Computer Simulations of Air Quality and Bio-Climatic Indices for the City of Sofia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Air Quality Indices
3.2. Bio-Climatic Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Health Aspects of Air Pollution. Results from the WHO Project Systematic Review of Health Aspects of Air Pollution in Europe, 2004; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- WHO. Fact Sheet Number 187; World Health Organization (WHO): Geneva, Switzerland, 2000. [Google Scholar]
- European Parliament. Directive 2002/3/EC of 12 February 2002 relating to ozone in ambient air. Off. J. Eur. Communities 2002, L67, 14–30. [Google Scholar]
- European Parliament: Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, L152, 1–44.
- Brunekreef, B.; Holgate, S. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Katsouyanni, K. Ambient air pollution and health. Br. Med Bull. 2003, 68, 143–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulphur Dioxide. Global Update 2005. Summary of Risk Assessment; WHO Regional Office for Europe: Copenhagen, Denmark, 2005. [Google Scholar]
- Atkinson, R.W.; Yu, D.; Armstrong, B.; Pattenden, S.; Wilkinson, P.; Doherty, R.; Hea, M.R.; Anderson, H.R. Concentration–Response Function for Ozone and Daily Mortality: Results from Five Urban and Five Rural UK Populations. Environ. Health Perspect. 2012, 120, 1411–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikiforov, B.; Antova, T.; Lolova, D. Health issues for the population in the town of Pleven related to ambient air pollution. Probl. Hyg. 2002, 3, 39–44. (In Bulgarian) [Google Scholar]
- Nikiforov, B.; Antova, T.; Lolova, D. Ambient air quality in the municipality of Rousse and public health risk. Probl. Hyg. 2003, 1, 15–22. (In Bulgarian) [Google Scholar]
- Antova, T.; Nikiforov, B.; Lolova, D. Ambient air quality and health risk to the population of the town of Dobrich. Probl. Hyg. 2002, 2, 27–32. (In Bulgarian) [Google Scholar]
- Pattenden, S.B.; Nikiforov, B.; Armstrong, B.G. Mortality and temperature in Sofia and London. J. Epidemiol. Community Health 2003, 57, 628–633. [Google Scholar] [CrossRef] [Green Version]
- Starr, C.; McMillan, B. Human Biology; Brooks/Cole Cengager Learning: Mason, OH, USA, 2010. [Google Scholar]
- Giles, B.D.; Balafoutis, C.H.; Maheras, P. Too hot for comfort: The heatwaves in Greece in 1987 and 1988. Int. J. Biometeorol. 1990, 34, 98–104. [Google Scholar] [CrossRef]
- Stathopoulou, M.I.; Cartalis, C.; Keramitsoglou, I.; Santamouris, M. Thermal Remote Sensing of Thom’s Discomfort Index (DI): Comparison with In Situ Measurements. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V; SPIE Remote Sensing: Bruges, Belgium, 2005. [Google Scholar]
- Sajani, Z.S.; Tibaldi, S.; Scotto, F.; Lauriola, P. Bioclimatic characterisation of an urban area: A case study in B logna (Italy). Int. J. Biometeorol. 2008, 52, 779–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, V.D.P.R.; De Azevedo, P.V.; Brito, R.S.; Da Cunha Campos, J.H.B. Evaluating the urban climate of a typically tropical city of northeastern Brazil. Environ. Monit. Assess. 2010, 161, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Ergonomics of the Thermal Environment—Determination and Interpretation of Cold Stress When using Required Clothing Insulation (IREQ) and Local Cooling Effects. (ISO Standard No. 11079:2007). 2007. Available online: https://www.iso.org/standard/38900.html (accessed on 15 June 2021).
- Ergonomics of the Thermal Environment—Assessment of Heat Stress using the WBGT (Wet Bulb Globe Temperature) Index. (ISO Standard No. 7243:2017). 2017. Available online: https://www.iso.org/standard/67188.html (accessed on 15 June 2021).
- Ergonomics of the Thermal Environment—Assessment of Heat Stress using the WBGT (Wet Bulb Globe Temperature) Index. (ISO Standard No. 7933:2004). 2004. Available online: https://www.iso.org/standard/37600.html (accessed on 15 June 2021).
- Ergonomics of the Thermal Environment—Risk Assessment Strategy for the Prevention of Stress or Discomfort in Thermal Working Conditions. (ISO Standard No. 15265:2004). 2004. Available online: https://www.iso.org/standard/26129.html (accessed on 15 June 2021).
- de Freitas, C.R.; Grigorieva, E.A. A comparison and appraisal of a comprehensive range of human thermal climate indices. Int. J. Biometeorol. 2017, 61, 487–512. [Google Scholar] [CrossRef] [PubMed]
- d’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G. Notes on the Implementation of the IREQ Model for the Assessment of Extreme Cold Environments. Ergonomics 2013, 56, 707–724. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; McGraw-Hill: New York, NY, USA, 1972. [Google Scholar]
- Höppe, P. Die Thermische Komponente der Stadtklimas. Wiss. Mitt. Meteorol. Inst. Univ. München. 1986, 53, 94–108. [Google Scholar]
- Matzarakis, A.; Mayer, H. The extreme heat wave in Athens in July 1987 from the point of view of human biometeorology. Atmos. Environ. Part B Urban Atmos. 1991, 25, 203–211. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H. Heat stress in Greece. Int. J. Biometeorol. 1997, 41, 34–39. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Estimation and Calculation of the Mean Radiant Temperature within Urban Structures. In Biometeorology and Urban Climatology at the Turn of the Millennium: Selected Papers from the Conference ICB-ICUC’99, Sydney, Australia, 8–12 November 1999; de Dear, R.J., Kalma, J.D., Oke, T.R., Auliciems, A., Eds.; WMO: Geneva, Switzerland; UNEP: Nairobi, Kenya, 2000; pp. 273–278. [Google Scholar]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Rothfusz, L.P. NWS Technical Attachment (SR 90-23). 1990. Available online: https://www.weather.gov/media/ffc/ta_htindx.PDF (accessed on 20 August 2021).
- Steadman, R.G. The assessment of sultriness, Part I: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteorol. 1979, 18, 861–873. [Google Scholar] [CrossRef] [Green Version]
- The NCAR Command Language (Version 6.6.2) [Software]. (2019). Boulder, Colorado: UCAR/NCAR/CISL/TDD.. Available online: https://www.ncl.ucar.edu/ (accessed on 20 August 2021).
- Osczevski, R.; Bluestein, M. The new wind chill equivalent temperature chart. Bull. Am. Meteorol. Soc. 2005, 86, 1453–1458. [Google Scholar] [CrossRef] [Green Version]
- Wind Chill Index. Available online: https://www.canada.ca/en/environment-climate-change/services/weather-health/wind-chill-cold-weather/wind-chill-index.html (accessed on 20 May 2019).
- Ivanov, V.; Evtimov, S. Heat Risks in Bulgaria during 2003–2012 period. Bulg. Geophys. J. 2014, 40, 3–13. [Google Scholar]
- Ivanov, V.; Evtimov, S. Wind chill hazard in Bulgaria during 2003–2012 period. Comptes Rendus L’Academie Bulg. Des. Sci. 2014, 67, 1521–1530. [Google Scholar]
- Ivanov, V.; Chervenkov, H. Modelling human biometeorological conditions using meteorological data from reanalysis and objective Analysis—Preliminary results. In BGSIAM 2018 Advanced Computing in Industrial Mathematics; Springer: Cham, Switzerland, 2018; pp. 170–181. [Google Scholar]
- Chervenkov, H.; Slavov, K.; Ivanov, V. STARDEX and ETCCDI Climate Indices Based on E-OBS and CARPATCLIM. In International Conference on Numerical Methods and Applications; Springer: Cham, Switzerland, 2018; pp. 360–367. [Google Scholar]
- Georgieva, I.; Ivanov, V. Computer simulations of the impact of air pollution on the quality of life and health risks in Bulgaria. Int. J. Environ. Pollut. 2018, 64, 35–46. [Google Scholar] [CrossRef]
- Ivanov, V.; Georgieva, I. Air Quality Index Evaluations for Sofia City. In Proceedings of the IEEE EUROCON 2017–17th IEEE International Conference on Smart Technologies, Ohrid, North Macedonia, 6–8 July 2017. [Google Scholar]
- Georgieva, I.; Ivanov, V. Impact of the Air Pollution on the Quality of Life and Health Risks in Bulgaria. In Proceedings of the HARMO 2017, 18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Bologna, Italy, 9–12 October 2017. [Google Scholar]
- Georgieva, I.; Gadzhev, G.; Ganev, K.; Prodanova, M.; Syrakov, D.; Miloshev, N. Numerical study of the air quality in the city of Sofia—Some preliminary results. Int. J. Environ. Pollut. 2015, 57, 162–174. [Google Scholar] [CrossRef]
- Georgieva, I.; Gadzhev, G.; Ganev, K.; Prodanova, M.; Syrakov, D.; Miloshev, N. Numerical Study of the Air Quality in the City of Sofia. In 8th Congress of the Balkan Geophysical Society; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2015. [Google Scholar]
- Georgieva, I.; Gadzhev, G.; Ganev, K.; Prodanova, M.; Syrakov, D.; Miloshev, N. Numerical Study of the Air Quality in the City of Sofia—Some Preliminary Results. In Proceedings of the HARMO 2014—16th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 2014, Varna, Bulgaria, 8–11 September 2014; pp. 356–360. [Google Scholar]
- Georgieva, I.; Gadzhev, G.; Ganev, K.; Melas, D.; Wang, T. HPC simulations of the atmospheric composition in Bulgaria and the city of Sofia. Cybern. Inf. Technol. 2017, 17, 37–48. [Google Scholar]
- Georgieva, I.; Gadzhev, G.; Ganev, K.; Miloshev, N. Computer Simulations of Atmospheric Composition in Urban Areas some Results for the City of Sofia. In Proceedings of the Tenth International Conference on “Large Scale Scientific Computations”, LSSC2018, Sozopol, Bulgaria, 5–9 June 2017; Springer: Cham, Switzerland, 2018; pp. 474–482. [Google Scholar]
- Georgieva, I.; Gadzhev, G.; Ganev, K.; Miloshev, N. Analysis of Dynamical and Chemical Processes Which form Athmospheric Composition over Bulgaria. Int. Multidiscip. Sci. GeoConference: SGEM 2018, 18, 167–179. [Google Scholar]
- Georgieva, I.; Miloshev, N. Computer Simulations of PM Concentrations Climate for Bulgaria. In Proceedings of the International Conference on “Numerical Methods for Scientific Computations and Advanced Applications”, NMSCAA’18, Hissarya, Bulgaria, 28–31 May 2018; pp. 46–49. [Google Scholar]
- Shamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G.; A Description of the Advanced Research WRF Version 2 (No. NCAR/TN-468+STR), 2017, University Corporation for Atmospheric Research. Available online: http://www.dtic.mil/dtic/tr/fulltext/u2/a487419.pdf (accessed on 15 June 2021).
- Available online: https://rda.ucar.edu/datasets/ds083.2/#!access (accessed on 15 June 2021).
- Byun, D.; Ching, J.; Science Algorithms of the EPA Models-3 Community Multi-scale Air Quality (CMAQ) Modeling System. EPA Report 600/R-99/030, Washington, DC, EPA/600/R-99/030 (NTIS PB2000-100561). 1999. Available online: https://cfpub.epa.gov/si/si public record report.cfm?Lab=NERL&dirEntryId=63400 (accessed on 15 June 2021).
- Byun, D. Dynamically Consistent Formulations in Meteorological and Air Quality Models for Multiscale Atmospheric Studies part I: Governing equations in a generalized coordinate system. J. Atmos. Sci. 1999, 56, 3789–3807. [Google Scholar] [CrossRef]
- CEP: Sparse Matrix Operator Kernel Emission (SMOKE) Modeling System, 2003, University of Carolina, Carolina Environmental Programs, Research Triangle Park, North Carolina. Available online: https://www.cmascenter.org/smoke/ (accessed on 20 August 2021).
- Denier van der Gon, H.; Visschedijk, A.; van de Brugh, H.; Droge, R. A High Resolution European Emission Data Base for the Year 2005, TNO-Report TNO-034-UT-2010-01895 RPT-ML, Apeldoorn, The Netherlands. 2010. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/texte_41_2013_appelhans_e03_komplett_0.pdf (accessed on 20 August 2021).
- Hong, S.-Y.; Lim, J.-O.J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Collins, W.D.; Rasch, P.J.; Boville, B.A.; Hack, J.J.; McCaa, J.R.; Williamson, D.L.; Kiehl, J.T.; Briegleb, B.; Bitz, C.; Lin, S.-J.; et al. Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR 2004, 226, 1326–1334. [Google Scholar]
- Xiu, A.; Pleim, J.E. Development of a land surface model part I: Application in a mesoscale meteorology model. J. Appl. Meteor. 2001, 40, 192–209. [Google Scholar] [CrossRef]
- Pleim, J.E. A combined local and non-local closure model for the atmospheric boundary layer. Part 1: Model description and testing. J. Appl. Meteor. Clim. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Ivanov, V.; Dimitrova, R. Sensitivity to the Wrf Model Configuration of the Wind Chill Index for Sofia Region—Preliminary Results. In Proceedings of the 1st Internationa Conference on Environmental Protection and Disaster RISKs, Sofia, Bulgaria, 29–30 September 2020; pp. 79–89. [Google Scholar]
- Gadzhev, G.; Ganev, K.; Miloshev, N. Numerical study of the atmospheric composition climate of Bulgaria—Validation of the computer simulation results. Int. J. Environ. Pollut. 2015, 57, 189–201. [Google Scholar] [CrossRef]
- de Leeuw, F.; Mol, W. Air Quality and Air Quality Indices: A world apart, 2005, ETC/ACC Technical Paper 2005/5. Available online: http://acm.eionet.europa.eu/docs/ETCACC TechnPaper 2005 5 AQ Indices.pdf (accessed on 15 June 2021).
- Georgieva, I. Air Quality Index Evaluations for Bulgaria. In Proceedings of the International Conference on Numerical Methods for Scientific Computations and Advanced Applications, Bansko, Bulgaria, 19–22 May 2014; pp. 39–42. [Google Scholar]
- Gadzhev, G.; Ganev, K.; Miloshev, N.; Syrakov, D.; Prodanova, M. Numerical study of the atmospheric composition in Bulgaria. Comput. Math. Appl. 2013, 65, 402–422. [Google Scholar] [CrossRef]
- Song, J.; Wang, Z.-H.; Wang, C. Biospheric and anthropogenic contributors to atmospheric CO2 variability in a residential neighborhood of Phoenix, Arizona. J. Geophys. Res. Atmos. 2017, 122, 3317–3329. [Google Scholar] [CrossRef]
- Gadzhev, G.; Georgieva, I.; Ganev, K.; Miloshev, N. Contribution of different emission sources to the atmospheric composition formation in the city of Sofia. Int. J. Environ. Pollut. 2018, 64, 47–57. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.-H.; Yang, J. Cooling Effect of Urban Trees on the Built Environment of Contiguous United States. Earth’s Future 2018, 6, 1066–1081. [Google Scholar] [CrossRef] [Green Version]
INDEX | O3 | NO2 | SO2 | PM10 |
---|---|---|---|---|
µg/m3 | µg/m3 | µg/m3 | µg/m3 | |
1 | 0–32 | 0–95 | 0–88 | 0–21 |
2 | 33–66 | 96–190 | 89–176 | 22–42 |
3 | 67–99 | 191–286 | 177–265 | 43–64 |
4 | 100–126 | 287–381 | 266–354 | 65–74 |
5 | 127–152 | 382–477 | 355–442 | 75–86 |
6 | 153–179 | 478–572 | 443–531 | 87–96 |
7 | 180–239 | 573–635 | 532–708 | 97–107 |
8 | 240–299 | 636–700 | 709–886 | 108–118 |
9 | 300–359 | 701–763 | 887–1063 | 119–129 |
10 | >360 | >764 | >1064 | >130 |
Banding | Value | Health Descriptor |
---|---|---|
Low | 1–3 | Effects are unlikely to be noticed even by individuals who know they are sensitive to air pollutants |
Moderate | 4–6 | Mild effects, unlikely to require action, may be noticed amongst sensitive individuals. |
High | 7–9 | Significant effects may be noticed by sensitive individuals and action to avoid or reduce these effects may be needed. Asthmatics will find that their “reliever” inhaler is likely to reverse the effects on the lung. |
Very High | 10 | The effects on sensitive individuals described for “High” levels of pollution may worsen |
Heat Index Category | Numerical Interval | Health Precautions |
---|---|---|
Caution | 26.7–32.2 °C | Fatigue is possible with prolonged exposure and activity. Continuing activity could result in heat cramps. |
Extreme Caution | 32.2–40.5 °C | Heat cramps and heat exhaustion are possible. Continuing activity could result in heat stroke. |
Danger | 40.5–54.4 °C | Heat cramps and heat exhaustion are likely; heat stroke is probable with continued activity |
Extreme Danger | ≥ 54.4 °C | Heat stroke is imminent |
Wind Chill Category | Numerical Interval | Health Precautions |
---|---|---|
Light Risk | 0–−9 °C | Slight increase in discomfort. |
Moderate Risk | −10–−27 °C | Uncomfortable. Risk of hypothermia and frostbite if outside for long periods without adequate protection. |
High Risk | −28–−39 °C | High risk of frostnip or frostbite. Exposed skin can freeze in 10 to 30 min; Check face and extremities for numbness or whiteness; High risk of hypothermia if outside for long periods without adequate clothing or shelter from wind and cold. |
Very High Risk | −40–−47 °C | Very high risk of frostbite; Exposed skin can freeze in 5 to 10 min; Check face and extremities for numbness or whiteness; Very high risk of hypothermia if outside for long periods without adequate clothing or shelter from wind and cold. |
Severe Risk | −48–−54 °C | Severe risk of frostbite; Exposed skin can freeze in 2 to 5 min; Check face and extremities frequently for numbness or whiteness; Severe risk of hypothermia if outside for long periods without adequate clothing or shelter from wind and cold. |
Extreme Risk | ≤−55 °C | DANGER! Exposed skin can freeze in less than 2 min; Outdoor conditions are hazardous. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadzhev, G.; Ganev, K. Computer Simulations of Air Quality and Bio-Climatic Indices for the City of Sofia. Atmosphere 2021, 12, 1078. https://doi.org/10.3390/atmos12081078
Gadzhev G, Ganev K. Computer Simulations of Air Quality and Bio-Climatic Indices for the City of Sofia. Atmosphere. 2021; 12(8):1078. https://doi.org/10.3390/atmos12081078
Chicago/Turabian StyleGadzhev, Georgi, and Kostadin Ganev. 2021. "Computer Simulations of Air Quality and Bio-Climatic Indices for the City of Sofia" Atmosphere 12, no. 8: 1078. https://doi.org/10.3390/atmos12081078
APA StyleGadzhev, G., & Ganev, K. (2021). Computer Simulations of Air Quality and Bio-Climatic Indices for the City of Sofia. Atmosphere, 12(8), 1078. https://doi.org/10.3390/atmos12081078