Integrated Mobile Laboratory for Air Pollution Assessment: Literature Review and cc-TrAIRer Design
Abstract
:1. Introduction
2. Literature Review
3. The cc-TrAIRer Mobile Laboratory
3.1. The Aim of the Project
3.2. Trailer Design
3.3. Instrumentation
3.3.1. Palas Fidas 200s
3.3.2. APM-2
3.3.3. MicroPNS LVS16
3.3.4. Serinus 40 NOx Analyser
3.3.5. Serinus 10 O3 Analyser
3.3.6. Sampling Probe
3.3.7. Davis Vantage Pro 2 Weather Station
3.3.8. Sound-Level Meter (Noise)
3.4. Power Supply and Air Conditioning System
3.5. Data Management
4. Measurement Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ONU. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015, pp. 12–14. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 3 August 2021). [CrossRef]
- EEA. Climate Change and Air. 2013, pp. 1–8. Available online: https://www.eea.europa.eu/signals/signals-2013/articles/climate-change-and-air (accessed on 3 August 2021).
- IPCC. Chapter 11. Fifth Assessment Report of IPCC. In Climate Change 2014 Impacts, Adaptation, and Vulnerability; 2015; pp. 709–754. Available online: https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/ch11.html (accessed on 3 August 2021). [CrossRef]
- WHO. Ambient Air Pollution: A Global Assesment of Exposure and Burden of Disease; WHO: Geneva, Switzerland, 2016; pp. 68–70. Available online: https://apps.who.int/iris/handle/10665/250141 (accessed on 3 August 2021).
- Landrigan, P.J. Air pollution and health. Lancet Public Health 2017, 2, e4–e5. [Google Scholar] [CrossRef] [Green Version]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [Green Version]
- Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V.L.; Colombi, C.; et al. AIRUSE-LIFE+: A harmonized PM speciation and source apportionment in five southern European cities. Atmos. Chem. Phys. Discuss. 2016, 16, 3289–3309. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wang, H.; Zhang, J.; Zhang, M.; Zhang, H.; Wang, S.; Chai, F. PM2.5 Pollution in Xingtai, China: Chemical Characteristics, Source Apportionment, and Emission Control Measures. Atmosphere 2019, 10, 121. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.-J.; Wang, Y.; Cao, J.; Lin, C.; Duan, J.; Chen, Q.; Li, Y.; Gu, Y.; Yan, J.; Xu, W.; et al. Primary emissions versus secondary formation of fine particulate matter in the most polluted city (Shijiazhuang) in North China. Atmos. Chem. Phys. Discuss. 2019, 19, 2283–2298. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Agrawal, M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- Daellenbach, K.R.; Uzu, G.; Jiang, J.; Cassagnes, L.-E.; Leni, Z.; Vlachou, A.; Stefenelli, G.; Canonaco, F.; Weber, S.; Segers, A.; et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020, 587, 414–419. [Google Scholar] [CrossRef]
- Perrino, C.; Canepari, S.; Catrambone, M.; Torre, S.D.; Rantica, E.; Sargolini, T. Influence of natural events on the concentration and composition of atmospheric particulate matter. Atmos. Environ. 2009, 43, 4766–4779. [Google Scholar] [CrossRef]
- Azimi, M.; Feng, F.; Yang, Y. Air Pollution Inequality and Its Sources in SO2 and NOX Emissions among Chinese Provinces from 2006 to 2015. Sustainability 2018, 10, 367. [Google Scholar] [CrossRef] [Green Version]
- Badr, O.; Probert, S. Sources of atmospheric carbon monoxide. Appl. Energy 1994, 49, 145–195. [Google Scholar] [CrossRef]
- Yarragunta, Y.; Srivastava, S.; Mitra, D.; Chandola, H.C. Source apportionment of carbon monoxide over India: A quantitative analysis using MOZART-4. Environ. Sci. Pollut. Res. 2021, 28, 8722–8742. [Google Scholar] [CrossRef]
- Sillman, S. Tropospheric Ozone and Photochemical Smog. In Treatise on Geochemistry; University of Michigan: Ann Arbor, MI, USA; Elsevier Inc.: Amsterdam, The Netherlands, 2003; Volume 9–9, pp. 407–431. [Google Scholar]
- Berezina, E.; Moiseenko, K.; Skorokhod, A.; Pankratova, N.; Belikov, I.; Belousov, V.; Elansky, N. Impact of VOCs and NOx on Ozone Formation in Moscow. Atmosphere 2020, 11, 1262. [Google Scholar] [CrossRef]
- Wang, S.; Kaur, M.; Li, T.; Pan, F. Effect of Different Pollution Parameters and Chemical Components of PM2.5 on Health of Residents of Xinxiang City, China. Int. J. Environ. Res. Public Health 2021, 18, 6821. [Google Scholar] [CrossRef] [PubMed]
- Rückerl, R.; Schneider, A.; Breitner, S.; Cyrys, J.; Peters, A. Health effects of particulate air pollution: A review of epidemiological evidence. Inhal. Toxicol. 2011, 23, 555–592. [Google Scholar] [CrossRef]
- Lipfert, F.W. Long-term associations of morbidity with air pollution: A catalog and synthesis. J. Air Waste Manag. Assoc. 2017, 68, 12–28. [Google Scholar] [CrossRef]
- Sivarethinamohan, R.; Sujatha, S.; Priya, S.; Sankaran; Gafoor, A.; Rahman, Z. Impact of air pollution in health and socio-economic aspects: Review on future approach. Mater. Today Proc. 2021, 37, 2725–2729. [Google Scholar] [CrossRef]
- Robichaud, A.; Comtois, P. Environmental factors and asthma hospitalization in Montreal, Canada, during spring 2006–2008: A synergy perspective. Air Qual. Atmos. Health 2019, 12, 1495–1509. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, X.; Zhang, X. The impact of exposure to air pollution on cognitive performance. Proc. Natl. Acad. Sci. USA 2018, 115, 9193–9197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, S.Y.L.; Khawaja, A.P.; Morgan, J.; Strouthidis, N.; Reisman, C.; Dick, A.D.; Khaw, P.T.; Patel, P.J.; Foster, P.J. For the UK Biobank Eye and Vision Consortium The Relationship Between Ambient Atmospheric Fine Particulate Matter (PM2.5) and Glaucoma in a Large Community Cohort. Investig. Opthalmol. Vis. Sci. 2019, 60, 4915–4923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, I.C.K.; Ng, Y.-K.; Lui, V.W.Y. Cancers of the lung, head and neck on the rise: Perspectives on the genotoxicity of air Pollution. Chin. J. Cancer 2014, 33, 476–480. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease: An update to the scientific statement from the american heart association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baja, E.S.; Schwartz, J.D.; Wellenius, G.; Coull, B.A.; Zanobetti, A.; Vokonas, P.S.; Suh, H. Traffic-Related Air Pollution and QT Interval: Modification by Diabetes, Obesity, and Oxidative Stress Gene Polymorphisms in the Normative Aging Study. Environ. Health Perspect. 2010, 118, 840–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Battiston, K.G.; Labow, R.S.; Simmons, C.A.; Santerre, J.P. Generating favorable growth factor and protease release profiles to enable extracellular matrix accumulation within an in vitro tissue engineering environment. Acta Biomater. 2017, 54, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.A.; Aherne, J.; Gay, D.A.; Lehmann, C.M. Acid rain and its environmental effects: Recent scientific advances. Atmos. Environ. 2016, 146, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zhao, T.; Liu, D.; Gong, S.; Xu, J.; Ma, X. Quantifying the Influences of PM2.5 and Relative Humidity on Change of Atmospheric Visibility over Recent Winters in an Urban Area of East China. Atmosphere 2020, 11, 461. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Liu, S.; Jiang, Z.; Arbi, I.; Huang, X.; Macreadie, P.I. Nitrogen deposition in precipitation to a monsoon-affected eutrophic embayment: Fluxes, sources, and processes. Atmos. Environ. 2018, 182, 75–86. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Shrestha, G.; Traina, S.J.; Swanston, C.W. Black Carbon’s Properties and Role in the Environment: A Comprehensive Review. Sustainability 2010, 2, 294–320. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Kolli, R.K.; Kwon, W.T.; Laprise, R.; et al. Regional Climate Projections; Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on ClimateChange; Chapter 11; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Horton, D.; Skinner, C.; Singh, D.; Diffenbaugh, N. Occurrence and persistence of future atmospheric stagnation events. Nat. Clim. Chang. 2014, 4, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Zhou, J.; Fuentes, M. Impact of Climate Change on Ambient Ozone Level and Mortality in Southeastern United States. Int. J. Environ. Res. Public Health 2010, 7, 2866–2880. [Google Scholar] [CrossRef] [PubMed]
- Orru, H.; Andersson, C.; Ebi, K.L.; Langner, J.; Åström, C.; Forsberg, B. Impact of climate change on ozone-related mortality and morbidity in Europe. Eur. Respir. J. 2012, 41, 285–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, P.E.; Klingberg, J.; Engardt, M.; Andersson, C.; Langner, J.; Karlsson, G.P.; Pleijel, H. Past, present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe. Sci. Total. Environ. 2017, 576, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.N.; Houghton, J.T.; McCarthy, J.J.; Metz, B. Climate Change 2001: The Scientific Basis. Foreign Aff. 2002, 81, 208. [Google Scholar] [CrossRef]
- Beniston, M. Mountain Weather and Climate: A General Overview and a Focus on Climatic Change in the Alps. Hydrobiologia 2006, 562, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Bo, M.; Salizzoni, P.; Pognant, F.; Mezzalama, R.; Clerico, M. A Combined Citizen Science—Modelling Approach for NO2 Assessment in Torino Urban Agglomeration. Atmosphere 2020, 11, 721. [Google Scholar] [CrossRef]
- Bada, J.L.; Zent, A.P.; Grunthaner, F.J.; Quinn, R.C.; Navarro-Gonzalez, R.; Gomez-Silva, B.; McKay, C.P.; Baker, V.R.; Bandfield, J.L.; Banerdt, W.B.; et al. Astrobiolab: A mobile biotic and soil analysis laboratory. In Proceedings of the Sixth International Conference on Mars, Pasadena, CA, USA, 1 January 2003. [Google Scholar]
- Brantley, H.L.; Hagler, G.; Kimbrough, E.S.; Williams, R.W.; Mukerjee, S.; Neas, L.M. Mobile air monitoring data-processing strategies and effects on spatial air pollution trends. Atmos. Meas. Tech. 2014, 7, 2169–2183. [Google Scholar] [CrossRef] [Green Version]
- Berk, J.; Hollowell, C.; Lin, C.; Pepper, J. Design of A Mobile Laboratory for Ventilation Studies and Indoor Air Pollution Monitoring; Energy and Environment Division; Lawrence Berkeley Lab.: Berkeley, CA, USA, 1978. [Google Scholar] [CrossRef] [Green Version]
- Bukowiecki, N.; Dommen, J.; Prévôt, A.; Richter, R.; Weingartner, E.; Baltensperger, U. A mobile pollutant measurement laboratory—measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution. Atmos. Environ. 2002, 36, 5569–5579. [Google Scholar] [CrossRef]
- Pirjola, L.; Lähde, T.; Niemi, J.; Kousa, A.; Rönkkö, T.; Karjalainen, P.; Keskinen, J.; Frey, A.; Hillamo, R. Spatial and temporal characterization of traffic emissions in urban microenvironments with a mobile laboratory. Atmos. Environ. 2012, 63, 156–167. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Wang, J.; Chen, W.; Han, Y.; Ye, C.; Li, Y.; Liu, J.; Zeng, L.; Wu, Y.; et al. Distribution and sources of air pollutants in the North China Plain based on on-road mobile measurements. Atmos. Chem. Phys. Discuss. 2016, 16, 12551–12565. [Google Scholar] [CrossRef] [Green Version]
- Kittelson, D.; Johnson, J.; Watts, W.; Wei, Q.; Drayton, M.; Paulsen, D.; Bukowiecki, N. Diesel Aerosol Sampling in the Atmosphere. SAE Tech. Paper Series 2000. [Google Scholar] [CrossRef] [Green Version]
- Elanskii, N.F.; Belikov, I.B.; Golitsyn, G.S.; Grisenko, A.M.; Lavrova, O.V.; Pankratova, N.V.; Safronov, A.N.; Skorokhod, A.I.; Shumskii, R.A. Observations of the atmosphere composition in the Moscow megapolis from a mobile laboratory. Dokl. Earth Sci. 2010, 432, 649–655. [Google Scholar] [CrossRef]
- Hagemann, R.; Corsmeier, U.; Kottmeier, C.; Rinke, R.; Wieser, A.; Vogel, B. Spatial variability of particle number concentrations and NOx in the Karlsruhe (Germany) area obtained with the mobile laboratory ‘AERO-TRAM’. Atmos. Environ. 2014, 94, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Petäjä, T.; Vakkari, V.; Pohja, T.; Nieminen, T.; Laakso, H.; Aalto, P.; Keronen, P.; Siivola, E.; Kerminen, V.-M.; Kulmala, M.; et al. Transportable Aerosol Characterization Trailer with Trace Gas Chemistry: Design, Instruments and Verification. Aerosol Air Qual. Res. 2013, 13, 421–435. [Google Scholar] [CrossRef] [Green Version]
- Westerdahl, D.; Fruin, S.; Sax, T.; Fine, P.M.; Sioutas, C. Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos. Environ. 2005, 39, 3597–3610. [Google Scholar] [CrossRef]
- Tang, U.W.; Wang, Z. Determining gaseous emission factors and driver’s particle exposures during traffic congestion by vehicle-following measurement techniques. J. Air Waste Manag. Assoc. 2006, 56, 1532–1539. [Google Scholar] [CrossRef] [Green Version]
- Kuhns, H.; Etyemezian, V.; Landwehr, D.; MacDougall, C.; Pitchford, M.; Green, M. Testing Re-entrained Aerosol Kinetic Emissions from Roads: A new approach to infer silt loading on roadways. Atmos. Environ. 2001, 35, 2815–2825. [Google Scholar] [CrossRef]
- Elen, B.; Peters, J.; Van Poppel, M.; Bleux, N.; Theunis, J.; Reggente, M.; Standaert, A. The Aeroflex: A Bicycle for Mobile Air Quality Measurements. Sensors 2012, 13, 221–240. [Google Scholar] [CrossRef]
- Farrell, P.; Culling, D.; Leifer, I. Transcontinental methane measurements: Part 1. A mobile surface platform for source investigations. Atmos. Environ. 2013, 74, 422–431. [Google Scholar] [CrossRef]
- Leifer, I.; Culling, D.; Schneising, O.; Farrell, P.; Buchwitz, M.; Burrows, J.P. Transcontinental methane measurements: Part 2. Mobile surface investigation of fossil fuel industrial fugitive emissions. Atmos. Environ. 2013, 74, 432–441. [Google Scholar] [CrossRef]
- Padró-Martínez, L.T.; Patton, A.; Trull, J.B.; Zamore, W.; Brugge, D.; Durant, J.L. Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year. Atmos. Environ. 2012, 61, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Dominici, F.; Peng, R.D.; Bell, M.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine Particulate Air Pollution and Hospital Admission for Cardiovascular and Respiratory Diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-J.; Liu, X.; Qu, C.; Shi, S.-B.; Liang, J.-J.; Yang, B. Main air pollutants and ventricular arrhythmias in patients with implantable cardioverter-defibrillators: A systematic review and meta-analysis. Chronic Dis. Transl. Med. 2017, 3, 242–251. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Verla, A.W.; Qingyue, W.; Ohiagu, F.O.; Chowdhury, A.H.; Enyoh, E.C.; Chowdhury, T.; Verla, E.N.; Chinwendu, U.P. An overview of emerging pollutants in air: Method of analysis and potential public health concern from human environmental exposure. Trends Environ. Anal. Chem. 2020, 28, e00107. [Google Scholar] [CrossRef]
- Bush, S.E.; Hopkins, F.M.; Randerson, J.T.; Lai, C.-T.; Ehleringer, J.R. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species. Atmos. Meas. Tech. 2015, 8, 3481–3492. [Google Scholar] [CrossRef] [Green Version]
- Phillips, N.G.; Ackley, R.; Crosson, E.R.; Down, A.; Hutyra, L.R.; Brondfield, M.; Karr, J.D.; Zhao, K.; Jackson, R.B. Mapping urban pipeline leaks: Methane leaks across Boston. Environ. Pollut. 2013, 173, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.B.; Down, A.; Phillips, N.G.; Ackley, R.C.; Cook, C.W.; Plata, D.L.; Zhao, K. Natural Gas Pipeline Leaks Across Washington, DC. Environ. Sci. Technol. 2014, 48, 2051–2058. [Google Scholar] [CrossRef]
- Tao, L.; Sun, K.; Miller, D.J.; Pan, D.; Golston, L.M.; Zondlo, M.A. Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants. Appl. Phys. A 2015, 119, 153–164. [Google Scholar] [CrossRef]
- Isakov, V.; Touma, J.S.; Khlystov, A. A method of assessing air toxics concentrations in urban areas using mobile platform measurements. J. Air Waste Manag. Assoc. 2007, 57, 1286–1295. [Google Scholar] [CrossRef] [Green Version]
- Shorter, J.H.; McManus, J.B.; Kolb, C.E.; Allwine, E.J.; Lamb, B.K.; Mosher, B.W.; Harriss, R.C.; Partchatka, U.; Fischer, H.; Harris, G.W.; et al. Methane emission measurements in urban areas in Eastern Germany. J. Atmos. Chem. 1996, 24, 121–140. [Google Scholar] [CrossRef] [Green Version]
- Weimer, S.; Mohr, C.; Richter, R.; Keller, J.; Mohr, M.; Prévôt, A.; Baltensperger, U. Mobile measurements of aerosol number and volume size distributions in an Alpine valley: Influence of traffic versus wood burning. Atmos. Environ. 2009, 43, 624–630. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, T.; Zhang, J.P.; Zhang, Q.H.; Lin, W.W.; Li, Y.; Wang, Z.F. Using a mobile laboratory to characterize the distribution and transport of sulfur dioxide in and around Beijing. Atmos. Chem. Phys. Discuss. 2011, 11, 11631–11645. [Google Scholar] [CrossRef] [Green Version]
- Czarnecka, M.; Nidzgorska-Lencewicz, J. Impact of weather conditions on winter and summer air quality. Int. Agrophysics 2011, 25, 7–12. [Google Scholar]
- Ning, G.; Yim, S.H.L.; Wang, S.; Duan, B.; Nie, C.; Yang, X.; Wang, J.; Shang, K. Synergistic effects of synoptic weather patterns and topography on air quality: A case of the Sichuan Basin of China. Clim. Dyn. 2019, 53, 6729–6744. [Google Scholar] [CrossRef]
- Schneider, J.; Kirchner, U.; Borrmann, S.; Vogt, R.; Scheer, V. In situ measurements of particle number concentration, chemically resolved size distributions and black carbon content of traffic-related emissions on German motorways, rural roads and in city traffic. Atmos. Environ. 2008, 42, 4257–4268. [Google Scholar] [CrossRef]
- Maciejczyk, P.B.; Offenberg, J.H.; Clemente, J.; Blaustein, M.; Thurston, G.D.; Chen, L.C. Ambient pollutant concentrations measured by a mobile laboratory in South Bronx, NY. Atmos. Environ. 2004, 38, 5283–5294. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, T.; Zheng, J.; Zhang, R.; Zhang, S.Q.; Xie, X.X.; Han, Y.Q.; Li, Y. Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics. Atmos. Chem. Phys. Discuss. 2009, 9, 8247–8263. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ninneman, M.; Joseph, E.; Schwab, M.J.; Shrestha, B.; Schwab, J.J. Mobile Laboratory Measurements of High Surface Ozone Levels and Spatial Heterogeneity During LISTOS 2018: Evidence for Sea Breeze Influence. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Gröbner, J.; Blumthaler, M.; Kazadzis, S.; Bais, A.; Webb, A.; Schreder, J.; Seckmeyer, G.; Rembges, D. Quality assurance of spectral solar UV measurements: Results from 25 UV monitoring sites in Europe, 2002 to 2004. Metrologia 2006, 43, S66–S71. [Google Scholar] [CrossRef]
- Ionel, I.; Popescu, F. Data acquisition system in a mobile air quality monitoring station. In Proceedings of the 2009 5th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 28–29 May 2009; pp. 557–562. [Google Scholar] [CrossRef]
- Pirjola, L.; Parviainen, H.; Hussein, T.; Valli, A.; Hämeri, K.; Aaalto, P.; Virtanen, A.; Keskinen, J.; Pakkanen, T.; Mäkelä, T.; et al. “Sniffer”—A novel tool for chasing vehicles and measuring traffic pollutants. Atmos. Environ. 2004, 38, 3625–3635. [Google Scholar] [CrossRef]
- Canagaratna, M.R.; Jayne, J.T.; Ghertner, D.A.; Herndon, S.; Shi, Q.; Jimenez, J.L.; Silva, P.; Williams, P.; Lanni, T.; Drewnick, F.; et al. Chase Studies of Particulate Emissions from in-use New York City Vehicles. Aerosol Sci. Technol. 2004, 38, 555–573. [Google Scholar] [CrossRef]
- Von Der Weiden-Reinmüller, S.-L.; Drewnick, F.; Crippa, M.; Prevot, A.; Meleux, F.; Baltensperger, U.; Beekmann, M.; Borrmann, S. Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: The Paris metropolitan area. Atmos. Meas. Tech. 2014, 7, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.; Corr, D.; DeLuca, P.; Kanaroglou, P.; McCarry, B. Mobile monitoring of air pollution in cities: The case of Hamilton, Ontario, Canada. J. Environ. Monit. 2009, 11, 998–1003. [Google Scholar] [CrossRef]
- Levy, I.; Mihele, C.; Lu, G.; Narayan, J.; Hilker, N.; Brook, J.R. Elucidating multipollutant exposure across a complex metropolitan area by systematic deployment of a mobile laboratory. Atmos. Chem. Phys. Discuss. 2014, 14, 7173–7193. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.; Johansson, C.; Karlsson, H.; Hansson, H.-C. Factors affecting non-tailpipe aerosol particle emissions from paved roads: On-road measurements in Stockholm, Sweden. Atmos. Environ. 2008, 42, 688–702. [Google Scholar] [CrossRef]
- Cocker, D.R.; Shah, S.D.; Johnson, K.; Miller, J.W.; Norbeck, J.M. Development and Application of a Mobile Laboratory for Measuring Emissions from Diesel Engines. 1. Regulated Gaseous Emissions. Environ. Sci. Technol. 2004, 38, 2182–2189. [Google Scholar] [CrossRef] [Green Version]
- Borrego, C.; Costa, A.m.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; et al. Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmos. Environ. 2016, 147, 246–263. [Google Scholar] [CrossRef] [Green Version]
- Mohr, C.; Richter, R.; DeCarlo, P.; Prevot, A.; Baltensperger, U. Spatial variation of chemical composition and sources of submicron aerosol in Zurich during wintertime using mobile aerosol mass spectrometer data. Atmos. Chem. Phys. Discuss. 2011, 11, 7465–7482. [Google Scholar] [CrossRef] [Green Version]
- Drewnick, F.; Böttger, T.; Von Der Weiden-Reinmüller, S.-L.; Zorn, S.R.; Klimach, T.; Schneider, J.; Borrmann, S. Design of a mobile aerosol research laboratory and data processing tools for effective stationary and mobile field measurements. Atmos. Meas. Tech. 2012, 5, 1443–1457. [Google Scholar] [CrossRef] [Green Version]
- Kolb, C.E.; Herndon, S.C.; McManus, J.B.; Shorter, J.H.; Zahniser, M.S.; Nelson, D.D.; Jayne, J.T.; Canagaratna, M.R.; Worsnop, D.R. Mobile Laboratory with Rapid Response Instruments for Real-Time Measurements of Urban and Regional Trace Gas and Particulate Distributions and Emission Source Characteristics. Environ. Sci. Technol. 2004, 38, 5694–5703. [Google Scholar] [CrossRef]
- Zavala, M.; Herndon, S.C.; Slott, R.S.; Dunlea, E.J.; Marr, L.C.; Shorter, J.H.; Zahniser, M.; Knighton, W.B.; Rogers, T.M.; Kolb, C.E.; et al. Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign. Atmos. Chem. Phys. Discuss. 2006, 6, 5129–5142. [Google Scholar] [CrossRef] [Green Version]
- Etyemezian, V.; Kuhns, H.; Gillies, J.; Green, M.; Pitchford, M.; Watson, J. Vehicle-based road dust emission measurement: I—Methods and calibration. Atmos. Environ. 2003, 37, 4559–4571. [Google Scholar] [CrossRef]
- Fecht, D.; Hansell, A.; Morley, D.; Dajnak, D.; Vienneau, D.; Beevers, S.; Toledano, M.B.; Kelly, F.J.; Anderson, H.R.; Gulliver, J. Spatial and temporal associations of road traffic noise and air pollution in London: Implications for epidemiological studies. Environ. Int. 2016, 88, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Gui, D.; Yan, B.; Liu, Y.; Liao, W.; Zhu, Y.; Lu, C.; Zhao, N. Assessing the potential of random forest method for estimating solar radiation using air pollution index. Energy Convers. Manag. 2016, 119, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Palas Operating Manual, “Fidas 200s—System”, 2016. Available online: https://www.palas.de/file/3N6047/application/pdf/5200-en_V2.1_0421_Fidas+200_Operating+Manual.pdf (accessed on 3 August 2021).
- Comde Derenda Manual, Air Pollution Monitor APM-2. 2019. Available online: https://www.comde-derenda.com/wp-content/uploads/2016/09/Colombia_db-230-en-APM-2_2021-1.pdf (accessed on 3 August 2021).
- Umwelttechnik MCZ Manual, Sequential Particulate Sampler MicroPNS Type LVS16-Split. Available online: https://www.mcz.de/datenblaetter/LVS16_Split_type_MCZ_leaflet.pdf (accessed on 3 August 2021).
- Ecotech User Manual, Serinus 40 Oxides of Nitrogen Analyser. 2015. Available online: https://www.ecotech.com/wp-content/uploads/2015/01/M010028-Serinus-40-NOx-User-Manual-2.2.pdf (accessed on 3 August 2021).
- Ecotech User Manual, Serinus 10 Ozone Analyser. 2015. Available online: https://www.ecotech.com/wp-content/uploads/2015/01/Serinus-10-Manual-Ver-3.pdf (accessed on 3 August 2021).
- Davis Instruments Manual, Vantage Pro 2. 2020. Available online: https://cdn.shopify.com/s/files/1/0515/5992/3873/files/07395-289_UM_6820.pdf (accessed on 3 August 2021).
- Brüel & Kjær Manual, “Hand-Held Analyser Types 2250 and 2270”, 2016. Available online: https://www.bksv.com/-/media/literature/Various/be1713.ashx (accessed on 3 August 2021).
- Bo, M.; Mercalli, L.; Pognant, F.; Berro, D.C.; Clerico, M. Urban air pollution, climate change and wildfires: The case study of an extended forest fire episode in northern Italy favoured by drought and warm weather conditions. Energy Rep. 2020, 6, 781–786. [Google Scholar] [CrossRef]
- Clerici, G.; Salerno, R.; Sandroni, S. Time Evolution of Breeze Circulation in Alpine Valleys. In Air Pollution Modeling and Its Application VIII; Springer: Boston, MA, USA, 1991; pp. 349–360. [Google Scholar]
- Bigi, A.; Ghermandi, G. Trends and variability of atmospheric PM2.5 and PM10–2.5 concentration in the Po Valley, Italy. Atmos. Chem. Phys. Discuss. 2016, 16, 15777–15788. [Google Scholar] [CrossRef] [Green Version]
Study | Vehicle Type | Pollutant/ Parameter | Instruments | Time Resolution | Detection Limit | Meteoclimatic Parameters |
---|---|---|---|---|---|---|
Bekr et al., 1978 | Semi-trailer | CO | NDIR/Mine Safety Appliances—Lira 202s | Temperature, dry bulb temperature, RH, wind speed, wind direction, solar radiation, metric rain gauge | ||
CO2 | NDIR/Mine Safety Appliances—Lira 303 | |||||
O3 | UV adsorption/Dasibi 1003—AH | |||||
NO-NOX | Chemiluminescence/Thermo Electron 14D | |||||
SO2 | UV fluorescence/Thermo Electron 14D | |||||
N2O–C2H6 | IR | |||||
Aldehydes, NH3 | Chemical reaction/absorption (gas bubblers) | |||||
Selected OC | Absorption (Tenax GC Absorption Tubes) | |||||
Aereosol size distribution | Optical particle counter/Royo Particle Counter 225 | |||||
Maciejczyk et al., 2004 | Van | PM10 | Sequential gravimetric sampler | Wind direction and wind speed | ||
PM2.5 | TEOM with ACCU and gravimetric sampler (via X-ray fluorescence (XRF)) | |||||
BC | Aethalometer, Andersen Instruments AE-14 dual channel | |||||
CO | Model 48C, Thermo Environmental Instrument | |||||
O3 | Model 103-PC, Thermo Environmental Instrument | |||||
NO | Model 8840, Monitor Labs | |||||
SO2 | Model 8850, Monitor Labs | |||||
Ionel et al., 2009 | Van | NO, NO2, NOx | Chemiluminescence method/APNA-370 Horiba | 0.1 ppm | Temperature, relative humidity, barometric pressure, wind direction, wind speed | |
SO2 | UV fluorescence/APSA-370 Horiba | Nd | ||||
CO | IR analysis method/APMA-370 Horiba | 5 ppm | ||||
O3 | UV adsorption/APOA-370 Horiba | 0.1 ppm | ||||
THC, NMHC, CH4 | Selective combustion combined with hydrogen ion methane/APHA-370 Horiba | 0–5 ppm | ||||
PM10, PM2.5, TSP | TEOM | Nd | ||||
Petäjä et al., 2013 | Trailer (model: Eurowagon 4500 U) | Aerosol number and size distribution | DMPS | 10 min | 10–840 nm | Temperature, relative humidity, wind direction, wind speed, precipitation, solar radiation |
Aerosol mass concentration | TEOM 1400a with a custom inlet switcher | Nd | Nd | |||
Air ion number and size distribution | AIS | 3 h | 0.4–40 nm | |||
SO2 | Thermo Environmental Instruments Inc. 43S | Nd | 100–200 ppb | |||
NOX | Teledyne Instruments 200AU | Nd | 100–2000 ppb | |||
CO | Horiba APMA 360 | Nd | 10,000 ppb | |||
O3 | Environment S.A. O341M | Nd | 500 ppb | |||
Borrego et al., 2016 | Van | PM10–PM2.5 | Beta ray adsorption method/Environment MP101M | 0–200 µg/m3 | Temperature, relative humidity, barometric pressure, wind speed, wind direction, solar radiance | |
CO | Nondispersive IR spectroscopy/Environment CO11M | 0–100 mg/m3 | ||||
NOX | Chemiluminescence/Environment AC31M | 0–500 µg/m3 | ||||
C6H6 | Gas chromatography/Environment VOC71M | 0–50 µg/m3 | ||||
O3 | UV photometry/Environment O341M | 0–500 µg/m3 | ||||
SO2 | UV fluorescence/Environment AF21M | 0–1000 µg/m3 | ||||
Zhang et al., 2019; Zhang et al., 2020 | Van (model: Dodge Sprinter 2007) | Aerosol chemical composition | Aerodyne HR-ToF-AMS | Weather station: temperature, relative humidity, rain, wind direction, wind speed and solar radiance Lidar: wind velocity vertical profile | ||
Particle number concentration | TSI water condensation particle counter/CPC model 3785 | |||||
PM | Light scattering/Thermo Scientific MIE pDR-1500 | |||||
O3 | UV absorption/Teledyne API model 430 and 2B model 205 | |||||
NO2 | CAPS spectroscopy/Teledyne API model 500U | |||||
VOC | Canister samplers |
Study | Vehicle Type | Pollutant/Parameter | Instruments | Time Resolution | Detection Limit | Meteoclimatic Parameters |
---|---|---|---|---|---|---|
Shorter et al., 1996 | Van | CH4 | IR adsorption/ARI methane monitor—canister for sampler | 6 s | 5 ppbv | Wind direction |
CO2 | LiCor LI-6262 | 1 s | 1 ppmv | |||
SF6 | WSU SF6 analyser | 0.5 s | 10 pptv | |||
Bukowiecki et al., 2002 | Van (model: IVECO Turbo Daily Transporter) | Aerosol size distribution | Scanning mobility particle sizer (SMPS)/TSI DMA 3071, CPC 3010 | 3 min | 7–310 nm | Temperature, pressure, relative humidity, wind direction, global radiation |
Aerosol number concentration | Condensation particle counter (CPC)/TSI UCPC 3025 | 1 s | >3 nm | |||
Aerosol size distribution D = 0.3–20 μm | Optical particle counter (OPC)/Grimm Dust Monitor 1.108 | 6 s | 1 particle/L | |||
Aerosol active surface area | Diffusion charging sensor (DC)/Matter Engineering LQ1-DC | 1 s | 10 μm2/cm3 | |||
Black carbon mass concentration | Aethalometer (visible light absorption)/Magee AE-10 | 1 min | 40 ng/m3 | |||
PM2.5 | Betameter (beta radiation absorption)/Eberline FH 62 I-R | 1/2 h | 3 μg/m3 | |||
O3 | UV absorption/constructed by PSI | 2 s | 1 ppb | |||
CO | Vacuum UV resonance fluorescence/Aerolaser AL-5002 | 1 s | 2 ppb | |||
CO2 | IR absorption/LI-COR | 1 s | 0.1 ppm | |||
NOx, NOy, HNO3, PAN | Chemiluminescence/MetAir/PSI/Juelich | 1 s | 200 ppt | |||
H2O2, total peroxide | Fluorescence/Aerolaser AL-2002 | 120–180 s | 200 ppt | |||
HCHO | Fluorescence/IFU Garmisch | 120–180 s | 200 ppt | |||
Kittelson et al., 2000; Kittelson et al., 2004 | Truck (model: Volvo container truck) | Particle size | TSI scanning mobility particle sizer (SMPS) | 9–300 nm | Nd | |
Particle size distribution | Electrical low pressure impactor/ELPI, Dekati | 29–2500 nm | ||||
Total aerosol concentration | Condensation particle counter (CPC) | 3 nm | ||||
Fuchs surface area of the aerosol | Epiphaniometer | 5 min | ||||
Aerosol surface area concentration | Diffusion charger (DC) | 0.5 s | ||||
CO2 | High sensitivity CO2 analyser | |||||
NOx | High sensitivity NOx analyser | |||||
CO | High sensitivity CO analyser | |||||
Westerdahl et al., 2005 | SUV (model: Toyota RAV4) | UFP | TSI portable CPC, model 3007 | 10 s | 10 nm–1 µm | Temperature, relative humidity Temperature, relative humidity, wind direction, wind speed |
UFP | TSI CPC, model 3022A | 10 s | 7 nm–1 µm | |||
Particle length | TSI electrical aerosol detector, model 3070A | 2 s | ||||
BC | IR spectrometry/Magee Scientific Portable Aethalometer, model 42 | 60 s | ||||
Particle size distribution 5–153 nm | Differential mobility/TSI scanning mobility particle system, model 3080, classifier Nano DMA, 3025 CPC | 60 s | ||||
Particle size distribution 16–600 nm | Differential mobility/TSI scanning mobility particle system, model 3080, classifier Long DMA, 3025 CPC | |||||
PAH | UV irradiation/EcoChem PAH analyser, model PAS 2000 | 2 s | ||||
PM2.5 | TSI DustTrack | 10 s | ||||
NO, NOx, NO2 | Chemilumineschence/Teledyne-API NOx analyser, model 200e | 20 s | ||||
CO, CO2, | TSI Q-Trak Plus monitor, model 8554 | 10 s | ||||
CO | IR spectrometry/Di-Com 4000 from AVL | 2 s | 0–100,000 ppmv | |||
Wa Tang et al., 2006 | SUV (model: Corolla Toyota) | CO2 | IR spectrometry/Di-Com 4000 from AVL Electrochemical process/Di-Com 4000 from AVL | 2 s | 0–200,000 ppmv | Temperature, relative humidity, wind direction, wind speed |
HC | 2 s | |||||
NO | 2 s | 0–4000 ppmv | ||||
O2 | Electrochemical process/Di-Com 4000 from AVL Light-scattering intensity/DustTrak 8520 from TSI | 2 s | 40,000–220,000 ppmv | |||
PM1, PM2.5, PM10 | 1 s | 0.001–100 mg/m3 | ||||
Isakov et al., 2007 | Minivan (model: Duke minivan) | Hexavalent Chromium | Steam-jet aerosol collector long pathlength absorbance spectroscopy (SJAC-LPAS) | 15 s | 0.2 ng/m3 | Nd |
Formaldehyde | Nafion 811 hydrophilic membrane tube | - | 9 pptv | |||
Fine PM | Stationary scanning mobility particle size (SMPS) | - | 12–270 nm | |||
Wallace et al., 2009 | Van IVECO Turin V diesel vehicle (Van) | NOx | TECO model 42C Nox analyser | - | 0–100 ppm | Temperature, pressure, relative humidity, wind speed, wind direction |
SO2 | Monitor Labs 8850 SO2 analyser | - | 0–100 ppm | |||
CO | TECO model 48 CO analyser | - | 0–10,000 ppm | |||
PM1, PM2.5, PM10 | Grimm model 1.107 Dust Monitor | - | 1–6500 µg/m3 | |||
Tao et al., 2015 | SUV | NH3 | Quantum Cascade Laser NH3 | 0.1 s | 150 pptv | Temperature, pressure, humidity, wind speed/direction, precipitation rate |
CO/N2O | Quantum Cascade Laser CO/N2O | 0.1 s | 3 ppbv CO 0.2 ppbv N2O | |||
CO2/H2O | LI-COR LI–7500 A | 0.1 s | 0.11 ppmv CO2 0.0047 ppmv H2O | |||
CH4 | LI-COR–7700 | 0.1 s | 5 ppbv | |||
Wang et al., 2009; Zhu et al., 2016 | Van (model: Iveco Turin V diesel) | Size distribution | Scanning mobility particle sizer (SMPS)/TSI DMA3081, CPC3772 | 2 min | 15–673 nm | Temperature, pressure, relative humidity, wind speed, wind direction. Temperature, relative humidity, wind speed, wind direction |
Size distribution | Optical particle counter (OPC)/Grimm Dust Monitor 1.108 | 6 s | 1 part/L | |||
Active surface area | Nanoparticle surface area monitor/TSI 3550 | 3 s | 0.1 µm2/cm3 | |||
Black carbon | Multi-angle absorption photometer (MAAP)/Thermo model 5012 | 1 min | 0.1 µg/m3 | |||
O3 | UV absorption/ECOTECH 9810A | 1 s | 0.4 ppb | |||
NOx | Chemiluminescence/ECOTECH 9841A | 1 s | 0.4 ppb | |||
CO | NDIR gas filter correlation/ECOTECH 9830A | 1 s | 40 ppb | |||
CO2 | NDIR gas filter correlation/ECOTECH 9820A | 1 s | 2 ppm | |||
SO2 | Fluorescence/ECOTECH 9850A | 1 s | 0.4 ppb | |||
BTEX | Proton transfer reaction mass spectrometry (PTR-MS)/Ionicon | 30 s/cycle | <0.3 ppb | |||
Pirjola et al., 2004; Pirjola et al., 2012 | Van (model: VW LT35 diesel) | Aerosol size distribution | Electrical low pressure impactor/ELPI, Dekati | 10 s | 7 nm–10 µm | Temperature, relative humidity, wind speed, wind direction |
Aerosol size distribution | Nano-SMPS/DMA 3085 and CPC 3025, TSI | 150 s | 3–60 nm | |||
Aerosol size distribution | SMPS/DMA 3081 and CPC 3025, TSI | 150 s | 10–420 nm | |||
BC | Optical method/Aethalometer AE 22, Magee Scientific and MAAP, Thermo Electron Corporation | 5 s | - | |||
NO, NO2, NOx | Chemiluminescence/APNA 260, Horiba | 1 s | - | |||
PM2.5 | TEOM/Thermo Scientific model 1400AB and light scattering/DustTrack (model 8530, TSI) | 1 min | - | |||
CO | Model CO12M, Environment SA | 1 s | - | |||
CO2 | Model VA 3100, Horiba | 1 s | - | |||
Phillips et al., 2013; Jackson et al., 2014 | Van (model: Ford Transit Connect) | CH4 | Picarro G2301 Cavity Ring-Down Spectrometer equipped with an A0491 Mobile Plume Mapping Kit | 1.1 s | 2.5 ppm | Temperature, relative humidity, barometric pressure, wind speed, wind direction |
C2H6, C3H8 | Flame ionization/Agilent 7890A gas chromatograph | 1.1 s | 2.5 ppm | |||
Bush et al., 2015 | Van (model: Ford Transit Connect) | CO2, CO, H2O | Picarro model G1302 Sunnyvale, CA | 2 s | - | Temperature, relative humidity, barometric pressure, wind speed, wind direction |
CO2, CH4, H2O | Picarro G1301 | 3 s | - | |||
Particle size distribution | Atmospheric aerosol spectrometer, model 1.109, Grimm Technologies | 10 s | - |
Study | Vehicle Type | Pollutant/Parameter | Instruments | Time Resolution | Detection Limit | Meteoclimatic Parameters |
---|---|---|---|---|---|---|
Canagaratna et al., 2004; Kolb et al., 2004; Zavala et al., 2006 | Van (model: Ford Econoline 350) | NO, NO2, CO, N2O, CH4, SO2, H2CO | Tuneable infrared laser differential absorption spectroscopy (TILDAS) | 1 s | <1 ppb | Temperature |
CO2 | Nondispersive infrared unit/LICOR | 1 s | 0.2 ppm | |||
Particle size distribution | TSI model 3022 CPC | 2–3 s | 7–2500 nm | |||
PM2.5 | Aerosol photometer/TSI DustTrack | 1 s | 1 µg/m3 | |||
CH3OH, C2H4O, C6H6, C7H8, MTBE | Proton transfer reaction mass spectrometer (PTR-MS) | 1 s | 1–5 ppb | |||
Black carbon | Aethalometer/Magee Scientific AE-16 | 1 min | 0.1 µg/m3 | |||
Particulate PAH | Photoemission aerosol sensor/EcoChem PAS 2000 | 10 s | 10 ng/m3 | |||
Nitrate, sulphate, ammonium, OC | Aerosol mass spectrometer (AMS) | 4 s | 30 nm–1 µm | |||
Schneider et al., 2008 | Van | Particle number concentration | CPC (TSI 3022) | 5 s | <10 nm | Temperature, relative humidity |
Black carbon mass concentration | AVL 483 Micro Soot Sensor | 1 s | 5 μg/m3 | |||
Speciated non-refractory particle mass concentration and size distribution | Q-AMS | 30 s | 20–1000 nm | |||
Aerosol size distribution | SMPS (TSI 3934) | 2 min | 10–300 nm | |||
NOx, NO, NO2 | Chemiluminescence detector (API200A) | 1 min | 0.4 ppbv | |||
CO2 | NIR detector | 1 s | 0.2 ppm | |||
Drewnick et al., 2012 | Van (model: Ford Transit FT350-L) | BC | Multi-angle absorption photometer/Thermo Electron Corp | 1 min | 0.1 µg/m3 | Wind speed, wind direction, temperature, relative humidity, rain intensity, pressure |
PAH | Polyaromatic hydrocarbon sensor/PAS2000 | 12 s | 1 ng/m3 | |||
PM10, PM2.5, PM1 | Environmental dust monitor/EDM180 | 6 s | 0.1–1500 µg/m3 | |||
Particle number concentration | Condensation particle counter/model 3786, TSI | 1 s | 2.5 nm–1 µm | |||
Particle size distribution | Fast mobility particle sizer spectrometer/model 3091, TSI | 1 s | 5.6–560 nm | |||
Particle size distribution | Aerodynamic particle sizer spectrometer/model 3321, TSI | 1 s | 0.5–20 µm | |||
Particle size distribution | Optical particle counter/model 1.109 | 6 s | 0.25–32 µm | |||
O3 | AirPointer/Recordum Messtechnik GmbH | 4 s | 1 ppbv | |||
SO2 | 1 ppbv | |||||
CO | 0.2 ppmv | |||||
NO, NO2 | 1 ppbv | |||||
CO2/H2O | Licor/LI840, Licor, USA | 1 s | 1 µmol/mol | |||
Levy et al., 2014 | Medium-duty truck (model: GMC C7500) | NO | Thermo Scientific/TECO 42CTL | 1s | 0.4 ppbv | Nd |
NO2 | Thermo Scientific/TECO 42CTL (with photolitic converter) | 1 s | 0.8 ppbv | |||
SO2 | Thermo Scientific/TECO 43 | 10 s | 1 ppbv | |||
CO | Thermo Scientific/TECO 48 | 10 s | 100 ppbv | |||
O3 | Thermo Scientific/TECO 49 | 20 s | 1 ppbv | |||
PM10, PM2.5. PM1 | Grimm Dust Monitor 1.100 | 6 s | 0.1 µg/m3 | |||
UPF | Grimm CPC 5.403 | 1 s | 0.6 n/cc | |||
BC | Droplet Measurement Technologies/Photo Acoustic | 1 s | <3.3 µg/m3 | |||
Organic matter, sulphate, nitrate, HOA | Aerodyne aerosol mass spectrometer | 2 Min | 0.02–0.15 µg/m3 | |||
C3 benzene, toluene, xylenes | IONICON High Sensitivity PTR–MS | 10s | 20 pptv |
Instrument | Measurement Method/Technique | Parameter | Time Resolution | Detection Range | Flow Rate |
---|---|---|---|---|---|
Palas Fidas 200s | Optical | PM1 | 1 s | 0–10,000 µg/m3 | 0.3 m3/h |
PM2.5 | 1 s | 0–10,000 µg/m3 | |||
PM4 | 1 s | 0–10,000 µg/m3 | |||
PM10 | 1 s | 0–10,000 µg/m3 | |||
PTS | 1 s | 0–10,000 µg/m3 | |||
Cn | 1 s | 0–20,000 P/cm3 | |||
Size distribution | 1 s | 180 nm–18 µg | |||
APM-2 | Optical | PM2.5 | 2 s | 0–1000 µg/m3 | 3.3 L/min |
PM10 | 2 s | 0–1000 µg/m3 | |||
MicroPNS LVS16 | Gravimetric | PM2.5 | 5 min–168 h | - | 2.3 m3/h |
PM10 | 5 min–168 h | - | |||
TSP | 5 min–168 h | - | |||
Serinus 40 NOx Analyser | Chemiluminescence method | NO | 1 s | 0–20 ppm | 0.6 SLPM total flow for two channels |
NOx | 1 s | 0–20 ppm | |||
NO2 | 1 s | 0–20 ppm | |||
Serinus 10 O3 Analyser | UV absorption technology | O3 | 1 s | 0–20 ppm | 0.5 slpm |
Davis Vantage Pro 2 | Temperature | 10–12 s | −45–+60 °C | ||
Humidity | 50 s–1 min | 0–100% | |||
Wind direction | 2.5–3 s | 0–360° | |||
Wind speed | 2.5–3 s | 0–280 km/h | |||
Rain | 20–24 s | 0–999 mm/h | |||
Solar radiation | 50 s–1 min | 0–1800 W/m2 | |||
UV index | 50 s–1 min | 0–16 |
Sampling Point | Coordinates | Sampling Period | PM2.5 (µg/m3) | PM10 (µg/m3) | ||||
---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | |||
Volpiano | 45.190025, 7.771652 | 3 June 2019–27 June 2019 | 13.75 | 7.80 | 26.00 | 23.26 | 12.50 | 39.10 |
Mazzè | 45.289311, 7.940933 | 19 July 2019–3 September 2019 | 12.09 | 3.30 | 27.30 | 13.59 | 4.30 | 30.20 |
Montanaro I | 45.228619, 7.850982 | 4 September 2019–19 September 2019 | 11.05 | 1.1 | 20.80 | 11.95 | 1.40 | 22.20 |
Montanaro II | 45.228619, 7.850982 | 16 January 2020–28 March 2020 | 35.14 | 5.35 | 67.14 | 40.85 | 8.00 | 79.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boanini, C.; Mecca, D.; Pognant, F.; Bo, M.; Clerico, M. Integrated Mobile Laboratory for Air Pollution Assessment: Literature Review and cc-TrAIRer Design. Atmosphere 2021, 12, 1004. https://doi.org/10.3390/atmos12081004
Boanini C, Mecca D, Pognant F, Bo M, Clerico M. Integrated Mobile Laboratory for Air Pollution Assessment: Literature Review and cc-TrAIRer Design. Atmosphere. 2021; 12(8):1004. https://doi.org/10.3390/atmos12081004
Chicago/Turabian StyleBoanini, Chiara, Domenico Mecca, Federica Pognant, Matteo Bo, and Marina Clerico. 2021. "Integrated Mobile Laboratory for Air Pollution Assessment: Literature Review and cc-TrAIRer Design" Atmosphere 12, no. 8: 1004. https://doi.org/10.3390/atmos12081004
APA StyleBoanini, C., Mecca, D., Pognant, F., Bo, M., & Clerico, M. (2021). Integrated Mobile Laboratory for Air Pollution Assessment: Literature Review and cc-TrAIRer Design. Atmosphere, 12(8), 1004. https://doi.org/10.3390/atmos12081004