The Influence of Transport on PAHs and Other Carbonaceous Species’ (OC, EC) Concentration in Aerosols in the Coastal Zone of the Gulf of Gdansk (Gdynia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Measuring Station
2.2. Aerosol Sampling
2.3. Analysis of Organic and Elemental Carbon and Polycyclic Aromatic Hydrocarbons
2.4. Anion Analysis
2.5. Variation of Meteorological Parameters
2.6. Atmospheric Air Pollution Indicators from Transport Sources Used in the Work
2.7. Statistical Treatment of the Data
3. Results
4. Discussion
4.1. The Origin of Carbon Compounds during the Holiday Season
4.2. The Origin of Carbon Compounds during the School Period
4.3. Selected Episodes with the Highest Influence of Land and Maritime Transport
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viana, M.; Kuhlbusch, T.A.J.; Querol, X.; Alastuey, A.; Harrison, R.M.; Hopke, P.K.; Winiwarter, W.; Vallius, M.; Szidat, S.; Prévôt, A.S.H.; et al. Source Apportionment of Particulate Matter in Europe: A Review of Methods and Results. J. Aerosol Sci. 2008, 39, 827–849. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D.; Bujdos, M. The Contribution of Road Traffic to Particulate Matter and Metals in Air Pollution in the Vicinity of an Urban Road. Transp. Res. Part D Transp. Environ. 2017, 50, 397–408. [Google Scholar] [CrossRef]
- Donateo, A.; Gregoris, E.; Gambaro, A.; Merico, E.; Giua, R.; Nocioni, A.; Contini, D. Contribution of Harbour Activities and Ship Traffic to PM2.5, Particle Number Concentrations and PAHs in a Port City of the Mediterranean Sea (Italy). Environ. Sci. Pollut. Res. 2014, 21, 9415–9429. [Google Scholar] [CrossRef]
- Merico, E.; Gambaro, A.; Argiriou, A.; Alebic-Juretic, A.; Barbaro, E.; Cesari, D.; Chasapidis, L.; Dimopoulos, S.; Dinoi, A.; Donateo, A.; et al. Atmospheric Impact of Ship Traffic in Four Adriatic-Ionian Port-Cities: Comparison and Harmonization of Different Approaches. Transp. Res. Part D Transp. Environ. 2017, 50, 431–445. [Google Scholar] [CrossRef]
- Abu-Allaban, M.; Gillies, J.A.; Gertler, A.W.; Clayton, R.; Proffitt, D. Tailpipe, Resuspended Road Dust, and Brake-Wear Emission Factors from on-Road Vehicles. Atmos. Environ. 2003, 37, 5283–5293. [Google Scholar] [CrossRef]
- Keuken, M.P.; Zandveld, P.; Jonkers, S.; Moerman, M.; Jedynska, A.D.; Verbeek, R.; Visschedijk, A.; Elshout, S.; Panteliadis, P.; Velders, G.J.M. Modelling Elemental Carbon at Regional, Urban and Traffic Locations in The Netherlands. Atmos. Environ. 2013, 73, 73–80. [Google Scholar] [CrossRef]
- Arnott, W.P.; Zielinska, B.; Rogers, C.F.; Sagebiel, J.; Park, K.; Chow, J.; Moosmüller, H.; Watson, J.G.; Kelly, K.; Wagner, D.; et al. Evaluation of 1047-Nm Photoacoustic Instruments and Photoelectric Aerosol Sensors in Source-Sampling of Black Carbon Aerosol and Particle-Bound PAHs from Gasoline and Diesel Powered Vehicles. Environ. Sci. Technol. 2005, 39, 5398–5406. [Google Scholar] [CrossRef] [PubMed]
- Geller, M.D.; Sardar, S.B.; Phuleria, H.; Fine, P.M.; Sioutas, C. Measurements of Particle Number and Mass Concentrations and Size Distributions in a Tunnel Environment. Environ. Sci. Technol. 2005, 39, 8653–8663. [Google Scholar] [CrossRef] [PubMed]
- Piątkowski, P.; Bohdal, T. Testing of Ecological Properties of Spark Ignition Engine Fed with LPG Mixture. Rocz. Ochr. Srodowiska 2011, 13, 607–618. [Google Scholar]
- Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; Van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; et al. Organic Aerosol and Global Climate Modelling: A Review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [Google Scholar] [CrossRef] [Green Version]
- Lang, J.; Zhang, Y.; Zhou, Y.; Cheng, S.; Chen, D.; Guo, X.; Chen, S.; Li, X.; Xing, X.; Wang, H. Trends of PM2.5 and Chemical Composition in Beijing, 2000–2015. Aerosol Air Qual. Res. 2017, 17, 412–425. [Google Scholar] [CrossRef]
- Zhang, Y.X. Study on Speciation of Particulate Organic Matter from Combustion Sources; Beking University: Beijing, China, 2006. [Google Scholar]
- Cai, T.; Zhang, Y.; Fang, D.; Shang, J.; Zhang, Y.; Zhang, Y. Chinese Vehicle Emissions Characteristic Testing with Small Sample Size: Results and Comparison. Atmos. Pollut. Res. 2017, 8, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Available online: www.epa.gov (accessed on 30 June 2021).
- Boothe, V.L.; Shendell, D.G. Potential Health Effects Associated with Residential Proximity to Freeways and Primary Roads: Review of Scientific Literature, 1999–2006. J. Environ. Health 2008, 70, 33–41. [Google Scholar] [PubMed]
- Dockery, D.W.; Pope, C.A. Acute Respiratory Effects of Particulate Air Pollution. Annu. Rev. Public Health 1994, 15, 107–132. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G.; Speizer, F.E. An Association between Air Pollution and Mortality in Six U.S. Cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- de Kok, T.M.C.M.; Driece, H.A.L.; Hogervorst, J.G.F.; Briedé, J.J. Toxicological Assessment of Ambient and Traffic-Related Particulate Matter: A Review of Recent Studies. Mutat. Res. Rev. Mutat. Res. 2006, 613, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Rogula-Kopiec, P.; Klejnowski, K.; Błaszczyk, J. Influence of traffic emission on the concentration of two forms of carbon and their mass distribution in relation to the particle size in the atmospheric aerosol of an urban area. Annu. Set Environ. Prot. 2013, 15, 1623–1644. (In Polish) [Google Scholar]
- Hassanvand, M.S.; Naddafi, K.; Faridi, S.; Nabizadeh, R.; Sowlat, M.H.; Momeniha, F.; Gholampour, A.; Arhami, M.; Kashani, H.; Zare, A.; et al. Characterization of PAHs and Metals in Indoor/Outdoor PM10/PM2.5/PM1 in a Retirement Home and a School Dormitory. Sci. Total Environ. 2015, 527–528, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, A.; Lewandowska, A.U. Water Soluble Organic Carbon in Aerosols (PM1, PM2.5, PM10) and Various Precipitation Forms (Rain, Snow, Mixed) over the Southern Baltic Sea Station. Sci. Total Environ. 2016, 573, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, A.; Lewandowska, A.U.; Saniewska, D.; Falkowska, L.M. Effect of Agriculture and Vegetation on Carbonaceous Aerosol Concentrations (PM2.5 and PM10) in Puszcza Borecka National Nature Reserve (Poland). Air Qual. Atmos. Health 2016, 9, 761–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, B.S.; Rauh, V.A.; Bansal, R.; Hao, X.; Toth, Z.; Nati, G.; Walsh, K.; Miller, R.L.; Arias, F.; Semanek, D.; et al. Effects of Prenatal Exposure to Air Pollutants (Polycyclic Aromatic Hydrocarbons) on the Development of Brain White Matter, Cognition, and Behavior in Later Childhood. JAMA Psychiatry 2015, 72, 531–540. [Google Scholar] [CrossRef]
- Chen, S.; Gao, C.; Tang, W.; Zhu, H.; Han, Y.; Jiang, Q.; Li, T.; Cao, X.; Wang, Z. Self-Powered Cleaning of Air Pollution by Wind Driven Triboelectric Nanogenerator. Nano Energy 2015, 14, 217–225. [Google Scholar] [CrossRef]
- Wilker, E.H.; Preis, S.R.; Beiser, A.S.; Wolf, P.A.; Au, R.; Kloog, I.; Li, W.; Schwartz, J.; Koutrakis, P.; DeCarli, C.; et al. Long-Term Exposure to Fine Particulate Matter, Residential Proximity to Major Roads and Measures of Brain Structure. Stroke 2015, 46, 1161–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Effects of Air Pollution on Children’s Health and Development: A Review of the Evidence; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- Perera, F.P.; Wang, S.; Rauh, V.; Zhou, H.; Stigter, L.; Camann, D.; Jedrychowski, W.; Mroz, E.; Majewska, R. Prenatal Exposure to Air Pollution, Maternal Psychological Distress, and Child Behavior. Pediatrics 2013, 132, e1284–e1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: www.imgw.pl (accessed on 30 June 2021).
- Schmid, H.; Laskus, L.; Jürgen Abraham, H.; Baltensperger, U.; Lavanchy, V.; Bizjak, M.; Burba, P.; Cachier, H.; Crow, D.; Chow, J.; et al. Results of the “Carbon Conference” International Aerosol Carbon Round Robin Test Stage I. Atmos. Environ. 2001, 35, 2111–2121. [Google Scholar] [CrossRef]
- Cavalli, F.; Viana, M.; Yttri, K.E.; Genberg, J.; Putaud, J.-P. Toward a Standardised Thermal-Optical Protocol for Measuring Atmospheric Organic and Elemental Carbon: The EUSAAR Protocol. Atmos. Meas. Tech. 2010, 3, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Wiśniewska, K.; Lewandowska, A.U.; Witkowska, A. Factors Determining Dry Deposition of Total Mercury and Organic Carbon in House Dust of Residents of the Tri-City and the Surrounding Area (Baltic Sea Coast). Air Qual. Atmos. Health 2017, 10, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Wiśniewska, K.; Lewandowska, A.U.; Staniszewska, M. Air Quality at Two Stations (Gdynia and Rumia) Located in the Region of Gulf of Gdansk during Periods of Intensive Smog in Poland. Air Qual. Atmos. Health 2019, 12, 879–890. [Google Scholar] [CrossRef] [Green Version]
- Staniszewska, M.; Graca, B.; Bełdowska, M.; Saniewska, D. Factors Controlling Benzo(a)Pyrene Concentration in Aerosols in the Urbanized Coastal Zone. A Case Study: Gdynia, Poland (Southern Baltic Sea). Environ. Sci. Pollut. Res. 2013, 20, 4154–4163. [Google Scholar] [CrossRef] [Green Version]
- Lewandowska, A.U.; Staniszewska, M.; Witkowska, A.; Machuta, M.; Falkowska, L. Benzo(a)Pyrene Parallel Measurements in PM1 and PM2.5 in the Coastal Zone of the Gulf of Gdansk (Baltic Sea) in the Heating and Non-Heating Seasons. Environ. Sci. Pollut. Res. 2018, 25, 19458–19469. [Google Scholar] [CrossRef] [Green Version]
- Falkowska, L.; Lewandowska, A. Sulphates in Particles of Different Sizes in the Marine Boundary Layer over the Southern Baltic Sea. Oceanologia 2004, 46. [Google Scholar]
- Available online: https://bip.um.gdynia.pl/ (accessed on 30 June 2021).
- Na, K.; Sawant, A.A.; Song, C.; Cocker, D.R. Primary and Secondary Carbonaceous Species in the Atmosphere of Western Riverside County, California. Atmos. Environ. 2004, 38, 1345–1355. [Google Scholar] [CrossRef]
- Lonati, G.; Ozgen, S.; Giugliano, M. Primary and Secondary Carbonaceous Species in PM2.5 Samples in Milan (Italy). Atmos. Environ. 2007, 41, 4599–4610. [Google Scholar] [CrossRef]
- Pio, C.; Cerqueira, M.; Harrison, R.M.; Nunes, T.; Mirante, F.; Alves, C.; Oliveira, C.; Sanchez de la Campa, A.; Artíñano, B.; Matos, M. OC/EC Ratio Observations in Europe: Re-Thinking the Approach for Apportionment between Primary and Secondary Organic Carbon. Atmos. Environ. 2011, 45, 6121–6132. [Google Scholar] [CrossRef]
- Cesari, D.; Merico, E.; Dinoi, A.; Marinoni, A.; Bonasoni, P.; Contini, D. Seasonal Variability of Carbonaceous Aerosols in an Urban Background Area in Southern Italy. Atmos. Res. 2018, 200, 97–108. [Google Scholar] [CrossRef]
- Gu, J.; Bai, Z.; Liu, A.; Wu, L.; Xie, Y.; Li, W.; Dong, H.; Zhang, X. Characterization of Atmospheric Organic Carbon and Element Carbon of PM2.5 and PM10 at Tianjin, China. Aerosol Air Qual. Res. 2010, 10, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.G.; Chow, J.C.; Lowenthal, D.H.; Pritchett, L.C.; Frazier, C.A.; Neuroth, G.R.; Robbins, R. Differences in the Carbon Composition of Source Profiles for Diesel- and Gasoline-Powered Vehicles. Atmos. Environ. 1994, 28, 2493–2505. [Google Scholar] [CrossRef]
- Cao, J.J.; Lee, S.C.; Ho, K.F.; Zou, S.C.; Fung, K.; Li, Y.; Watson, J.G.; Chow, J.C. Spatial and Seasonal Variations of Atmospheric Organic Carbon and Elemental Carbon in Pearl River Delta Region, China. Atmos. Environ. 2004, 38, 4447–4456. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Kuhns, H.; Etyemezian, V.; Lowenthal, D.H.; Crow, D.; Kohl, S.D.; Engelbrecht, J.P.; Green, M.C. Source Profiles for Industrial, Mobile, and Area Sources in the Big Bend Regional Aerosol Visibility and Observational Study. Chemosphere 2004, 54, 185–208. [Google Scholar] [CrossRef]
- Bautista, A.T.; Pabroa, P.C.B.; Santos, F.L.; Racho, J.M.D.; Quirit, L.L. Carbonaceous Particulate Matter Characterization in an Urban and a Rural Site in the Philippines. Atmos. Pollut. Res. 2014, 5, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Cao, J.; Arimoto, R.; Han, Y.; Zhu, C.; Tian, J.; Liu, S. Chemical Characteristics of Fine Particles (PM1) from Xi’an, China. Aerosol Sci. Technol. 2010, 44, 461–472. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Chen, L.-W.A.; Lowenthal, D.H.; Fujita, E.M.; Kuhns, H.D.; Sodeman, D.A.; Campbell, D.E.; Moosmüller, H.; Zhu, D.; et al. Particulate Emission Factors for Mobile Fossil Fuel and Biomass Combustion Sources. Sci. Total Environ. 2011, 409, 2384–2396. [Google Scholar] [CrossRef] [PubMed]
- Tiitta, P.; Vakkari, V.; Croteau, P.; Beukes, J.P.; van Zyl, P.G.; Josipovic, M.; Venter, A.D.; Jaars, K.; Pienaar, J.J.; Ng, N.L.; et al. Chemical Composition, Main Sources and Temporal Variability of PM1 Aerosols in Southern African Grassland. Atmos. Chem. Phys. 2014, 14, 1909–1927. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.Z.; Huang, X.H.H.; Ho, S.S.H.; Bian, Q. Nonpolar Organic Compounds in Fine Particles: Quantification by Thermal Desorption–GC/MS and Evidence for Their Significant Oxidation in Ambient Aerosols in Hong Kong. Anal. Bioanal. Chem. 2011, 401, 3125–3139. [Google Scholar] [CrossRef] [PubMed]
- Hildemann, L.M.; Markowski, G.R.; Cass, G.R. Chemical Composition of Emissions from Urban Sources of Fine Organic Aerosol. Environ. Sci. Technol. 1991, 25, 744–759. [Google Scholar] [CrossRef] [Green Version]
- Masclet, P.; Mouvier, G.; Nikolaou, K. Relative Decay Index and Sources of Polycyclic Aromatic Hydrocarbons. Atmos. Environ. (1967) 1986, 20, 439–446. [Google Scholar] [CrossRef]
- Miguel, A.H.; Kirchstetter, T.W.; Harley, R.A.; Hering, S.V. On-Road Emissions of Particulate Polycyclic Aromatic Hydrocarbons and Black Carbon from Gasoline and Diesel Vehicles. Environ. Sci. Technol. 1998, 32, 450–455. [Google Scholar] [CrossRef]
- Duan, X.; Shen, G.; Yang, H.; Tian, J.; Wei, F.; Gong, J.; Zhang, J. Dietary Intake Polycyclic Aromatic Hydrocarbons (PAHs) and Associated Cancer Risk in a Cohort of Chinese Urban Adults: Inter- and Intra-Individual Variability. Chemosphere 2016, 144, 2469–2475. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, X.; Chen, Z.; Zhang, Y. Mercury Concentrations in Size-Fractionated Airborne Particles at Urban and Suburban Sites in Beijing, China. Atmos. Environ. 2006, 40, 2194–2201. [Google Scholar] [CrossRef]
- Lai, S.; Zou, S.; Cao, J.; Lee, S.; Ho, K. Characterizing Ionic Species in PM2.5 and PM10 in Four Pearl River Delta Cities, South China. J. Environ. Sci. 2007, 19, 939–947. [Google Scholar] [CrossRef]
- Available online: www.arl.noaa.gov/ready/hysplit4.html (accessed on 30 June 2021).
- Lewandowska, A.; Falkowska, L.; Murawiec, D.; Pryputniewicz, D.; Burska, D.; Bełdowska, M. Elemental and Organic Carbon in Aerosols over Urbanized Coastal Region (Southern Baltic Sea, Gdynia). Sci. Total Environ. 2010, 408, 4761–4769. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, A.U.; Falkowska, L.M. Sea salt in aerosols over the southern Baltic. Part 1. The generation and transportation of marine particles. Oceanologia 2013, 55, 279–298. [Google Scholar] [CrossRef]
- Available online: https://bdl.stat.gov.pl (accessed on 30 June 2021).
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors and Regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Skalska, K.; Lewandowska, A.U.; Staniszewska, M.; Reindl, A.; Witkowska, A.; Falkowska, L. Sources, Deposition Flux and Carcinogenic Potential of PM2.5-Bound Polycyclic Aromatic Hydrocarbons in the Coastal Zone of the Baltic Sea (Gdynia, Poland). Air Qual. Atmos. Health 2019, 12, 1291–1301. [Google Scholar] [CrossRef] [Green Version]
- Ravindra, K.; Bencs, L.; Wauters, E.; de Hoog, J.; Deutsch, F.; Roekens, E.; Bleux, N.; Berghmans, P.; Van Grieken, R. Seasonal and Site-Specific Variation in Vapour and Aerosol Phase PAHs over Flanders (Belgium) and Their Relation with Anthropogenic Activities. Atmos. Environ. 2006, 40, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Tobiszewski, M.; Namieśnik, J. PAH Diagnostic Ratios for the Identification of Pollution Emission Sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M.C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; et al. Variability of Carbonaceous Aerosols in Remote, Rural, Urban and Industrial Environments in Spain: Implications for Air Quality Policy. Atmos. Chem. Phys. 2013, 13, 6185–6206. [Google Scholar] [CrossRef] [Green Version]
- Duan, F.; Liu, X.; Yu, T.; Cachier, H. Identification and Estimate of Biomass Burning Contribution to the Urban Aerosol Organic Carbon Concentrations in Beijing. Atmos. Environ. 2004, 38, 1275–1282. [Google Scholar] [CrossRef]
- Kim, W.; Lee, H.; Kim, J.; Jeong, U.; Kweon, J. Estimation of Seasonal Diurnal Variations in Primary and Secondary Organic Carbon Concentrations in the Urban Atmosphere: EC Tracer and Multiple Regression Approaches. Atmos. Environ. 2012, 56, 101–108. [Google Scholar] [CrossRef]
- Lewandowska, A.U.; Śliwińska-Wilczewska, S.; Woźniczka, D. Identification of Cyanobacteria and Microalgae in Aerosols of Various Sizes in the Air over the Southern Baltic Sea. Mar. Pollut. Bull. 2017, 125, 30–38. [Google Scholar] [CrossRef]
- Wiśniewska, K.A.; Śliwińska-Wilczewska, S.; Lewandowska, A.U. The First Characterization of Airborne Cyanobacteria and Microalgae in the Adriatic Sea Region. PLoS ONE 2020, 15, e0238808. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Rice, J.; Frank, N.H. Quantification of PM2.5 Organic Carbon Sampling Artifacts in US Networks. Atmos. Chem. Phys. 2010, 10, 5223–5239. [Google Scholar] [CrossRef] [Green Version]
- Minguillón, M.C.; Perron, N.; Querol, X.; Szidat, S.; Fahrni, S.M.; Alastuey, A.; Jimenez, J.L.; Mohr, C.; Ortega, A.M.; Day, D.A.; et al. Fossil versus Contemporary Sources of Fine Elemental and Organic Carbonaceous Particulate Matter during the DAURE Campaign in Northeast Spain. Atmos. Chem. Phys. 2011, 11, 12067–12084. [Google Scholar] [CrossRef] [Green Version]
- Mohr, C.; DeCarlo, P.F.; Heringa, M.F.; Chirico, R.; Slowik, J.G.; Richter, R.; Reche, C.; Alastuey, A.; Querol, X.; Seco, R.; et al. Identification and Quantification of Organic Aerosol from Cooking and Other Sources in Barcelona Using Aerosol Mass Spectrometer Data. Atmos. Chem. Phys. 2012, 12, 1649–1665. [Google Scholar] [CrossRef] [Green Version]
- Marenco, F.; Bonasoni, P.; Calzolari, F.; Ceriani, M.; Chiari, M.; Cristofanelli, P.; D’Alessandro, A.; Fermo, P.; Lucarelli, F.; Mazzei, F.; et al. Characterization of Atmospheric Aerosols at Monte Cimone, Italy, during Summer 2004: Source Apportionment and Transport Mechanisms. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, M.; Pio, C.; Legrand, M.; Puxbaum, H.; Kasper-Giebl, A.; Afonso, J.; Preunkert, S.; Gelencsér, A.; Fialho, P. Particulate Carbon in Precipitation at European Background Sites. J. Aerosol Sci. 2010, 41, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Lewandowska, A.U.; Bełdowska, M.; Witkowska, A.; Falkowska, L.; Wiśniewska, K. Mercury Bonds with Carbon (OC and EC) in Small Aerosols (PM1) in the Urbanized Coastal Zone of the Gulf of Gdansk (Southern Baltic). Ecotoxicol. Environ. Saf. 2018, 157, 350–357. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, A.M.P.; Gomes, J.; Nunes, T.; Duarte, M.; Bandowe, B.A.M. Polycyclic Aromatic Hydrocarbons (PAHs) and Their Derivatives (Oxygenated-PAHs, Nitrated-PAHs and Azaarenes) in Size-Fractionated Particles Emitted in an Urban Road Tunnel. Atmos. Res. 2016, 180, 128–137. [Google Scholar] [CrossRef]
- Tolis, E.I.; Saraga, D.E.; Filiou, K.F.; Tziavos, N.I.; Tsiaousis, C.P.; Dinas, A.; Bartzis, J.G. One-Year Intensive Characterization on PM2.5 Nearby Port Area of Thessaloniki, Greece. Environ. Sci. Pollut. Res. 2015, 22, 6812–6826. [Google Scholar] [CrossRef]
- Bernalte, E.; Marín Sánchez, C.; Pinilla Gil, E.; Cereceda Balic, F.; Vidal Cortez, V. An Exploratory Study of Particulate PAHs in Low-Polluted Urban and Rural Areas of Southwest Spain: Concentrations, Source Assignment, Seasonal Variation and Correlations with Other Air Pollutants. Water Air Soil Pollut. 2012, 223, 5143–5154. [Google Scholar] [CrossRef]
- Zielinska, B.; Sagebiel, J.; McDonald, J.D.; Whitney, K.; Lawson, D.R. Emission Rates and Comparative Chemical Composition from Selected In-Use Diesel and Gasoline-Fueled Vehicles. J. Air Waste Manag. Assoc. 2004, 54, 1138–1150. [Google Scholar] [CrossRef] [PubMed]
- El Haddad, I.; Marchand, N.; Dron, J.; Temime-Roussel, B.; Quivet, E.; Wortham, H.; Jaffrezo, J.L.; Baduel, C.; Voisin, D.; Besombes, J.L.; et al. Comprehensive Primary Particulate Organic Characterization of Vehicular Exhaust Emissions in France. Atmos. Environ. 2009, 43, 6190–6198. [Google Scholar] [CrossRef]
- Michalski, M.-C.; Michel, F.; Sainmont, D.; Briard, V. Apparent ζ-Potential as a Tool to Assess Mechanical Damages to the Milk Fat Globule Membrane. Colloids Surf. B Biointerfaces 2002, 23, 23–30. [Google Scholar] [CrossRef]
- Evangelos, K. The Impact of Vegetation on Ohe Characteristics of the Flow in an Inclined Open Channel Using the Piv Method. J. Water Resour. Ocean Sci. 2012, 1, 1. [Google Scholar] [CrossRef]
- Falkowska, L.; Lewandowska, A. Aerosols and Gases in the Earth’s Atmosphere-Global Changes; University of Gdańsk: Gdańsk, Poland, 2009; ISBN 978-83-7326-624-7. [Google Scholar]
Holiday Period (13–21 July 2015) | School Period (14–30 July 2015) | |||
---|---|---|---|---|
7:00–9:00 a.m. Average (Min–Max) | 3:00–5:00 p.m. Average (Min–Max) | 7:00–9:00 a.m. Average (Min–Max) | 3:00–5:00 p.m. Average (Min–Max) | |
T [°C] | 18.9 ± 1.2 (15.3–21.3) | 19. 4 ± 2.2 (16.8–26.8) | 15.9 ± 2.4 (12.4–20.7) | 16.8 ± 2.3 (11.5–20.0) |
Rh [%] | 54 ± 8 (31–72) | 55 ± 7 (39–77) | 64 ± 9 (44–78) | 60 ± 8 (41–83) |
Vw [m/s] | 3.5 ± 0.8 (0.6–9.8) | 2.8 ± 1.2 (0.2–8.5) | 2.1 ± 0.9 (0.1–6.5) | 1.9 ± 0.9 (0.3–6.4) |
P [hPa] | 1007 ± 4 (1001–1012) | 1008 ± 3 (1003–1012) | 1015 ± 13 (1002–1033) | 1015 ± 14 (999–1033) |
∑ precipitation [mm] | 8 | 35 | ||
Wind Direction | 7:00–9:00 a.m. 3:00–5:00 p.m. | 7:00–9:00 a.m. 3:00–5:00 p.m. |
Parameter | Aerosol Size [µm] | Holiday Period (13–21 July 2015) | School Period (14–30 September 2015) | ||
---|---|---|---|---|---|
7:00–9:00 a.m. Average (Min–Max) | 3:00–5:00 p.m. Average (Min–Max) | 7:00–9:00 a.m. Average (Min–Max) | 3:00–5:00 p.m. Average (Min–Max) | ||
ΣPAH5 [ng∙m−3] | <3 | 15.44 ± 9.15 (3.12–26.66) | 13.68 ± 8.21 (3.54–25.61) | 11.04 ± 4.99 (5.77–18.42) | 7.96 ± 4.67 (4.28–17.81) |
3–10 | 6.24 ± 6.88 (0.74–19.90) | 5.46 ± 3.98 (0.52–10.55) | 20.15 ± 22.9 (0.64–57.71) | 4.95 ± 3.58 (0.38–8.90) | |
Benzo(a)anthracene B(a)A [ng∙m−3] | <3 | 0.04 ± 0.02 (0.02–0.06) | 0.04 ± 0.06 (LD-0.14) | 0.03 ± 0.02 (0.01–0.1) | 0.02 ± 0.01 (0.01–0.02) |
3–10 | 0.02 ± 0.03 (LD-0.06) | 0.03 ± 0.02 (LD-0.06) | 0.14 ± 0.07 (0.09–0.20) | 0.02 ± 0.01 (0.01–0.03) | |
Benzo(a)pyrene B(a)P [ng∙m−3] | <3 | 0.04 ± 0.04 (0.01–0.11) | 0.03 ± 0.02 (LD-0.07) | 0.02 ± 0.01 (0.01–0.03) | 0.02 ± 0.01 (0.02–0.03) |
3–10 | 0.01 ± 0.01 (LD-0.03) | 0.01 ± 0.01 (LD-0.02) | 0.08 ± 0.00 (0.08–0.08) | 0.07 ± 0.01 (0.06–0.10) | |
Chrysen CHR [ng∙m−3] | <3 | 0.12 ± 0.06 (0.07–0.23) | 0.10 ± 0.05 (0.05–0.20) | 0.09 ± 0.03 (0.06–0.14) | 0.04 ± 0.02 (0.01–0.07) |
3–10 | 0.04 ± 0.04 (0.01–0.11) | 0.08 ± 0.06 (0.03–0.20) | 0.11 ± 0.11 (0.02–0.39) | 0.04 ± 0.02 (0.02–0.07) | |
Fluoranthene FLU [ng∙m−3] | <3 | 15.17 ± 9.06 (2.96–26.27) | 13.41 ± 8.05 (3.45–25.03) | 10.87 ± 4.94 (5.56–18.12) | 4.87 ± 3.53 (0.34–8.75) |
3–10 | 6.13 ± 6.75 (0.71–19.52) | 5.29 ± 4.00 (0.19–10.37) | 19.89 ± 22.13 (0.61–57.03) | 7.83 ± 4.62 (4.19–17.59) | |
Pyrene PYR [ng∙m−3] | <3 | 0.08 ± 0.03 (0.05–0.13) | 0.11 ± 0.08 (0.03–0.24) | 0.05 ± 0.02 (0.04–0.09) | 0.02 ± 0.01 (0.01–0.04) |
3–10 | 0.05 ± 0.06 (0.01–0.17) | 0.06 ± 0.05 (0.01–0.16) | 0.07 ± 0.06 (0.01–0.17) | 0.02 ± 0.01 (0.01–0.04) | |
Nitrates NO3− [µg∙m−3] | <3 | 0.7 ± 0.5 (LD-1.5) | 0.5 ± 0.5 (0.1–1.4) | 2.0 ± 2.1 (0.5–5.8) | 2.5 ± 0.7 (1.8–3.3) |
3–10 | 0.2 ± 0.1 (LD-0.2) | 0.1 ± 0.2 (LD-0.2) | 1.0 ± 0.4 (LD-1.4) | 1.1 ± 1.2 (0.1–3.1) | |
Sulphates SO42− [µg∙m−3] | <3 | 0.6 ± 0.3 (0.3–1.1) | 0.6 ± 0.4 (0.2–1.2) | 2.5 ± 2.0 (0.7–5.4) | 2.2 ± 1.0 (1.0–4.0) |
3–10 | 0.1 ± 0.0 (LD-0.1) | 0.1 ± 0.1 (LD-0.2) | 1.4 ± 1.1 (LD-3.2) | 2.1 ± 3.3 (LD-9.3) | |
OC [µg∙m−3] | <3 | 4.6 ± 0.7 (3.6–5.6) | 4.3 ± 1.3 (2.8–6.0) | 3.3 ± 0.8 (1.8–3.9) | 2.7 ± 0.6 (1.8–3.4) |
3–10 | 1.7 ± 0.5 (1.2–2.6) | 1.6 ± 0.3 (1.1–2.1) | 1.2 ± 0.2 (0.9–1.6) | 1.3 ± 0.5 (0.8–2.0) | |
EC [µg∙m−3] | <3 | 0.5 ± 0.2 (LD-0.7) | 0.3 ± 0.1 (LD-0.5) | 0.6 ± 0.2 (LD-0.9) | 0.4 ± 0.4 (LD-1.0) |
3–10 | 0.2 ± 0.0 (LD-0.2) | 0.2 ± 0.2 (LD-0.7) | 0.4 ± 0.3 (LD-0.7) | 0.3 ± 0.1 (LD-0.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buch, J.K.; Lewandowska, A.U.; Staniszewska, M.; Wiśniewska, K.A.; Bartkowski, K.V. The Influence of Transport on PAHs and Other Carbonaceous Species’ (OC, EC) Concentration in Aerosols in the Coastal Zone of the Gulf of Gdansk (Gdynia). Atmosphere 2021, 12, 1005. https://doi.org/10.3390/atmos12081005
Buch JK, Lewandowska AU, Staniszewska M, Wiśniewska KA, Bartkowski KV. The Influence of Transport on PAHs and Other Carbonaceous Species’ (OC, EC) Concentration in Aerosols in the Coastal Zone of the Gulf of Gdansk (Gdynia). Atmosphere. 2021; 12(8):1005. https://doi.org/10.3390/atmos12081005
Chicago/Turabian StyleBuch, Joanna Klaudia, Anita Urszula Lewandowska, Marta Staniszewska, Kinga Areta Wiśniewska, and Karolina Venessa Bartkowski. 2021. "The Influence of Transport on PAHs and Other Carbonaceous Species’ (OC, EC) Concentration in Aerosols in the Coastal Zone of the Gulf of Gdansk (Gdynia)" Atmosphere 12, no. 8: 1005. https://doi.org/10.3390/atmos12081005
APA StyleBuch, J. K., Lewandowska, A. U., Staniszewska, M., Wiśniewska, K. A., & Bartkowski, K. V. (2021). The Influence of Transport on PAHs and Other Carbonaceous Species’ (OC, EC) Concentration in Aerosols in the Coastal Zone of the Gulf of Gdansk (Gdynia). Atmosphere, 12(8), 1005. https://doi.org/10.3390/atmos12081005