Atmospheric Wind Field Modelling with OpenFOAM for Near-Ground Gas Dispersion
Abstract
:1. Introduction
2. Turbulence Model and Boundary Conditions for Neutral Stratification
- -
- the flow is stationary,
- -
- the flow fields are free of horizontal gradients,
- -
- the vertical velocity is zero,
3. Results
3.1. Horizontally Homogeneous Boundary Layer
3.2. VDI 3783/9 Benchmark
3.3. Wind Tunnel Experiments
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Franke, J.; Hellsten, A.; Schlünzen, H.; Carissimo, B. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment: COST Action 732 Quality Assurance and Improvement of Microscale Meteorological Models; Meteorological Institute University of Hamburg: Hamburg, Germany, 2007. [Google Scholar]
- Batt, R.; Gant, S.E.; Lacome, J.-M.; Truchot, B. Modelling of stably-stratified atmospheric boundary layers with commercial CFD software for use in risk assessment. Chem. Engineer. Trans. 2016, 48, 61–66. [Google Scholar]
- Richards, P.; Younis, B. Comments on “prediction of the wind-generated pressure distribution around buildings” by E.H. Mathews. J. Wind. Eng. Ind. Aerodyn. 1990, 34, 107–110. [Google Scholar] [CrossRef]
- Quinn, A.D.; Wilson, M.; Reynolds, A.M.; Couling, S.B.; Hoxey, R.P. Modelling the dispersion of aerial pollutants from agricul-tural buildings—An evaluation of computational fluid dynamics (CFD). Comput. Electron. Agric. 2001, 30, 219–235. [Google Scholar] [CrossRef]
- Zhang, C.X. Numerical predictions of turbulent recirculating flows with a k–ε model. J. Wind. Eng. Ind. Aerod. 1994, 51, 177–201. [Google Scholar] [CrossRef]
- Riddle, A.; Carruthers, D.; Sharpe, A.; McHugh, C.; Stocker, J. Comparisons between FLUENT and ADMS for atmospheric dispersion modelling. Atmos. Environ. 2004, 38, 1029–1038. [Google Scholar] [CrossRef]
- Richards, P.J.; Hoxey, R.P. Appropriate boundary conditions for computational wind engineering models using the k-ε mod-el. J. Wind. Eng. Ind. Aerod. 1993, 46–47, 145–153. [Google Scholar] [CrossRef]
- Alinot, C.; Masson, C. k–ε model for the atmospheric boundary layer under various thermal stratifications. J. Sol. Energy Eng. 2005, 127, 438–443. [Google Scholar] [CrossRef]
- Yang, W.; Quan, Y.; Jin, X.; Tamura, Y.; Gu, M. Influences of equilibrium atmosphere boundary layer and turbulence param-eter on wind loads of low-rise buildings. J. Wind. Eng. Ind. Aerodyn. 2008, 96, 2080–2092. [Google Scholar] [CrossRef]
- Yang, Y.; Gu, M.; Chen, S.; Jin, X. New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. J. Wind. Eng. Ind. Aerodyn. 2009, 97, 88–95. [Google Scholar] [CrossRef]
- Pontiggia, M.; Derudi, M.; Busini, V.; Rota, R. Hazardous gas dispersion: A CFD model accounting for atmospheric stability classes. J. Hazard. Mater. 2009, 171, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Van Der Laan, M.P.; Kelly, M.C.; Sørensen, N.N. A new k-epsilon model consistent with Monin-Obukhov similarity theory. Wind. Energy 2016, 20, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Blocken, B.; Stathopoulos, T.; Carmeliet, J. CFD simulation of the atmospheric boundary layer: Wall function problems. Atmos. Environ. 2007, 41, 238–252. [Google Scholar] [CrossRef]
- Zhang, X. CFD Simulation of Neutral ABL Flows; Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi: Kongens Lyngby, Denmark, 2009. [Google Scholar]
- Parente, A.; Gorlé, C.; van Beeck, J.; Benocci, C. Improved k-ε model and wall function formulation for the RANS simula-tion of ABL flows. J. Wind. Eng. Ind. Aerodyn. 2011, 34, 107–110. [Google Scholar]
- Environmental Meteorology—Prognostic Microscale Windfield Models—Evaluation for Flow around Buildings and Obstacles; VDI Guideline 3783, Part 9; Beuth Verlag: Berlin, Germany, 2005.
- Environmental Meteorology—Prognostic Microscale Windfield Models—Evaluation for Flow around Buildings and Obstacles; VDI Guideline 3783, Part 9; Beuth Verlag: Berlin, Germany, 2017.
- OpenFOAM. User Guide. Version 7. OpenFOAM—The OpenFOAM Foundation. 2019. Available online: https://openfoam.org (accessed on 24 July 2020).
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using ob-ject-oriented techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Method Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- El Tahry, S.H. k-epsilon equation for compressible reciprocating engine flows. J. Energy 1983, 7, 345–353. [Google Scholar] [CrossRef]
- Jones, W.; Launder, B. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 1972, 15, 301–314. [Google Scholar] [CrossRef]
- Hargreaves, D.; Wright, N. On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer. J. Wind. Eng. Ind. Aerodyn. 2007, 95, 355–369. [Google Scholar] [CrossRef]
- Franke, J.; Sturm, M.; Kalmbach, C. Validation of OpenFOAM 1.6.x with the German VDI guideline for obstacle resolving micro-scale models. J. Wind. Eng. Ind. Aerodyn. 2012, 104–106, 350–359. [Google Scholar] [CrossRef]
- Leitl, B. Compilation of Experimental Data for Validation of Micro Scale Dispersion Models (CEDVAL). Available online: https://mi-pub.cen.uni-hamburg.de/index.php?id=433 (accessed on 1 May 2021).
- Eichhorn, J. MISKAM Version 5.02—Evaluierung nach VDI-RL 3783/9. Available online: http://www.lohmeyer.de/ (accessed on 1 May 2021).
- Environmental Meteorology—Physical Modelling of Flow and Dispersion Processes in the Atmospheric Boundary Layer—Application of Wind Tunnels; VDI Guideline 3783, Part 12; Beuth Verlag: Düsselsdorf, Germany, 2000.
- Counihan, J. Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880–1972. Atmos. Environ. 1975, 9, 871–905. [Google Scholar] [CrossRef]
Test Case C3 | Test Case C4 | Test Case C6 | |
---|---|---|---|
Domain in m (l × w × h) | 500 × 200 × 200 | 500 × 200 × 200 | 520 × 400 × 200 |
Nr. of Buildings Building Size in m (l × w × h) | 1 Building 25 × 25 × 25 | 1 Building 25 × 25 × 25 | 3 × 7 Buildings 30 × 20 × 25 |
Mesh size | 1.60 Mio cells | 1.80 Mio cells | 7.30 Mio cells |
Atmospheric Inlet Conditions | = 0.10 m = 0.22 = 5.04 m/s = 75 m = 0.31 m/s | = 0.10 m = 0.21 = 4.43 m/s = 75 m = 0.27 m/s | = 0.10 m = 0.21 = 6.30 m/s = 132 m = 0.36 m/s |
Definition of near fields | upwind of the building: 25 m downwind of the building: 50 m each side transverse to the direction of flow: 12.5 m above the building: 12.5 m | - | |
Permitted difference D | 25% | 25% | 25% |
Absolute permitted difference W | 0.06 | 0.06 | 0.10 |
Whole Domain | Near Field | Whole Domain | Near Field | Whole Domain | Near Field | |
---|---|---|---|---|---|---|
Test case c3 | 83 | 72 | 92 | 88 | 91 | 85 |
Test case c4 | 81 | 70 | 69 | 62 | 77 | 61 |
Test case c6 | 78 | - | 87 | - | 80 | - |
M1 | 71 | 89 |
M2 | 67 | 82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schalau, S.; Habib, A.; Michel, S. Atmospheric Wind Field Modelling with OpenFOAM for Near-Ground Gas Dispersion. Atmosphere 2021, 12, 933. https://doi.org/10.3390/atmos12080933
Schalau S, Habib A, Michel S. Atmospheric Wind Field Modelling with OpenFOAM for Near-Ground Gas Dispersion. Atmosphere. 2021; 12(8):933. https://doi.org/10.3390/atmos12080933
Chicago/Turabian StyleSchalau, Sebastian, Abdelkarim Habib, and Simon Michel. 2021. "Atmospheric Wind Field Modelling with OpenFOAM for Near-Ground Gas Dispersion" Atmosphere 12, no. 8: 933. https://doi.org/10.3390/atmos12080933
APA StyleSchalau, S., Habib, A., & Michel, S. (2021). Atmospheric Wind Field Modelling with OpenFOAM for Near-Ground Gas Dispersion. Atmosphere, 12(8), 933. https://doi.org/10.3390/atmos12080933