Measurement and Modeling of the Precipitation Particle Size Distribution
Conflicts of Interest
References
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation; Mysak, L.A., Hamilton, K., Eds.; Atmospheric and Oceanographic Sciences Library; Springer: Berlin/Heidelberg, Germany, 2010; Volume 18, ISBN 978-0-7923-4211-3. [Google Scholar]
- Serio, M.A.; Carollo, F.G.; Ferro, V. Raindrop size distribution and terminal velocity for rainfall erosivity studies. A review. J. Hydrol. 2019, 576, 210–228. [Google Scholar] [CrossRef]
- Landolfo, R.; Cascini, L.; Portioli, F. Modeling of Metal Structure Corrosion Damage: A State of the Art Report. Sustainability 2010, 2, 2163–2175. [Google Scholar] [CrossRef] [Green Version]
- Cruse, R.; Flanagan, D.; Frankenberger, J.; Gelder, B.; Herzmann, D.; James, D.; Krajewski, W.; Kraszewski, M.; Laflen, J.; Opsomer, J.; et al. Daily estimates of rainfall, water runoff, and soil erosion in Iowa. J. Soil Water Conserv. 2006, 61, 191–199. [Google Scholar]
- Laws, J.O.; Parsons, D.A. The relation of raindrop-size to intensity. Trans. Am. Geophys. Union 1943, 24, 452–460. [Google Scholar] [CrossRef]
- Mason, B.J.; Ramanadham, R. A photoelectric raindrop spectrometer. Q. J. R. Meteorol. Soc. 1953, 79, 490–495. [Google Scholar] [CrossRef]
- Joss, J.; Waldvogel, A. Ein Spectrograph für Niederschlagstropfen mit automatisher Auswertung (A spectrograph for the automatic analysis of raindrops). Pure Appl. Geophys. 1967, 68, 240–246. [Google Scholar] [CrossRef]
- Kathiravelu, G.; Lucke, T.; Nichols, P. Rain Drop Measurement Techniques: A Review. Water 2016, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Bringi, V.; Thurai, M.; Baumgardner, D. Raindrop fall velocities from an optical array probe and 2-D video disdrometer. Atmos. Meas. Tech. 2018, 11, 1377–1384. [Google Scholar] [CrossRef] [Green Version]
- Lawson, R.P.; Strapp, J.W.; Stewart, R.E.; Isaac, G.A. Aircraft observations of the origin and growth of very large snowflakes. Geophys. Res. Lett. 1993, 20, 53–56. [Google Scholar] [CrossRef]
- Schönhuber, M.; Lammer, G.; Randeu, W.L. One decade of imaging precipitation measurement by 2D-video-distrometer. Adv. Geosci. 2007, 10, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Tokay, A.; Petersen, W.A.; Gatlin, P.; Wingo, M. Comparison of Raindrop Size Distribution Measurements by Collocated Disdrometers. J. Atmos. Ocean. Technol. 2013, 30, 1672–1690. [Google Scholar] [CrossRef]
- Larsen, M.; Blouin, C. Refinements to Data Acquired by 2-Dimensional Video Disdrometers. Atmosphere 2020, 11, 855. [Google Scholar] [CrossRef]
- Wu, W.; McFarquhar, G. On the Impacts of Different Definitions of Maximum Dimension for Nonspherical Particles Recorded by 2D Imaging Probes. J. Atmos. Ocean. Technol. 2016, 33, 1057–1072. [Google Scholar] [CrossRef]
- Tiira, J.; Moisseev, D.N.; Von Lerber, A.; Ori, D.; Tokay, A.; Bliven, L.F.; Petersen, W. Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland. Atmos. Meas. Tech. 2016, 9, 4825–4841. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; McFarquhar, G.M.; Nesbitt, S.W.; Chase, R.J.; Poellot, M.R.; Wang, H. Dependence of Mass—Dimensional Relationships on Median Mass Diameter. Atmosphere 2020, 11, 756. [Google Scholar] [CrossRef]
- Yu, T.; Chandrasekar, V.; Xiao, H.; Joshil, S. Characteristics of Snow Particle Size Distribution in the PyeongChang Region of South Korea. Atmosphere 2020, 11, 1093. [Google Scholar] [CrossRef]
- Pettersen, C.; Bliven, L.F.; Von Lerber, A.; Wood, N.B.; Kulie, M.S.; Mateling, M.E.; Moisseev, D.N.; Munchak, S.J.; Petersen, W.A.; Wolff, D.B. The Precipitation Imaging Package: Assessment of Microphysical and Bulk Characteristics of Snow. Atmosphere 2020, 11, 785. [Google Scholar] [CrossRef]
- Field, P.R.; Heymsfield, A.J.; Bansemer, A. Snow Size Distribution Parameterization for Midlatitude and Tropical Ice Clouds. J. Atmos. Sci. 2007, 64, 4346–4365. [Google Scholar] [CrossRef]
- Han, B.; Fan, J.; Varble, A.; Morrison, H.; Williams, C.R.; Chen, B.; Dong, X.; Giangrande, S.E.; Khain, A.; Mansell, E.; et al. Cloud-Resolving Model Intercomparison of an MC3E Squall Line Case: Part II. Stratiform Precipitation Properties. J. Geophys. Res. Atmos. 2019, 124, 1090–1117. [Google Scholar] [CrossRef] [Green Version]
- Thurai, M.; Bringi, V.N.; Wolff, D.B.; Marks, D.A.; Pabla, C.S. Drop Size Distribution Measurements in Outer Rainbands of Hurricane Dorian at the NASA Wallops Precipitation-Research Facility. Atmosphere 2020, 11, 578. [Google Scholar] [CrossRef]
- Van Den Broeke, M. Disdrometer, Polarimetric Radar, and Condensation Nuclei Observations of Supercell and Multicell Storms on 11 June 2018 in Eastern Nebraska. Atmosphere 2020, 11, 770. [Google Scholar] [CrossRef]
- Murata, F.; Terao, T.; Chakravarty, K.; Syiemlieh, H.; Cajee, L. Characteristics of Orographic Rain Drop-Size Distribution at Cherrapunji, Northeast India. Atmosphere 2020, 11, 777. [Google Scholar] [CrossRef]
- Gatlin, P.; Petersen, W.; Pippitt, J.; Berendes, T.; Wolff, D.; Tokay, A. The GPM Validation Network and Evaluation of Satellite-Based Retrievals of the Rain Drop Size Distribution. Atmosphere 2020, 11, 1010. [Google Scholar] [CrossRef]
- Liao, L.; Meneghini, R.; Iguchi, T.; Tokay, A. Characteristics of DSD Bulk Parameters: Implication for Radar Rain Retrieval. Atmosphere 2020, 11, 670. [Google Scholar] [CrossRef]
- Chase, R.; Nesbitt, S.; McFarquhar, G. Evaluation of the Microphysical Assumptions within GPM-DPR Using Ground-Based Observations of Rain and Snow. Atmosphere 2020, 11, 619. [Google Scholar] [CrossRef]
- Johnson, R.W.; Kliche, D.V. Large Sample Comparison of Parameter Estimates in Gamma Raindrop Distributions. Atmosphere 2020, 11, 333. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatlin, P.N.; Thurai, M.; Williams, C.; Adirosi, E. Measurement and Modeling of the Precipitation Particle Size Distribution. Atmosphere 2021, 12, 819. https://doi.org/10.3390/atmos12070819
Gatlin PN, Thurai M, Williams C, Adirosi E. Measurement and Modeling of the Precipitation Particle Size Distribution. Atmosphere. 2021; 12(7):819. https://doi.org/10.3390/atmos12070819
Chicago/Turabian StyleGatlin, Patrick N., Merhala Thurai, Christopher Williams, and Elisa Adirosi. 2021. "Measurement and Modeling of the Precipitation Particle Size Distribution" Atmosphere 12, no. 7: 819. https://doi.org/10.3390/atmos12070819
APA StyleGatlin, P. N., Thurai, M., Williams, C., & Adirosi, E. (2021). Measurement and Modeling of the Precipitation Particle Size Distribution. Atmosphere, 12(7), 819. https://doi.org/10.3390/atmos12070819