 2002–2020. Atmosphere, 12(8), 985. https://doi.org/10.3390/atmos12080985