Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Measurement System
2.3. Post-Processing of Data and Quality Control
2.4. Data Anlaysis and Statistical Model
3. Results
3.1. Abiotic Controls of Spring CO2 Fluxes
3.2. Impacts of Cold Weather on Photosynthesis-Related Parameters
3.3. Interannual Variability of Spring Cumulative NEEcum
4. Discussion
4.1. Identifying the Major Drivers of CO2 Fluxes
4.2. Potential Drivers of Spring CO2 Fluxes
4.3. Role of Air and Soil Temperatures on Vegetation CO2 Uptake Capacity in Northern Eurasia
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schulze, E.D.; Lapshina, E.; Filippov, I.; Kuhlmann, I.; Mollicone, D. Carbon dynamics in boreal peatlands of the Yenisey region, western Siberia. Biogeosciences 2015, 12, 7057–7070. [Google Scholar] [CrossRef] [Green Version]
- Dolman, A.; Shvidenko, A.; Schepaschenko, D.; Ciais, P.; Tchebakova, N.; Chen, T.; van der Molen, M.; Marchesini, L.B.; Maximov, T.C.; Maksyutov, S.; et al. An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods. Biogeosciences 2012, 9, 5323–5340. [Google Scholar] [CrossRef] [Green Version]
- Gorham, E. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.V.; Saatchi, S.S.; Randerson, J.T. Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. J. Geophys. Res. Space Phys. 2004, 109, 1–14. [Google Scholar] [CrossRef]
- Luyssaert, S.; Inglima, I.; Jung, M.; Richardson, A.D.; Reichstein, M.; Papale, D.; Piao, S.L.; Schulze, E.-D.; Wingate, L.; Matteucci, G.; et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Chang. Biol. 2007, 13, 2509–2537. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.C. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 2012, 9, 4071–4085. [Google Scholar] [CrossRef] [Green Version]
- Minkkinen, K.; Ojanen, P.; Penttilä, T.; Aurela, M.; Laurila, T.; Tuovinen, J.-P.; Lohila, A. Persistent carbon sink at a boreal drained bog forest. Biogeosciences 2018, 15, 3603–3624. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.; Phillips, O.; Shvidenko, A.; Lewis, S.; Canadell, J.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Lindroth, A.; Grelle, A.; Morén, A. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Glob. Chang. Biol. 1998, 4, 443–450. [Google Scholar] [CrossRef]
- Coursolle, C.; Margolis, H.; Giasson, M.-A.; Bernier, P.-Y.; Amiro, B.; Arain, M.; Barr, A.; Black, T.; Goulden, M.; McCaughey, J.; et al. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agric. For. Meteorol. 2012, 165, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Bubier, J.L.; Crill, P.M.; Moore, T.R.; Savage, K.; Varner, R.K. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Glob. Biogeochem. Cycles 1998, 12, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Korrensalo, A.; Mehtätalo, L.; Alekseychik, P.; Uljas, S.; Mammarella, I.; Vesala, T.; Tuittila, E.-S. Varying Vegetation Composition, Respiration and Photosynthesis Decrease Temporal Variability of the CO2 Sink in a Boreal Bog. Ecosystems 2019, 23, 842–858. [Google Scholar] [CrossRef] [Green Version]
- Dorrepaal, E.; Aerts, R.; Cornelissen, J.H.C.; Callaghan, T.V.; van Logtestijn, R. Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Glob. Chang. Biol. 2003, 10, 93–104. [Google Scholar] [CrossRef]
- Liu, Z.; Kimball, J.S.; Parazoo, N.C.; Ballantyne, A.P.; Wang, W.J.; Madani, N.; Pan, C.G.; Watts, J.D.; Reichle, R.H.; Sonnentag, O.; et al. Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. Glob. Chang. Biol. 2019, 26, 682–696. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.; Shibistova, O.; Zolotoukhine, D.; Kolle, O.; Arneth, A.; Wirth, C.; Styles, J.M.; Tchebakova, N.M.; Schulze, E.-D. Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus B Chem. Phys. Meteorol. 2002, 54, 590–610. [Google Scholar] [CrossRef]
- Arneth, A.; Kurbatova, J.; Kolle, O.; Shibistova, O.B.; Lloyd, J.; Vygodskaya, N.N.; Schulze, E.-D. Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes. Tellus B Chem. Phys. Meteorol. 2002, 54, 514–530. [Google Scholar] [CrossRef]
- Lund, M.; LaFleur, P.M.; Roulet, N.; Lindroth, A.; Christensen, T.; Aurela, M.; Chojnicki, B.; Flanagan, L.; Humphreys, E.; Laurila, T.; et al. Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob. Chang. Biol. 2009, 16, 2436–2448. [Google Scholar] [CrossRef]
- LaFleur, P.M.; Roulet, N.; Admiral, S.W. Annual cycle of CO2 exchange at a bog peatland. J. Geophys. Res. Space Phys. 2001, 106, 3071–3081. [Google Scholar] [CrossRef]
- Ottander, C.; Campbell, D.; Oquist, G. Seasonal changes in photosystem-II organization and pigment composition in Pinus sylvestris. Planta 1995, 197, 176–183. [Google Scholar] [CrossRef]
- Ensminger, I.; Sveshnikov, D.; Campbell, D.; Funk, C.; Jansson, S.; Lloyd, J.; Shibistova, O.; Öquist, G. Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Glob. Chang. Biol. 2004, 10, 995–1008. [Google Scholar] [CrossRef]
- Arneth, A.; Lloyd, J.; Shibistova, O.; Sogachev, A.; Kolle, O. Spring in the boreal environment: Observations on pre- and post-melt energy and CO2 fluxes in two central Siberian ecosystems. Boreal Environ. Res. 2006, 11, 311–328. [Google Scholar]
- Thum, T.; Aalto, T.; Laurila, T.; Aurela, M.; Hatakka, J.; Lindroth, A.; Vesala, T. Spring initiation and autumn cessation of boreal coniferous forest CO2 exchange assessed by meteorological and biological variables. Tellus B Chem. Phys. Meteorol. 2009, 61, 701–717. [Google Scholar] [CrossRef] [Green Version]
- Tanja, S.; Berninger, F.; Vesala, T.; Markkanen, T.; Hari, P.; Mäkelä, A.; Ilvesniemi, H.; Hänninen, H.; Nikinmaa, E.; Huttula, T.; et al. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Glob. Chang. Biol. 2003, 9, 1410–1426. [Google Scholar] [CrossRef]
- Suni, T.; Berninger, F.; Markkanen, T.; Keronen, P.; Rannik, Ü.; Vesala, T. Interannual variability and timing of growing-season CO2 exchange in a boreal forest. J. Geophys. Res. Atmospheres. 2003, 108, 4265. [Google Scholar] [CrossRef]
- Moore, T.R.; LaFleur, P.M.; Poon, D.M.I.; Heumann, B.W.; Seaquist, J.; Roulet, N. Spring photosynthesis in a cool temperate bog. Glob. Chang. Biol. 2006, 12, 2323–2335. [Google Scholar] [CrossRef]
- Frolking, S.E.; Bubier, J.L.; Moore, T.R.; Ball, T.; Bellisario, L.M.; Bhardwaj, A.; Carroll, P.; Crill, P.; LaFleur, P.M.; McCaughey, J.H.; et al. Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Glob. Biogeochem. Cycles 1998, 12, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, L.B. Interacting Controls on Ecosystem Photosynthesis and Respiration in Contrasting Peatland Ecosystems. In Photosynthesis in Bryophytes and Early Land Plants; Hanson, D.T., Rice, S.K., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 37, pp. 253–267. [Google Scholar] [CrossRef]
- Shibistova, O.; Lloyd, J.; Zrazhevskaya, G.; Arneth, A.; Kolle, O.; Knohl, A.; Astrakhantceva, N.; Shijneva, I.; Schmerler, J. Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia. Tellus B Chem. Phys. Meteorol. 2002, 54, 568–589. [Google Scholar] [CrossRef]
- Pulliainen, J.; Aurela, M.; Laurila, T.; Aalto, T.; Takala, M.; Salminen, M.; Kulmala, M.; Barr, A.; Heimann, M.; Lindroth, A.; et al. Early snowmelt significantly enhances boreal springtime carbon uptake. Proc. Natl. Acad. Sci. USA 2017, 114, 11081–11086. [Google Scholar] [CrossRef] [Green Version]
- Post, E.; Steinman, B.A.; Mann, M. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Park, H.; Jeong, S.-J.; Ho, C.-H.; Park, C.-E.; Kim, J. Slowdown of spring green-up advancements in boreal forests. Remote Sens. Environ. 2018, 217, 191–202. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Z.; Wang, S.P.T.; Peng, S.; Ciais, P.; Huang, M.; Ahlstrom, A.; Burkhart, J.F.; Chevallier, F.; Janssens, I.; et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Chang. 2017, 7, 359–363. [Google Scholar] [CrossRef]
- Bulygina, O.N.; Groisman, P.; Razuvaev, V.N.; Korshunova, N.N. Changes in snow cover characteristics over Northern Eurasia since 1966. Environ. Res. Lett. 2011, 6, 045204. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Foken, T.; Aubinet, M.; Leuning, R. The Eddy Covariance Method. In Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Aubinet, M., Vesala, T., Papale, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; p. 438. ISBN 978-94-007-2350-4. [Google Scholar]
- Bartsch, A.; Kidd, R.A.; Wagner, W.; Bartalis, Z. Temporal and spatial variability of the beginning and end of daily spring freeze/thaw cycles derived from scatterometer data. Remote Sens. Environ. 2007, 106, 360–374. [Google Scholar] [CrossRef]
- Alekseychik, P.; Mammarella, I.; Karpov, D.; Dengel, S.; Terentieva, I.; Sabrekov, A.; Glagolev, M.; Lapshina, E. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a West Siberian bog. Atmos. Chem. Phys. 2017, 17, 9333–9345. [Google Scholar] [CrossRef] [Green Version]
- Schulze, E.D.; Prokuschkin, A.; Arneth, A.; Knorre, N.; Vaganov, E.A. Net ecosystem productivity and peat accumulation in a Siberian Aapa mire. Tellus B Chem. Phys. Meteorol. 2002, 54, 531–536. [Google Scholar] [CrossRef]
- Kurbatova, B.J.; Arneth, A.; Vygodskaya, N.N.; Kolle, O. Comparative ecosystem – atmosphere exchange of energy and mass in a European Russian and a central Siberian bog I. Interseasonal and interannual variability of energy and latent heat fluxes during the snowfree period. Tellus B Chem. Phys. Meteorol. 2002, 54, 497–513. [Google Scholar]
- Heimann, M.; Schulze, E.-D.; Winderlich, J.; Andreae, M.O.; Chi, X.; Gerbig, C.; Kolle, O.; Kuebler, K.; Lavrič, J.V.; Mikhailov, E. The Zotino Tall Tower Observatory (ZOTTO): Quantifying large scale biogeochemical changes in Central Siberia. Nov. Acta Leopoldina 2014, 117, 51–64. [Google Scholar]
- Winderlich, J.; Gerbig, C.; Kolle, O.; Heimann, M. Inferences from CO2 and CH4 concentration profiles at the Zotino Tall Tower Observatory (ZOTTO) on regional summertime ecosystem fluxes. Biogeosciences 2014, 11, 2055–2068. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-B.; Knohl, A.; Lucas-Moffat, A.M.; Migliavacca, M.; Gerbig, C.; Vesala, T.; Peltola, O.; Mammarella, I.; Kolle, O.; Lavrič, J.V.; et al. Strong radiative effect induced by clouds and smoke on forest net ecosystem productivity in central Siberia. Agric. For. Meteorol. 2018, 250–251, 376–387. [Google Scholar] [CrossRef]
- Wirth, C.; Schulze, E.-D.; Schulze, W.; Von Stünzner-Karbe, D.; Ziegler, W.; Miljukova, I.M.; Sogatchev, A.; Varlagin, A.B.; Panvyorov, M.; Grigoriev, S.; et al. Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire. Oecologia 1999, 121, 66–80. [Google Scholar] [CrossRef]
- Nichol, C.J.; Lloyd, J.; Shibistova, O.; Arneth, A.; Roser, C.; Knohl, A.; Matsubara, S.; Grace, J. Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest. Tellus B Chem. Phys. Meteorol. 2002, 54, 677–687. [Google Scholar] [CrossRef]
- Mammarella, I.; Peltola, O.; Nordbo, A.; Järvi, L.; Rannik, Ü. Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems. Atmospheric Meas. Tech. 2016, 9, 4915–4933. [Google Scholar] [CrossRef] [Green Version]
- Wutzler, T.; Lucas-Moffat, A.; Migliavacca, M.; Knauer, J.; Sickel, K.; Šigut, L.; Menzer, O.; Reichstein, M. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 2018, 15, 5015–5030. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. Version 4.0.3. 2020. Available online: https://www.R-project.org/ (accessed on 19 August 2019).
- Friedman, J.H.; Roosen, C.B. An introduction to multivariate adaptive regression splines. Stat. Methods Med. Res. 1995, 4, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Milborrow, S.D.; Derived from mda:mars by Trevor Hastie and Rob Tibshirani. Uses Alan Miller’s Fortran Utilities with Thomas Lumley’s Leaps Wrapper. Earth: Multivariate Adaptive Regression Splines. R Package Version 5.3.0. 2020. Available online: https://CRAN.R-project.org/package=earth (accessed on 28 July 2021).
- Michaelis, L.; Menten, M.L. Die Kinetik der Invertinwirkung. Biochem 1913, 49, 333–369. [Google Scholar]
- Timur, V.; Elzhov, T.V.; Katharine, M.; Mullen, M.K.; Spiess, A.-N.; Bolker, B. minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. R Package Version 1.2.1. 2016. Available online: https://CRAN.R-project.org/package=minpack.lm (accessed on 28 July 2021).
- Migliavacca, M.; Reichstein, M.; Richardson, A.D.; Colombo, R.; Sutton, M.A.; Lasslop, G.; Tomelleri, E.; Wohlfahrt, G.; Carvalhais, N.; Cescatti, A.; et al. Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites. Glob. Chang. Biol. 2010, 17, 390–409. [Google Scholar] [CrossRef]
- Chen, L.; Li, Z.-B.; Hui, C.; Cheng, X.; Li, B.-L.; Shi, P.-J. A general method for parameter estimation in light-response models. Sci. Rep. 2016, 6, 27905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musavi, T.; Migliavacca, M.; van de Weg, M.J.; Kattge, J.; Wohlfahrt, G.; van Bodegom, P.M.; Reichstein, M.; Bahn, M.; Carrara, A.; Domingues, T.; et al. Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. Ecol. Evol. 2016, 6, 7352–7366. [Google Scholar] [CrossRef]
- Parazoo, N.C.; Arneth, A.; Pugh, T.A.M.; Smith, B.; Steiner, N.; Luus, K.; Commane, R.; Benmergui, J.; Stofferahn, E.; Liu, J.; et al. Spring photosynthetic onset and net CO2 uptake in Alaska triggered by landscape thawing. Glob. Chang. Biol. 2018, 24, 3416–3435. [Google Scholar] [CrossRef]
- Humphreys, E.R.; LaFleur, P.M.; Flanagan, L.B.; Hedstrom, N.; Syed, K.H.; Glenn, A.J.; Granger, R. Summer carbon dioxide and water vapor fluxes across a range of northern peatlands. J. Geophys. Res. Space Phys. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Loisel, J.; Sala, A.G.; Yu, Z. Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences 2012, 9, 2737–2746. [Google Scholar] [CrossRef] [Green Version]
- Koebsch, F.; Sonnentag, O.; Järveoja, J.; Peltoniemi, M.; Alekseychik, P.; Aurela, M.; Arslan, A.N.; Dinsmore, K.; Gianelle, D.; Helfter, C.; et al. Refining the role of phenology in regulating gross ecosystem productivity across European peatlands. Glob. Chang. Biol. 2019, 26, 876–887. [Google Scholar] [CrossRef]
- Peichl, M.; Gažovič, M.; Vermeij, I.; De Goede, E.; Sonnentag, O.; Limpens, J.; Nilsson, M.B. Peatland vegetation composition and phenology drive the seasonal trajectory of maximum gross primary production. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- LaFleur, P.M.; Roulet, N.T.; Bubier, J.L.; Frolking, S.; Moore, T.R. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Glob. Biogeochem. Cycles 2003, 17, 1036. [Google Scholar] [CrossRef] [Green Version]
- LaFleur, P.; Moore, T.; Roulet, N.; Frolking, S. Ecosystem Respiration in a Cool Temperate Bog Depends on Peat Temperature But Not Water Table. Ecosystems 2005, 8, 619–629. [Google Scholar] [CrossRef]
- Strachan, I.B.; Pelletier, L.; Bonneville, M.-C. Inter-annual variability in water table depth controls net ecosystem carbon dioxide exchange in a boreal bog. Biogeochemistry 2015, 127, 99–111. [Google Scholar] [CrossRef]
- Limpens, J.; Berendse, F.; Blodau, C.; Canadell, J.; Freeman, C.; Holden, J.; Roulet, N.; Rydin, H.; Schaepman-Strub, G. Peatlands and the carbon cycle: From local processes to global implications—A synthesis. Biogeosciences 2008, 5, 1475–1491. [Google Scholar] [CrossRef] [Green Version]
- Friborg, T.; Soegaard, H.; Lloyd, C.R.; Christensen, T.R.; Panikov, N.S. Siberian wetlands: Where a sink is a source. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Outcalt, S.I.; Nelson, F.E.; Hinkel, K.M. The zero-curtain effect: Heat and mass transfer across an isothermal region in freezing soil. Water Resour. Res. 1990, 26, 1509–1516. [Google Scholar] [CrossRef]
- Bergh, J.; Linder, S. Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Glob. Chang. Biol. 1999, 5, 245–253. [Google Scholar] [CrossRef]
- Monson, R.K.; Sparks, J.P.; Rosenstiel, T.N.; Scott-Denton, L.E.; Huxman, T.E.; Harley, P.C.; Turnipseed, A.A.; Burns, S.; Backlund, B.; Hu, J. Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia 2005, 146, 130–147. [Google Scholar] [CrossRef] [PubMed]
- Lohila, A.; Aurela, M.; Regina, K.; Tuovinen, J.-P.; Laurila, T. Wintertime CO2 exchange in a boreal agricultural peat soil. Tellus B Chem. Phys. Meteorol. 2007, 59, 860–873. [Google Scholar] [CrossRef]
- Jarvis, P.; Linder, S. Constraints to growth of boreal forests. Nat. Cell Biol. 2000, 405, 904–905. [Google Scholar] [CrossRef] [PubMed]
- Sevanto, S.; Suni, T.; Pumpanen, J.; Grönholm, T.; Kolari, P.; Nikinmaa, E.; Hari, P.; Vesala, T. Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol. 2006, 26, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Blanco, N.E.; Hermida-Carrera, C.; Lehotai, N.; Hurry, V.; Strand, A. Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring. Nat. Commun. 2020, 11, 128. [Google Scholar] [CrossRef]
- Ensminger, I.; Schmidt, L.; Lloyd, J. Soil temperature and intermittent frost modulate the rate of recovery of photosynthesis in Scots pine under simulated spring conditions. New Phytol. 2007, 177, 428–442. [Google Scholar] [CrossRef] [Green Version]
- Wallin, G.; Hall, M.; Slaney, M.; Räntfors, M.; Medhurst, J.; Linder, S. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO2] and air temperature. Tree Physiol. 2013, 33, 1177–1191. [Google Scholar] [CrossRef] [Green Version]
- Gerdol, R.; Bonora, A.; Gualandri, R.; Pancaldi, S. CO2 exchange, photosynthetic pigment composition, and cell ultrastructure of Sphagnum mosses during dehydration and subsequent rehydration. Can. J. Bot. 1996, 74, 726–734. [Google Scholar] [CrossRef]
- Rödenbeck, C.; Zaehle, S.; Keeling, R.; Heimann, M. History of El Niño impacts on the global carbon cycle 1957–2017: A quantification from atmospheric CO2 data. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170303. [Google Scholar] [CrossRef] [Green Version]
ZF | ZB | |
---|---|---|
Geographical location | 60.48′25″ N 89.21′27″ E | 60.49′03″ N 89.23′20″ E |
Elevation altitude (m a.s.l) | 110 | 66 |
Vegetation type | Coniferous forest | Ombrotrophic bog |
Plant species | Pinus sylvestris | Sphagnum |
Vegetation height (m) | 20 for dominant trees 5 for understory | 2.5 for Scots pines 0.5 for dwarf shrubs |
Measurement height (m) 1 | 29.7 | 10.1 |
Tower height (m) 2 | 29.4 | 9.8 |
Zero plan displacement 3 height (m) | 13.4 | 1.675 for pine trees 0.335 for dwarf shrubs |
Roughness length (m) 4 | 3 | 0.375 for pine trees 0.075 for dwarf shrubs |
Leaf area index (m−2 m−2) | 1–3.5 5 | not available |
Soil type | Podzol | Histosol |
ZF | ZB | |
---|---|---|
Sonic anemometer | USA-1, METEK GmbH, Elmshorn, Germany | |
CO2/H2O gas analyser | LI-7200, LiCor Biosciences, Lincoln NE, USA | |
Time lag | 0.8 (CO2), 1.2 (H2O) | 0.9 (CO2), 1.3 (H2O) |
Flow rate (L/min) | 13 | |
Sampling frequency (Hz) | 20 | |
Long/short wave up/downwelling radiation | CNR1, Kipp & Zonen, Deft, The Netherlands | |
Up/downward photosynthetically active radiation | PQS1, Kipp & Zonen, Deft, The Netherlands | |
Air temperature and relative humidity | KPK 1/6-ME-H38, Mela, Bondorf, Germany | |
Barometric pressure | Pressure Transmitter, 61302 V, R.M. Young Company, Traverse City, USA | |
Soil temperature | RTD temperature probe, Pt100, JUMO | |
Soil moisture | ThetaProbe ML2x, Delta-T devices, Cambridge, England | |
Ground heat flux | Heat flux plates RIMCO HP3/CN3, McVan Instruments, Mulgrave, Victoria, Australia | |
Precipitation | Tipping bucket rain gauge, Adolf Thies GmbH & Co. KG, Göttingen Germany |
Site | ZF | Site | ZB | ||||
---|---|---|---|---|---|---|---|
Variable | nsubsets | GCV | RSS | Variable | nsubsets | GCV | RSS |
Ts4 | 11 | 100.0 | 100.0 | Ts4 | 12 | 100.0 | 100.0 |
PAR | 19 | 59.0 | 60.5 | Alb | 11 | 46.1 | 48.7 |
Alb | 9 | 44.8 | 46.9 | Ts64 | 9 | 29.5 | 33.0 |
Ta | 7 | 30.9 | 33.5 | PAR | 9 | 29.5 | 33.0 |
Ts16 | 6 | 25.8 | 28.4 | Ts32 | 8 | 26.3 | 29.7 |
Ts64 | 5 | 17.2 | 21.0 |
Site | Year | Amax mol m−2 s−1] | NEPsat mol m−2 s−1] | Rd mol m−2 s−1] | n | Residual Standard Error | |
---|---|---|---|---|---|---|---|
ZF | 2014 | 9.22 (0.94) | 4.84 (0.70) | 0.010 (0.002) | −0.90 (0.21) | 761 | 1.83 |
2015 | 11.95 (0.63) | 6.39 (0.76) | 0.018 (0.003) | −1.90 (0.36) | 659 | 2.12 | |
ZB | 2014 | 3.25 (0.14) | 1.96 (0.18) | 0.009 (0.002) | −0.68 (0.11) | 815 | 0.77 |
2015 | 6.12 (0.28) | 3.41 (0.40) | 0.014 (0.002) | −1.30 (0.26) | 569 | 1.24 |
Year | NEEcum (g C m−2) | NEEcum,tran (DOY) | CGDDTa (°C) | CGDDT04 (°C) | g C m−2 d−2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
ZF | ZB | ZF | ZB | ZF | ZB | ZF | ZB | ZF | ZB | |
2014 | −27.6 | −7.7 | 128 | 138 | 104.5 | 164.6 | 0.3 | 41.7 | −1.05 | −0.41 |
2015 | −37.2 | −14.9 | 134 | 141 | 137.6 | 211.4 | 0.3 | 75.25 | −1.62 | −0.92 |
2016 | −28.3 | −6.8 | 126 | 142 | 83.0 | 141.9 | 0.85 | 55.42 | −0.86 | −0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-B.; Knohl, A.; Migliavacca, M.; Thum, T.; Vesala, T.; Peltola, O.; Mammarella, I.; Prokushkin, A.; Kolle, O.; Lavrič, J.; et al. Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia. Atmosphere 2021, 12, 984. https://doi.org/10.3390/atmos12080984
Park S-B, Knohl A, Migliavacca M, Thum T, Vesala T, Peltola O, Mammarella I, Prokushkin A, Kolle O, Lavrič J, et al. Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia. Atmosphere. 2021; 12(8):984. https://doi.org/10.3390/atmos12080984
Chicago/Turabian StylePark, Sung-Bin, Alexander Knohl, Mirco Migliavacca, Tea Thum, Timo Vesala, Olli Peltola, Ivan Mammarella, Anatoly Prokushkin, Olaf Kolle, Jošt Lavrič, and et al. 2021. "Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia" Atmosphere 12, no. 8: 984. https://doi.org/10.3390/atmos12080984
APA StylePark, S. -B., Knohl, A., Migliavacca, M., Thum, T., Vesala, T., Peltola, O., Mammarella, I., Prokushkin, A., Kolle, O., Lavrič, J., Park, S. S., & Heimann, M. (2021). Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia. Atmosphere, 12(8), 984. https://doi.org/10.3390/atmos12080984