Stellar Turbulent Convection: The Multiscale Nature of the Solar Magnetic Signature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
- The Solar Oscillations Investigation/Michelson Doppler Imager (SOI/MDI) instrument [52], on board the SOHO satellite, collected solar images from 1996 to 2011 using the spectral line Ni I 676.78 nm (e.g., [53,54]). The images were recorded by a 1024 × 1024 CCD camera in two spatial resolution modes: full disk and high-resolution of the central part of the disk. In this work, 191 original high-resolution images acquired during the solar activity minimum between SC 22 and SC 23 are used, covering a period of 7 months from 1 August 1996 to 28 February 1997. The images have a field of view of 11 × 11 arc min with a plate scale of 0.625 arcsecond per pixel and a (diffraction-limited) resolution of 1.25 arc min (see http://soi.stanford.edu/sssc/progs/mdi/calib.html (accessed on 1 July 2021) for more information about data).
- The Helioseismic and Magnetic Imager (HMI) is part of the NASA Solar Dynamics Observatory (SDO) mission [55]. HMI provides stabilized one-arcsecond-resolution full-disk Doppler velocity, line-of-sight magnetic flux, and continuum proxy images every 45 s, and vector magnetic field maps every 90 or 135 s depending on the image frame sequence selected. The solar image nearly fills the 4096 × 4096 pixel CCD camera allowing a pixel scale equal to 0.5 arcsecond per pixel [56,57]. HMI quiet magnetograms used in this work are the central sub-array of the original 4096 × 4096 full-disk images and they cover the whole mission from May 2010 to May 2019 (see http://jsoc.stanford.edu (accessed on 1 July 2021) for more information about data).
- The Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) is on board the Hinode satellite [58]. The observation was recorded on 10 March 2007 between 11:37 and 14:34 UT, and views a portion of solar photosphere of 302 × 162 arcsecond at the disc center. The original FITS header declares a different plate scale of 0.1476 arcsec/pixel and 0.1585 arcsec/pixel along x and y, respectively. Assuming for the solar radius the estimate of 696,342 ± 65 km [59] and the corresponding apparent radius of 959.6 ± 0.1 arcseconds [60], this difference corresponds to ≃7.9 km, which has a negligible effect on the PMV identification algorithm and is therefore not taken into account in the analysis (see http://sdc.uio.no/sdc/ (accessed on 1 July 2021) for more information about data).
2.2. PMV-Finding Algorithm
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ledoux, P.; Schwarzschild, M.; Spiegel, E.A. On the Spectrum of Turbulent Convection. Astrophys. J. 1961, 133, 184. [Google Scholar] [CrossRef]
- Ventura, P.; Zeppieri, A. Non instantaneous mixing: Deuterium burning in very low mass stars and brown dwarfs. Astron. Astrophys. 1998, 340, 77–80. [Google Scholar]
- Brun, A.S.; Browning, M.K. Magnetism, dynamo action and the solar-stellar connection. Living Rev. Sol. Phys. 2017, 14, 4. [Google Scholar] [CrossRef] [PubMed]
- Charbonneau, P. Dynamo models of the solar cycle. Living Rev. Sol. Phys. 2020, 17, 4. [Google Scholar] [CrossRef]
- Brandenburg, A.; Bigazzi, A.; Subramanian, K. The helicity constraint in turbulent dynamos with shear. Mon. Not. R. Astron. Soc. 2001, 325, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Phillips, A.; Brooke, J.; Moss, D. The importance of physical structure in solar dynamo models. Astron. Astrophys. 2002, 392, 713–727. [Google Scholar] [CrossRef]
- Bigazzi, A.; Ruzmaikin, A. The Sun’s Preferred Longitudes and the Coupling of Magnetic Dynamo Modes. Astrophys. J. 2004, 604, 944–959. [Google Scholar] [CrossRef] [Green Version]
- Lehtinen, J.J.; Spada, F.; Käpylä, M.J.; Olspert, N.; Käpylä, P.J. Common dynamo scaling in slowly rotating young and evolved stars. Nat. Astron. 2020, 4, 658–662. [Google Scholar] [CrossRef] [Green Version]
- Berrilli, F. Spatio-temporal patterns in solar surface convection. Mem. S.A.It. 2003, 74, 576. [Google Scholar]
- Brun, A.; Miesch, M. Stellar convection simulations. Scholarpedia 2008, 3, 4278. [Google Scholar] [CrossRef]
- Nigro, G. Attracted by the fascinating magnetism of the Sun. Nuovo Cimento C Geophys. Space Phys. C 2019, 42, 2. [Google Scholar] [CrossRef]
- Niemela, J.J.; Skrbek, L.; Sreenivasan, K.R.; Donnelly, R.J. Turbulent convection at very high Rayleigh numbers. Nature 2000, 404, 837–840. [Google Scholar] [CrossRef]
- Yakhot, V. Probability distributions in high-Rayleigh number Bénard convection. Phys. Rev. Lett. 1989, 63, 1965–1967. [Google Scholar] [CrossRef] [PubMed]
- Libchaber, A. From Chaos to Turbulence in Benard Convection. Proc. R. Soc. Lond. Ser. A 1987, 413, 63–69. [Google Scholar] [CrossRef]
- Castaing, B.; Gunaratne, G.; Kadanoff, L.; Libchaber, A.; Heslot, F. Scaling of hard thermal turbulence in Rayleigh-Benard convection. J. Fluid Mech. 1989, 204, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Urban, P.; Hanzelka, P.; Musilová, V.; Králík, T.; La Mantia, M.; Srnka, A.; Skrbek, L. Heat transfer in cryogenic helium gas by turbulent Rayleigh-Bénard convection in a cylindrical cell of aspect ratio 1. New J. Phys. 2014, 16, 053042. [Google Scholar] [CrossRef] [Green Version]
- Komm, R.; Mattig, W.; Nesis, A. The small-scale velocity field in the solar photosphere. Astron. Astrophys. 1991, 243, 251–262. [Google Scholar]
- Montagne, M.; Mueller, R.; Vigneau, J. The photosphere of the Sun: Statistical correlations between magnetic field, intensity and velocity. Astron. Astrophys. 1996, 311, 304–310. [Google Scholar]
- Berrilli, F.; Florio, A.; Consolini, G.; Bavassano, B.; Briand, C.; Bruno, R.; Caccin, B.; Carbone, V.; Ceppatelli, G.; Egidi, A.; et al. Dependence of the photospheric vertical flow characteristics on the granule dimension. Astron. Astrophys. 1999, 344, L29–L32. [Google Scholar]
- Hirzberger, J.; Koschinsky, M.; Kneer, F.; Ritter, C. High resolution 2D-spectroscopy of granular dynamics. Astron. Astrophys. 2001, 367, 1011–1021. [Google Scholar] [CrossRef] [Green Version]
- Berrilli, F.; Consolini, G.; Pietropaolo, E.; Caccin, B.; Penza, V.; Lepreti, F. 2-D multiline spectroscopy of the solar photosphere. Astron. Astrophys. 2002, 381, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Hoekzema, N.M.; Rimmele, T.R.; Rutten, R.J. Small-scale topology of solar atmospheric dynamics. V. Acoustic events and internetwork grains. Astron. Astrophys. 2002, 390, 681–690. [Google Scholar] [CrossRef]
- Welsch, B.T. The photospheric Poynting flux and coronal heating. Pub. Astron. Soc. Jpn. 2015, 67, 18. [Google Scholar] [CrossRef] [Green Version]
- Utz, D.; del Toro Iniesta, J.C.; Bellot-Rubio, L.; Bodnárová, M.; Muller, R.; Bárta, M.; Thonhofer, S.; Hanslmeier, A. Long time variations of Magnetic Bright Points observed by Hinode/SOT. Cent. Eur. Astrophys. Bull. 2015, 39, 91–100. [Google Scholar]
- Straus, T.; Deubner, F.L.; Fleck, B. Is mesogranulation a distinct regime of convection? Astron. Astrophys. 1992, 256, 652–659. [Google Scholar]
- Getling, A.V.; Brandt, P.N. Regular structures of the solar photosphere. (Persistence of the granular field and trenching in the brightness relief). Astron. Astrophys. 2002, 382, L5–L8. [Google Scholar] [CrossRef]
- Rast, M.P. The Scales of Granulation, Mesogranulation, and Supergranulation. Astrophys. J. 2003, 597, 1200–1210. [Google Scholar] [CrossRef]
- Berrilli, F.; Del Moro, D.; Russo, S.; Consolini, G.; Straus, T. Spatial Clustering of Photospheric Structures. Astrophys. J. 2005, 632, 677–683. [Google Scholar] [CrossRef]
- Caroli, A.; Giannattasio, F.; Fanfoni, M.; Del Moro, D.; Consolini, G.; Berrilli, F. Turbulent convective flows in the solar photospheric plasma. J. Plasma Phys. 2015, 81, 495810514. [Google Scholar] [CrossRef]
- Cossette, J.F.; Rast, M.P. Supergranulation as the Largest Buoyantly Driven Convective Scale of the Sun. Astrophys. J. Lett. 2016, 829, L17. [Google Scholar] [CrossRef] [Green Version]
- Giannattasio, F.; Berrilli, F.; Consolini, G.; Del Moro, D.; Gošić, M.; Bellot Rubio, L. Occurrence and persistence of magnetic elements in the quiet Sun. Astron. Astrophys. 2018, 611, A56. [Google Scholar] [CrossRef] [Green Version]
- Viavattene, G.; Consolini, G.; Giovannelli, L.; Berrilli, F.; Del Moro, D.; Giannattasio, F.; Penza, V.; Calchetti, D. Testing the Steady-State Fluctuation Relation in the Solar Photospheric Convection. Entropy 2020, 22, 716. [Google Scholar] [CrossRef]
- Del Moro, D.; Berrilli, F.; Duvall, T.L.J.; Kosovichev, A.G. Dynamics and Structure of Supergranulation. Sol. Phys. 2004, 221, 23–32. [Google Scholar] [CrossRef]
- Ploner, S.R.O.; Solanki, S.K.; Gadun, A.S. Is solar mesogranulation a surface phenomenon? Astron. Astrophys. 2000, 356, 1050–1054. [Google Scholar]
- Roudier, T.; Rieutord, M.; Malherbe, J.M.; Vigneau, J. Determination of horizontal velocity fields at the sun’s surface with high spatial and temporal resolution. Astron. Astrophys. 1999, 349, 301–311. [Google Scholar]
- Pandey, A.; Scheel, J.D.; Schumacher, J. Turbulent superstructures in Rayleigh-Bénard convection. Nat. Commun. 2018, 9, 2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roche, P.E. The ultimate state of convection: A unifying picture of very high Rayleigh numbers experiments. New J. Phys. 2020, 22, 073056. [Google Scholar] [CrossRef]
- Blass, A.; Zhu, X.; Verzicco, R.; Lohse, D.; Stevens, R.J.A.M. Flow organization and heat transfer in turbulent wall sheared thermal convection. J. Fluid Mech. 2020, 897, A22. [Google Scholar] [CrossRef]
- Berrilli, F.; Scardigli, S.; Giordano, S. Multiscale Magnetic Underdense Regions on the Solar Surface: Granular and Mesogranular Scales. Sol. Phys. 2013, 282, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Berrilli, F.; Scardigli, S.; Del Moro, D. Magnetic pattern at supergranulation scale: The void size distribution. Astron. Astrophys. 2014, 568, A102. [Google Scholar] [CrossRef] [Green Version]
- Simon, G.W.; Leighton, R.B. Velocity Fields in the Solar Atmosphere. III. Large-Scale Motions, the Chromospheric Network, and Magnetic Fields. Astrophys. J. 1964, 140, 1120. [Google Scholar] [CrossRef]
- Labonte, B.J.; Howard, R. The Magnetic Flux in the Quiet Sun Network. Sol. Phys. 1982, 80, 15–19. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Ai, G.; Wang, H.; Zirin, H. The evolution of magnetic network elements in the quiet Sun. Astron. Astrophys. 1994, 283, 215–220. [Google Scholar]
- Hagenaar, H.J.; Schrijver, C.J.; Title, A.M. The Distribution of Cell Sizes of the Solar Chromospheric Network. Astrophys. J. 1997, 481, 988–995. [Google Scholar] [CrossRef]
- Berrilli, F.; Florio, A.; Ermolli, I. On the Geometrical Properties of the Chromospheric Network. Sol. Phys. 1998, 180, 29–45. [Google Scholar] [CrossRef]
- Martínez González, M.J.; Bellot Rubio, L.R.; Solanki, S.K.; Martínez Pillet, V.; Del Toro Iniesta, J.C.; Barthol, P.; Schmidt, W. Resolving the Internal Magnetic Structure of the Solar Network. Astrophys. J. Lett. 2012, 758, L40. [Google Scholar] [CrossRef]
- Cattaneo, F. On the Origin of Magnetic Fields in the Quiet Photosphere. Astrophys. J. Lett. 1999, 515, L39–L42. [Google Scholar] [CrossRef]
- Tobias, S.M.; Cattaneo, F.; Brummell, N.H. On the Generation of Organized Magnetic Fields. Astrophys. J. 2011, 728, 153. [Google Scholar] [CrossRef]
- Okunev, O.V.; Domínguez Cerdeña, I.; Puschmann, K.G.; Kneer, F.; Sánchez Almeida, J. Quiet sun magnetic fields vs. polar faculae-local vs. global dynamo? Astron. Nachrichten 2005, 326, 205–207. [Google Scholar] [CrossRef]
- Wiegelmann, T.; Thalmann, J.K.; Solanki, S.K. The magnetic field in the solar atmosphere. Astron. Astrophys. Rev. 2014, 22, 78. [Google Scholar] [CrossRef]
- Cameron, R.; Schüssler, M. The crucial role of surface magnetic fields for the solar dynamo. Science 2015, 347, 1333–1335. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, P.H.; Bogart, R.S.; Bush, R.I.; Hoeksema, J.T.; Kosovichev, A.G.; Schou, J.; Rosenberg, W.; Springer, L.; Tarbell, T.D.; Title, A.; et al. The Solar Oscillations Investigation—Michelson Doppler Imager. Sol. Phys. 1995, 162, 129–188. [Google Scholar] [CrossRef]
- Criscuoli, S.; Ermolli, I.; Del Moro, D.; Giorgi, F.; Tritschler, A.; Uitenbroek, H.; Vitas, N. Line Shape Effects on Intensity Measurements of Solar Features: Brightness Correction to SOHO MDI Continuum Images. Astrophys. J. 2011, 728, 92. [Google Scholar] [CrossRef]
- Chitta, L.P.; Jain, R.; Kariyappa, R.; Jefferies, S.M. Observations of the Interaction of Acoustic Waves and Small-scale Magnetic Fields in a Quiet Sun. Astrophys. J. 2012, 744, 98. [Google Scholar] [CrossRef]
- Pesnell, W.D.; Thompson, B.J.; Chamberlin, P.C. The Solar Dynamics Observatory (SDO). Sol. Phys. 2012, 275, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Schou, J.; Scherrer, P.H.; Bush, R.I.; Wachter, R.; Couvidat, S.; Rabello-Soares, M.C.; Bogart, R.S.; Hoeksema, J.T.; Liu, Y.; Duvall, T.L.; et al. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Sol. Phys. 2012, 275, 229–259. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, P.H.; Schou, J.; Bush, R.I.; Kosovichev, A.G.; Bogart, R.S.; Hoeksema, J.T.; Liu, Y.; Duvall, T.L.; Zhao, J.; Title, A.M.; et al. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Sol. Phys. 2012, 275, 207–227. [Google Scholar] [CrossRef] [Green Version]
- Tsuneta, S.; Ichimoto, K.; Katsukawa, Y.; Nagata, S.; Otsubo, M.; Shimizu, T.; Suematsu, Y.; Nakagiri, M.; Noguchi, M.; Tarbell, T.; et al. The Solar Optical Telescope for the Hinode Mission: An Overview. Sol. Phys. 2008, 249, 167–196. [Google Scholar] [CrossRef]
- Emilio, M.; Kuhn, J.R.; Bush, R.I.; Scholl, I.F. Measuring the Solar Radius from Space during the 2003 and 2006 Mercury Transits. Astrophys. J. 2012, 750, 135. [Google Scholar] [CrossRef] [Green Version]
- Egidi, A.; Caccin, B.; Sofia, S.; Heaps, W.; Hoegy, W.; Twigg, L. High-Precision Measurements of the Solar Diameter and Oblateness by the Solar Disk Sextant (SDS) Experiment. Sol. Phys. 2006, 235, 407–418. [Google Scholar] [CrossRef]
- Aikio, J.; Mähönen, P. A Simple Void-searching Algorithm. Astrophys. J. 1998, 497, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Einasto, J.; Einasto, M.; Gramann, M. Structure and formation of superclusters -IX. Self-similarity of voids. Mon. Not. R. Astron. Soc. 1989, 238, 155–177. [Google Scholar] [CrossRef] [Green Version]
- Bessis, D.; Demko, S. Generalized Apollonian packings. Commun. Math. Phys. 1990, 134, 293–319. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Andrade, J.S., Jr.; Andrade, R.F.S. Fluid flow through Apollonian packings. Phys. Rev. E 2010, 81, 047302. [Google Scholar] [CrossRef] [PubMed]
- Rast, M.P. On the Nature of “Exploding” Granules and Granule Fragmentation. Astrophys. J. 1995, 443, 863. [Google Scholar] [CrossRef]
- Bray, R.J.; Loughhead, R.E.; Durrant, C.J. Book-Review—the Solar Granulation—ED.2. J. Br. Astron. Assoc. 1984, 94, 196. [Google Scholar]
- Nordlund, Å.; Stein, R.F.; Asplund, M. Solar Surface Convection. Living Rev. Sol. Phys. 2009, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Yelles Chaouche, L.; Moreno-Insertis, F.; Martínez Pillet, V.; Wiegelmann, T.; Bonet, J.A.; Knölker, M.; Bellot Rubio, L.R.; del Toro Iniesta, J.C.; Barthol, P.; Gandorfer, A.; et al. Mesogranulation and the Solar Surface Magnetic Field Distribution. Astrophys. J. Lett. 2011, 727, L30. [Google Scholar] [CrossRef] [Green Version]
- Schrijver, C.J.; Hagenaar, H.J.; Title, A.M. On the Patterns of the Solar Granulation and Supergranulation. Astrophys. J. 1997, 475, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Berrilli, F.; Del Moro, D.; Consolini, G.; Pietropaolo, E.; Duvall, T.L., Jr.; Kosovichev, A.G. Structure Properties of Supergranulation and Granulation. Sol. Phys. 2004, 221, 33–45. [Google Scholar] [CrossRef]
- Roudier, T.; Muller, R. Relation between families of granules, mesogranules and photospheric network. Astron. Astrophys. 2004, 419, 757–762. [Google Scholar] [CrossRef]
- Zwaan, C. Elements and patterns in the solar magnetic field. Ann. Rev. Astron. Astrophys. 1987, 25, 83–111. [Google Scholar] [CrossRef]
- Nordlund, A.; Spruit, H.C.; Ludwig, H.G.; Trampedach, R. Is stellar granulation turbulence? Astron. Astrophys. 1997, 328, 229–234. [Google Scholar]
SOHO/MDI | SDO/HMI | HINODE/SOT | |
---|---|---|---|
Number of magnetograms | 191 | 500 | 1 |
Start | 1996-08-01 | 2010-05-12 | 2007-03-10 |
End | 1997-02-28 | 2019-05-27 | 2007-03-10 |
Pixel scale (asec/pixel) | 0.620 | 0.504 | 0.150 |
Size | 1024 × 1024 | 1024 × 1024 | 2047 × 994 |
Detected PMVs | 133,569 | 183,359 | 942 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scardigli, S.; Berrilli, F.; Del Moro, D.; Giovannelli, L. Stellar Turbulent Convection: The Multiscale Nature of the Solar Magnetic Signature. Atmosphere 2021, 12, 938. https://doi.org/10.3390/atmos12080938
Scardigli S, Berrilli F, Del Moro D, Giovannelli L. Stellar Turbulent Convection: The Multiscale Nature of the Solar Magnetic Signature. Atmosphere. 2021; 12(8):938. https://doi.org/10.3390/atmos12080938
Chicago/Turabian StyleScardigli, Stefano, Francesco Berrilli, Dario Del Moro, and Luca Giovannelli. 2021. "Stellar Turbulent Convection: The Multiscale Nature of the Solar Magnetic Signature" Atmosphere 12, no. 8: 938. https://doi.org/10.3390/atmos12080938
APA StyleScardigli, S., Berrilli, F., Del Moro, D., & Giovannelli, L. (2021). Stellar Turbulent Convection: The Multiscale Nature of the Solar Magnetic Signature. Atmosphere, 12(8), 938. https://doi.org/10.3390/atmos12080938