Experimental Comparative Study between Conventional and Green Parking Lots: Analysis of Subsurface Thermal Behavior under Warm and Dry Summer Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Structure and Composition of Studied Parking Lots
- The parking lot P1 is a conventional system composed of asphalt (thickness 5 cm) with a 0/20 mm gravel foundation (thickness 15 cm).
- The parking lot P3 is composed of a slab filled with concrete paving stones (thickness 6 cm), a 2/4 mm mineral bed (thickness 3 cm), and a 2/32 mm gravel foundation (thickness 15 cm).
- P4 is built up of a grass-covered slab filled with a mix of soil and sand (90% soil and compost, 10% sand 0/4 mm, thickness 6 cm), a fertile laying bed (60% sand, 20% sand 0/4 mm, and 20% soil and compost 0/10 mm, thickness 3 cm) and a mixed foundation (75% gravel, 25% soil and compost, thickness 15 cm).
- P5 is composed of a slab filled with 10/20 mm wood chips (forest mulch, thickness 5 cm), a fertile laying bed (70% sand, 30% soil and compost, thickness 3 cm), and a mixed foundation (75% gravel, 25% soil and compost, thickness 15 cm).
2.3. Materials
2.4. Key Performance Indicators of Parking Lot Dynamics
2.5. Local Air Temperature and Rainfall Observations
3. Results
3.1. Impact of Depth on Temperature Dynamics
3.2. Analysis of the Daily Temperature Cycle
3.3. Comparison between Studied Systems and Control Zone
3.4. Cooling and Heating Rates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danh, L.T.; Truong, P.; Mammucari, R.; Foster, N. A Critical Review of the Arsenic Uptake Mechanisms and Phytoremediation Potential of Pteris Vittata. Int. J. Phytoremed. 2014, 16, 429–453. [Google Scholar] [CrossRef]
- Di Sabatino, S.; Barbano, F.; Brattich, E.; Pulvirenti, B. The Multiple-Scale Nature of Urban Heat Island and Its Footprint on Air Quality in Real Urban Environment. Atmosphere 2020, 11, 1186. [Google Scholar] [CrossRef]
- Cai, D.; Fraedrich, K.; Guan, Y.; Guo, S.; Zhang, C.; Zhu, X. Urbanization and Climate Change: Insights from Eco-Hydrological Diagnostics. Sci. Total Environ. 2019, 647, 29–36. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, H.; Zheng, P.; Pan, W. Quantifying the Impact of Land Use/Land Cover Changes on the Urban Heat Island: A Case Study of the Natural Wetlands Distribution Area of Fuzhou City, China. Wetlands 2016, 36, 285–298. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of Landscape Composition and Pattern on Land Surface Temperature: An Urban Heat Island Study in the Megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Kikon, N.; Singh, P.; Singh, S.K.; Vyas, A. Assessment of Urban Heat Islands (UHI) of Noida City, India Using Multi-Temporal Satellite Data. Sustain. Cities Soc. 2016, 22, 19–28. [Google Scholar] [CrossRef]
- Fan, C.; Myint, S.W.; Zheng, B. Measuring the Spatial Arrangement of Urban Vegetation and Its Impacts on Seasonal Surface Temperatures. Prog. Phys. Geogr. Earth Environ. 2015, 39, 199–219. [Google Scholar] [CrossRef]
- Mathew, A.; Khandelwal, S.; Kaul, N. Investigating Spatial and Seasonal Variations of Urban Heat Island Effect over Jaipur City and Its Relationship with Vegetation, Urbanization and Elevation Parameters. Sustain. Cities Soc. 2017, 35, 157–177. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urban Heat Islands and Landscape Heterogeneity: Linking Spatiotemporal Variations in Surface Temperatures to Land-Cover and Socioeconomic Patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Jalan, S.; Sharma, K. Spatio-Temporal Assessment of Land Use/Land Cover Dynamics and Urban Heat Island of Jaipur City Using Satellite Data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 8, 767–772. [Google Scholar] [CrossRef] [Green Version]
- Bouzouidja, R.; Cannavo, P.; Bodénan, P.; Gulyás, Á.; Kiss, M.; Kovács, A.; Béchet, B.; Chancibault, K.; Chantoiseau, E.; Bournet, P.-E.; et al. How to Evaluate Nature-Based Solutions Performance for Microclimate, Water and Soil Management Issues. Available Tools and Methods from Nature4Cities European Project Results. Ecol. Indic. 2021, 125, 107556. [Google Scholar] [CrossRef]
- Zölch, T.; Henze, L.; Keilholz, P.; Pauleit, S. Regulating Urban Surface Runoff through Nature-Based Solutions—An Assessment at the Micro-Scale. Environ. Res. 2017, 157, 135–144. [Google Scholar] [CrossRef]
- Gupta, R. Monitoring in Situ Performance of Pervious Concrete in British Columbia—A Pilot Study. Case Stud. Constr. Mater. 2014, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Onishi, A.; Cao, X.; Ito, T.; Shi, F.; Imura, H. Evaluating the Potential for Urban Heat-Island Mitigation by Greening Parking Lots. Urban For. Urban Green. 2010, 9, 323–332. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, J.; Yoon, D.K.; Cho, G.-H. The Influence of Korea’s Green Parking Project on the Thermal Environment of a Residential Street. Habitat Int. 2016, 56, 181–190. [Google Scholar] [CrossRef]
- Dagois, R.; Faure, P.; Bataillard, P.; Bouzouidja, R.; Coussy, S.; Leguédois, S.; Enjelvin, N.; Schwartz, C. From Atmospheric- to Pedo-Climate Modeling in Technosols: A Global Scale Approach. Geoderma 2017, 301, 47–59. [Google Scholar] [CrossRef]
- McPherson, E.G. Sacramento’s Parking Lot Shading Ordinance: Environmental and Economic Costs of Compliance. Landsc. Urban Plan. 2001, 57, 105–123. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.-M. Impact of Greening on the Urban Heat Island: Seasonal Variations and Mitigation Strategies. Comput. Environ. Urban Syst. 2018, 71, 165–176. [Google Scholar] [CrossRef]
- Takebayashi, H.; Moriyama, M. Study on the Urban Heat Island Mitigation Effect Achieved by Converting to Grass-Covered Parking. Sol. Energy 2009, 83, 1211–1223. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, J.R.; Yoder, D.C.; Denton, H.P.; Smoot, J.L. Wood Chips as a Soil Cover for Construction Sites with Steep Slopes. Appl. Eng. Agric. 2002, 18, 679–683. [Google Scholar] [CrossRef]
- Wang, J.; Santamouris, M.; Meng, Q.; He, B.-J.; Zhang, L.; Zhang, Y. Predicting the Solar Evaporative Cooling Performance of Pervious Materials Based on Hygrothermal Properties. Sol. Energy 2019, 191, 311–322. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, Z.; Zhang, Y.; Meng, Q. Impact of Climatic Factors on Evaporative Cooling of Porous Building Materials. Energy Build. 2018, 173, 601–612. [Google Scholar] [CrossRef]
- Li, Y.; Rodriguez, F.; Berthier, E. Development of the Integrated Urban Hydrological Model URBS: Introduction and Evaluation of a Transfer Module in the Saturated Zone; ICUD: Kuching, Malaysia, 2014. [Google Scholar]
- Faisal, G.H.; Jaeel, A.J.; Al-Gasham, T.S. BOD and COD Reduction Using Porous Concrete Pavements. Case Stud. Constr. Mater. 2020, 13, e00396. [Google Scholar] [CrossRef]
- Nemirovsky, E.M.; Welker, A.L.; Lee, R. Quantifying Evaporation from Pervious Concrete Systems: Methodology and Hydrologic Perspective. J. Irrig. Drain. Eng. 2013, 139, 271–277. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Q.; Tan, K.; Zhang, L.; Zhang, Y. Experimental Investigation on the Influence of Evaporative Cooling of Permeable Pavements on Outdoor Thermal Environment. Build. Environ. 2018, 140, 184–193. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Météo France Climate Records over the 1981–2010 Period. Technical Report [online]. Paris: Météo France. 2020, 2p. Available online: https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=117&id_rubrique=39 (accessed on 1 July 2021).
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using Local Climate Zone Scheme for UHI Assessment: Evaluation of the Method Using Mobile Measurements. Build. Environ. 2015, 83, 39–49. [Google Scholar] [CrossRef]
- Caluwaerts, S.; Hamdi, R.; Top, S.; Lauwaet, D.; Berckmans, J.; Degrauwe, D.; Dejonghe, H.; de Ridder, K.; de Troch, R.; Duchêne, F.; et al. The Urban Climate of Ghent, Belgium: A Case Study Combining a High-Accuracy Monitoring Network with Numerical Simulations. Urban Clim. 2020, 31, 100565. [Google Scholar] [CrossRef]
- De Munck, C.; Lemonsu, A.; Bouzouidja, R.; Masson, V.; Claverie, R. The GREENROOF Module (v7. 3) for Modelling Green Roof Hydrological and Energetic Performances within TEB. Geosci. Model Dev. 2013, 6, 1941–1960. [Google Scholar] [CrossRef] [Green Version]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Luca, J.; Mrawira, D. New Measurement of Thermal Properties of Superpave Asphalt Concrete. J. Mater. Civ. Eng. 2005, 17, 72–79. [Google Scholar] [CrossRef]
- Parison, S.; Hendel, M.; Grados, A.; Royon, L. Analysis of the Heat Budget of Standard, Cool and Watered Pavements under Lab Heat-Wave Conditions. Energy Build. 2020, 228, 110455. [Google Scholar] [CrossRef]
- Pomianowski, M.; Heiselberg, P.; Jensen, R.L.; Cheng, R.; Zhang, Y. A New Experimental Method to Determine Specific Heat Capacity of Inhomogeneous Concrete Material with Incorporated Microencapsulated-PCM. Cem. Concr. Res. 2014, 55, 22–34. [Google Scholar] [CrossRef]
- Binici, H.; Aksogan, O. Eco-Friendly Insulation Material Production with Waste Olive Seeds, Ground PVC and Wood Chips. J. Build. Eng. 2016, 5, 260–266. [Google Scholar] [CrossRef]
- Hendel, M.; Parison, S.; Grados, A.; Royon, L. Which Pavement Structures Are Best Suited to Limiting the UHI Effect? A Laboratory-Scale Study of Parisian Pavement Structures. Build. Environ. 2018, 144, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Santa, G.D.; Peron, F.; Galgaro, A.; Cultrera, M.; Bertermann, D.; Mueller, J.; Bernardi, A. Laboratory Measurements of Gravel Thermal Conductivity: An Update Methodological Approach. Energy Procedia 2017, 125, 671–677. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Z. Review of Soil Thermal Conductivity and Predictive Models. Int. J. Therm. Sci. 2017, 117, 172–183. [Google Scholar] [CrossRef]
- Lu, S.; Ren, T.; Gong, Y.; Horton, R. An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature. Soil Sci. Soc. Am. J. 2007, 71, 8–14. [Google Scholar] [CrossRef]
- Holmer, B.; Thorsson, S.; Eliasson, I. Cooling Rates, Sky View Factors and the Development of Intra-urban Air Temperature Differences. Geogr. Ann. Ser. A Phys. Geogr. 2007, 89, 237–248. [Google Scholar] [CrossRef]
- Konarska, J.; Holmer, B.; Lindberg, F.; Thorsson, S. Influence of Vegetation and Building Geometry on the Spatial Variations of Air Temperature and Cooling Rates in a High-Latitude City. Int. J. Climatol. 2016, 36, 2379–2395. [Google Scholar] [CrossRef] [Green Version]
- Leconte, F.; Bouyer, J.; Claverie, R. Nocturnal Cooling in Local Climate Zone: Statistical Approach Using Mobile Measurements. Urban Clim. 2020, 33, 100629. [Google Scholar] [CrossRef]
- Milošević, D.; Savić, S.; Kresoja, M.; Lužanin, Z.; Šećerov, I.; Arsenović, D.; Dunjić, J.; Matzarakis, A. Analysis of Air Temperature Dynamics in the “Local Climate Zones” of Novi Sad (Serbia) Based on Long-Term Database from an Urban Meteorological Network. Int. J. Biometeorol. 2021. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistics Notes: Measurement Error. BMJ 1996, 312, 1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Oldenborgh, G.J.; Vautard, R.; Boucher, O.; Otto, F.; Haustein, K.; Soubeyroux, J.M.; Seneviratne, S.I.; Vogel, M.M.; Aalst, M.; Stott, P. Human Contribution to the Record-Breaking June 2019 Heat Wave in France. Available online: https://www.worldweatherattribution.org/human-contribution-to-record-breaking-june-2019-heatwave-in-france/ (accessed on 10 December 2020).
- Zhao, W.; Zhou, N.; Chen, S. The Record-Breaking High Temperature over Europe in June of 2019. Atmosphere 2020, 11, 524. [Google Scholar] [CrossRef]
- Ca, V.T.; Asaeda, T.; Abu, E.M. Reductions in Air Conditioning Energy Caused by a Nearby Park. Energy Build. 1998, 29, 83–92. [Google Scholar] [CrossRef]
- Khalifa, A.; Bouzouidja, R.; Marchetti, M.; Buès, M.; Bouilloud, L.; Martin, E.; Chancibaut, K. Individual Contributions of Anthropogenic Physical Processes Associated to Urban Traffic in Improving the Road Surface Temperature Forecast Using TEB Model. Urban Clim. 2018, 24, 778–795. [Google Scholar] [CrossRef]
- Lin, Y.; Ichinose, T. Experimental Evaluation of Mitigation of Thermal Effects by “Katsuren Travertine” Paving Material. Energy Build. 2014, 81, 253–261. [Google Scholar] [CrossRef]
- Qin, Y.; Hiller, J.E. Understanding Pavement-Surface Energy Balance and Its Implications on Cool Pavement Development. Energy Build. 2014, 85, 389–399. [Google Scholar] [CrossRef]
- Santamouris, M. Using Cool Pavements as a Mitigation Strategy to Fight Urban Heat Island—A Review of the Actual Developments. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
- Ugolini, F.; Baronti, S.; Lanini, G.M.; Maienza, A.; Ungaro, F.; Calzolari, C. Assessing the Influence of Topsoil and Technosol Characteristics on Plant Growth for the Green Regeneration of Urban Built Sites. J. Environ. Manag. 2020, 273, 111168. [Google Scholar] [CrossRef]
- Sailor, D.J.; Hagos, M. An Updated and Expanded Set of Thermal Property Data for Green Roof Growing Media. Energy Build. 2011, 43, 2298–2303. [Google Scholar] [CrossRef]
- Yavuzturk, C.; Ksaibati, K.; Chiasson, A.D. Assessment of Temperature Fluctuations in Asphalt Pavements Due to Thermal Environmental Conditions Using a Two-Dimensional, Transient Finite-Difference Approach. J. Mater. Civ. Eng. 2005, 17, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Akbari, H. Analysis of Urban Heat Island Phenomenon and Mitigation Solutions Evaluation for Montreal. Sustain. Cities Soc. 2016, 26, 438–446. [Google Scholar] [CrossRef]
Material | Composition | Plot Type-Thickness | ||||
---|---|---|---|---|---|---|
P1 | P3 | P4 | P5 | CZ9 | ||
Asphalt | (ASP) | 5 cm | - | - | - | - |
Slab filled with concrete paving stone | (SPS) | - | 6 cm | - | - | - |
Slab with mix soil and sand | 90% of soil and compost 0/10 mm, 10% of sand 0/4 mm (SCS) | - | - | 5 cm | - | - |
Slab filled with wood chips | 10/20 mm wood chips (SWC) | - | - | - | 5 cm | - |
Grass | (GRA) | - | - | x | - | x |
Mineral bed | 2/4 mm (MB) | - | 3 cm | - | - | - |
Fertile laying bed | 60% gravel 4/6 mm + 20% sand 0/4 mm + 20% soil and compost 0/10 mm (SSC) | - | - | 3 cm | 3 cm | - |
Foundation | Gravel 0/20 mm * (G0/20) | 15 cm | - | - | - | - |
Gravel 2/32 mm + (G2/32) | - | 15 cm | - | - | - | |
75% of gravel, 25% of soil and compost (GSC) † | - | - | 15 cm | 15 cm | - | |
Subfoundation | Gravel 20/40 mm (G20/40) | 20 cm | 20 cm | 20 cm | 20 cm | - |
Material | Thermal Conductivity | Heat Capacity | Emissivity | Albedo | Ref. |
---|---|---|---|---|---|
Unit | (W m−1 K−1) | (J kg−1 K−1) | (-) | (-) | |
ASP | 0.88 | 1094–1203 | 0.99 | 0.15 | [32,33] |
SPS | 0.85 | 2200–2800 | 0.99 | 0.178 | [34,35] |
SCS | 810–973 | 0.92 | 0.39 | [34] | |
SWC | 0.07 to 0.08 | - | - | - | [36] |
GRA | - | - | 0.90–0.96 | 0.18–0.22 | [37] |
MB | - | - | ND | ND | - |
SSC | - | - | ND | ND | - |
G0/20 | 0.38–1.1 | ND | ND | ND | [38] |
G2/32 | 0.38–1.1 | ND | ND | ND | [38] |
GSC | 1.6–2.1 | ND | ND | ND | [39] |
G20/40 | 0.38–1.1 | ND | ND | ND | [38] |
Soil | 0.073–0.203 | ND | ND | ND | [40] |
Properties | Asphalt (ASP) | Paving Stone | Fertile Laying Bed (SSC) | Mineral Bed (MB) |
---|---|---|---|---|
Maximum diameter (mm) | 8 | 1 | 6 | 4 |
Bulk density (kg m−3) | 8 | 2292 | 1300 | 1600 |
Solid density (kg m−3) | 2350 | 2527 | 2900 | 2660 |
Bitumen content (%) | 5–6 | N/A | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzouidja, R.; Leconte, F.; Kiss, M.; Pierret, M.; Pruvot, C.; Détriché, S.; Louvel, B.; Bertout, J.; Aketouane, Z.; Vogt Wu, T.; et al. Experimental Comparative Study between Conventional and Green Parking Lots: Analysis of Subsurface Thermal Behavior under Warm and Dry Summer Conditions. Atmosphere 2021, 12, 994. https://doi.org/10.3390/atmos12080994
Bouzouidja R, Leconte F, Kiss M, Pierret M, Pruvot C, Détriché S, Louvel B, Bertout J, Aketouane Z, Vogt Wu T, et al. Experimental Comparative Study between Conventional and Green Parking Lots: Analysis of Subsurface Thermal Behavior under Warm and Dry Summer Conditions. Atmosphere. 2021; 12(8):994. https://doi.org/10.3390/atmos12080994
Chicago/Turabian StyleBouzouidja, Ryad, François Leconte, Márton Kiss, Margaux Pierret, Christelle Pruvot, Sébastien Détriché, Brice Louvel, Julie Bertout, Zakaria Aketouane, Tingting Vogt Wu, and et al. 2021. "Experimental Comparative Study between Conventional and Green Parking Lots: Analysis of Subsurface Thermal Behavior under Warm and Dry Summer Conditions" Atmosphere 12, no. 8: 994. https://doi.org/10.3390/atmos12080994
APA StyleBouzouidja, R., Leconte, F., Kiss, M., Pierret, M., Pruvot, C., Détriché, S., Louvel, B., Bertout, J., Aketouane, Z., Vogt Wu, T., Goiffon, R., Colin, B., Pétrissans, A., Lagière, P., & Pétrissans, M. (2021). Experimental Comparative Study between Conventional and Green Parking Lots: Analysis of Subsurface Thermal Behavior under Warm and Dry Summer Conditions. Atmosphere, 12(8), 994. https://doi.org/10.3390/atmos12080994