Quantifying the Effect of Building Shadowing and Cloudiness on Mean Radiant Temperature in Singapore
Abstract
:1. Introduction
2. Regional Climate
3. Materials and Methods
3.1. Measurement Campaigns
3.2. Areas and Sites of Measurements
3.2.1. Duxton Park Area
3.2.2. CBD Area
3.3. Analysis of Climate Variables
4. Results and Discussion
4.1. Impact of Building Shadow
4.1.1. Differences between Climatic Seasons
4.1.2. Tmrt Evaluation on Clear Skies Conditions
4.2. Effect of Cloudiness
4.2.1. Tmrt Versus the Clearness Index
4.2.2. Difference between Cloudy and Clear Skies Days
4.2.3. Urban Development and Diffuse Radiation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advanced Tables; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2017. [Google Scholar]
- Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.H.; Akbari, H. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2016, 62, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–852. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Santamouris, M. Regulating the damaged thermostat of the cities—Status, impacts and mitigation challenges. Energy Build. 2015, 91, 43–56. [Google Scholar] [CrossRef]
- Martilli, A.; Krayenhoff, E.S.; Nazarian, N. Is the Urban Heat Island intensity relevant for heat mitigation studies? Urban Clim. 2020, 31, 100541. [Google Scholar] [CrossRef]
- Tong, S.; Wong, N.H.; Tan, C.L.; Jusuf, S.K.; Ignatius, M.; Tan, E. Impact of urban morphology on microclimate and thermal comfort in northern China. Sol. Energy 2017, 155, 212–223. [Google Scholar] [CrossRef]
- Yang, J.; Bou-Zeid, E. Should cities embrace their heat islands as shields from extreme cold? J. Appl. Meteorol. Climatol. 2018, 57, 1309–1320. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Herrmann, J.; Matzarakis, A. Mean radiant temperature in idealised urban canyons-examples from Freiburg, Germany. Int. J. Biometeorol. 2012, 56, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wong, N.H.; Li, C.-Q. Effect of Street Design on Outdoor Thermal Comfort in an Urban Street in Singapore. J. Urban Plan. Dev. 2016, 142, 05015003. [Google Scholar] [CrossRef]
- Urban Climate Challenges in the Tropics. In Rethinking Planning and Design Opportunities; Emmanuel, R. (Ed.) Imperial College Press: London, UK, 2016; ISBN 9781783268405. [Google Scholar]
- Bourbia, F.; Boucheriba, F. Impact of street design on urban microclimate for semi arid climate (Constantine). Renew. Energy 2010, 35, 343–347. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Street canyon design and improvement potential for urban open spaces; the influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustain. Cities Soc. 2017, 33, 85–101. [Google Scholar] [CrossRef]
- Djekic, J.; Djukic, A.; Vukmirovic, M.; Djekic, P.; Brankovic, M.D. Thermal comfort of pedestrian spaces and the influence of pavement materials on warming up during summer. Energy Build. 2018, 159, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Doulos, L.; Santamouris, M.; Livada, I. Passive cooling of outdoor urban spaces. The role of materials. Sol. Energy 2004, 77, 231–249. [Google Scholar] [CrossRef]
- Alexandri, E.; Jones, P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol. Energy 2007, 81, 742–754. [Google Scholar] [CrossRef]
- Kong, L.; Lau, K.K.-L.; Yuan, C.; Chen, Y.; Xu, Y.; Ren, C.; Ng, E. Regulation of Outdoor Thermal Comfort by Trees in Hong Kong. Sustain. Cities Soc. 2017, 31, 12–25. [Google Scholar] [CrossRef]
- de Munck, C.; Pigeon, G.; Masson, V.; Meunier, F.; Bousquet, P.; Tréméac, B.; Merchat, M.; Poeuf, P.; Marchadier, C. How much can air conditioning increase air temperatures for a city like Paris, France? Int. J. Climatol. 2013, 33, 210–227. [Google Scholar] [CrossRef]
- Ohashi, Y.; Genchi, Y.; Kondo, H.; Kikegawa, Y.; Yoshikado, H.; Hirano, Y. Influence of Air-Conditioning Waste Heat on Air Temperature in Tokyo during Summer: Numerical Experiments Using an Urban Canopy Model Coupled with a Building Energy Model. J. Appl. Meteorol. Climatol. 2007, 46, 66–81. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Schindler, D. Importance of 3-D radiant flux densities for outdoor human thermal comfort on clear-sky summer days in Freiburg, Southwest Germany. Meteorol. Z. 2014, 23, 315–330. [Google Scholar] [CrossRef]
- Manavvi, S.; Rajasekar, E. Estimating outdoor mean radiant temperature in a humid subtropical climate. Build. Environ. 2020, 171, 106658. [Google Scholar] [CrossRef]
- ISO7726. Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities; International Standarization Organization: Geneva, Switzerland, 1998; ISBN 0-580-38651-1. [Google Scholar]
- Acero, J.A.; Herranz-Pascual, K. A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Build. Environ. 2015, 93, 245–257. [Google Scholar] [CrossRef]
- Mayer, H.; Holst, J.; Dostal, P.; Imbery, F.; Schindler, D. Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorol. Z. 2008, 17, 241–250. [Google Scholar] [CrossRef]
- Kántor, N.; Unger, J. The most problematic variable in the course of human-biometeorological comfort assessment—The mean radiant temperature. Cent. Eur. J. Geosci. 2011, 3, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.L.; Wong, N.H.; Jusuf, S.K. Outdoor mean radiant temperature estimation in the tropical urban environment. Build. Environ. 2013, 64, 118–129. [Google Scholar] [CrossRef]
- Kuehn, L.A.; Stubbs, R.A.; Weaver, R.S. Theory of the globe thermometer. J. Appl. Physiol. 1970, 29, 750–757. [Google Scholar] [CrossRef]
- De Dear, R. Ping-pong globe thermometers for mean radiant temperatures. H V Eng. 1987, 60, 10–11. [Google Scholar]
- Herrmann, J.; Matzarakis, A. Influence of mean radiant temperature on thermal comfort of humans in idealized urban environments. In Proceedings of the 7th Conference on Biometeorology, Freiburg, Germany, 12–14 April 2010; pp. 522–527. [Google Scholar]
- Lin, T.P.; Matzarakis, A.; Hwang, R.L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Chen, L.; Yu, B.; Yang, F.; Mayer, H. Intra-urban differences of mean radiant temperature in different urban settings in Shanghai and implications for heat stress under heat waves: A GIS-based approach. Energy Build. 2016, 130, 829–842. [Google Scholar] [CrossRef]
- Middel, A.; Krayenhoff, E.S. Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Sci. Total Environ. 2019, 687, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Kántor, N.; Kovács, A.; Lin, T.-P. Looking for simple correction functions between the mean radiant temperature from the “standard black globe” and the “six-directional” techniques in Taiwan. Theor. Appl. Climatol. 2015, 121, 99–111. [Google Scholar] [CrossRef]
- Crank, P.J.; Middel, A.; Wagner, M.; Hoots, D.; Smith, M.; Brazel, A. Validation of seasonal mean radiant temperature simulations in hot arid urban climates. Sci. Total Environ. 2020, 749, 141392. [Google Scholar] [CrossRef]
- Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics, 2nd ed.; Edward Arnold: London, UK, 1990; p. 197. [Google Scholar]
- Oke, T.R. Boundary Layer Climates; Routledge: New York, NY, USA, 1987. [Google Scholar]
- McArthur, L.J.B.; Hay, J.E. A technique for mapping the distribution of diffuse solar radiation over the sky hemisphere. J. Appl. Meteorol. 1981, 20, 421–429. [Google Scholar] [CrossRef]
- Reindl, D.T.; Beckman, W.A.; Duffie, J.A. Diffuse fraction correlations. Sol. Energy 1990, 45, 1–7. [Google Scholar] [CrossRef]
- Singapore Department of Statistics. Population Trends 2016; Singapore Department of Statistics: Singapore, 2017; ISBN 1793-2424.
- Roth, M.; Chow, W.T.L. A historical review and assessment of urban heat island research in Singapore. Singap. J. Trop. Geogr. 2012, 33, 381–397. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Roth, M. Temporal dynamics of the urban heat island o Singapore. Int. J. Climatol. 2006, 26, 2243–2260. [Google Scholar] [CrossRef]
- Acero, J.A.; Koh, E.J.Y.; Tan, Y.S. Analysis of Climatic Variables in Different Urban Sites of Singapore and Evaluation of Strategies to Improve the Outdoor Thermal Environment; Technical Report. ETH Collection 2020. [Google Scholar] [CrossRef]
- Tetens, O. Uber einige meteorologische Begriffe. Z. Geophys 1930, 6, 297–309. [Google Scholar]
- Acero, J.A.; Dissegna, M.A.; Tan, Y.S.; Tan, A.; Norford, L.K. Outdoor performance of the black globe temperature sensor on a hot and humid tropical region. Environ. Technol. 2021. Manuscript Submitted for Publication. [Google Scholar]
- Nobre, A.M.; Dazhi, Y.; Tan, A.L.; Thome, E.R.; Tan, J.; Tan, A.D. Large-area 2D mapping of PV system performace. In Proceedings of the 29th European Photovoltaic Solar Energy Conference, Amsterdam, The Netherlands, 22–26 September 2014. [Google Scholar]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Dazhi, Y.; Jirutitijaroen, P.; Walsh, W.M. The Estimation of Clear Sky Global Horizontal Irradiance at the Equator. Energy Procedia 2012, 25, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Sun, C.; Xiao, Q.; Chen, X.; Liu, J. Field assessment of winter outdoor 3-D radiant environment and its impact on thermal comfort in a severely cold region. Sci. Total Environ. 2020, 709, 136175. [Google Scholar] [CrossRef]
- Krüger, E.L.; Minella, F.O.; Rasia, F. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build. Environ. 2011, 46, 621–634. [Google Scholar] [CrossRef]
- Lai, A.; Maing, M.; Ng, E. Observational studies of mean radiant temperature across different outdoor spaces under shaded conditions in densely built environment. Build. Environ. 2017, 114, 397–409. [Google Scholar] [CrossRef]
- Chatzipoulka, C.; Compagnon, R.; Kaempf, J.; Nikolopoulou, M. Sky view factor as predictor of solar availability on building façades. Sol. Energy 2018, 170, 1026–1038. [Google Scholar] [CrossRef]
Site | Description | Picture | SVF (1) |
---|---|---|---|
Pinnacle1 | Asymmetrical street canyon (high-rise buildings on one side and low-rise development on the other). NW street orientation. Shadow of high-rise building in the afternoon and trees in the morning. | ||
Pinnacle2 | Asymmetrical street canyon (high-rise towers on one side and low-rise development on the other). NW street orientation. Shadow of high-rise building in the afternoon. Influence of nearby low height trees and bushes. | ||
Duxton3 | Low-rise development area. Buildings on both sides of the canyon are not higher than 10 m. Ground mostly covered with grass. NNW street orientation. Most relevant shadow provided by some tall palm trees (high transmissivity) before noon. Site with highest sky view factor. |
Site | Description | Picture | SVF (1) |
---|---|---|---|
BoonTat711 | Asymmetrical street canyon (high-rise buildings on one side and Telok Ayer Market (low-rise development) on the other). Street with NW-SE orientation. Shadow in the afternoon due to high-rise building. Site with unusual high SVF due to openness and low-rise development in one side. | ||
RobinsonRd | High-rise development with street aspect ratio ≈2.5 (low sky view factor) and NE-SW orientation. Only a short period (≈2 h) of direct solar radiation around midday/afternoon. | ||
BoonTatSt | Low-rise development with street aspect ratio ≈1 (high sky view factor), and NW-SE orientation. Shadow during the afternoon. Farthest site from the shore line. | ||
McCallumSt | High-rise development with street aspect ratio ≈2.5 (low sky view factor), and NW-SE orientation. Shadow of high-rise building in the afternoon. |
Day | Site | WS (ms−1) | Ta (°C) | e (hPa) |
---|---|---|---|---|
13 July | Pinnacle1 | 1.7 | 31.1 | 24.9 |
Pinnacle2 | 1.0 | 32.2 | 25.3 | |
11 October | Pinnacle1 | 1.4 | 31.1 | 25.3 |
Pinnacle2 | 0.8 | 31.6 | 25.4 |
Date | Morning (7:00 to 10:00) | Midday/ Afternoon (11:00 to 16:00) | Evening (17:00 to 19:00) | |
---|---|---|---|---|
25 July (cloudy day) | Mean | 141 | 599 | 155 |
Max. | 371 | 833 | 238 | |
1 August (clear skies day) | Mean | 207 | 738 | 188 |
Max. | 593 | 987 | 361 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acero, J.A.; Koh, E.J.Y.; Tan, Y.S.; Norford, L.K. Quantifying the Effect of Building Shadowing and Cloudiness on Mean Radiant Temperature in Singapore. Atmosphere 2021, 12, 1012. https://doi.org/10.3390/atmos12081012
Acero JA, Koh EJY, Tan YS, Norford LK. Quantifying the Effect of Building Shadowing and Cloudiness on Mean Radiant Temperature in Singapore. Atmosphere. 2021; 12(8):1012. https://doi.org/10.3390/atmos12081012
Chicago/Turabian StyleAcero, Juan A., Elliot J. Y. Koh, Yon Sun Tan, and Leslie K. Norford. 2021. "Quantifying the Effect of Building Shadowing and Cloudiness on Mean Radiant Temperature in Singapore" Atmosphere 12, no. 8: 1012. https://doi.org/10.3390/atmos12081012
APA StyleAcero, J. A., Koh, E. J. Y., Tan, Y. S., & Norford, L. K. (2021). Quantifying the Effect of Building Shadowing and Cloudiness on Mean Radiant Temperature in Singapore. Atmosphere, 12(8), 1012. https://doi.org/10.3390/atmos12081012