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Abstract: Raindrop size distributions have been characterized through the gamma family. Over the
years, quite a few estimates of these gamma parameters have been proposed. The natural question
for the practitioner, then, is what estimation procedure should be used. We provide guidance in
answering this question when a large sample size (>2000 drops) of accurately measured drops is
available. Seven estimation procedures from the literature: five method of moments procedures,
maximum likelihood, and a pseudo maximum likelihood procedure, were examined. We show that
the two maximum likelihood procedures provide the best precision (lowest variance) in estimating
the gamma parameters. Method of moments procedures involving higher-order moments, on the
other hand, give rise to poor precision (high variance) in estimating these parameters. A technique
called the delta method assisted in our comparison of these various estimation procedures.

Keywords: raindrop size distribution; gamma distribution; method of moments; maximum likelihood;
delta method; simulation; correlation

1. Introduction

Knowledge of the raindrop size distribution (RSD) is essential in the retrieval of rainfall properties
using radar remote sensing techniques and in understanding and describing the microphysical processes
involved in the formation of precipitation. In particular, gamma RSDs have been used, among other
investigations, to examine the time evolution of rainfall [1], characterize and quantify relations between
such quantities as rainfall rate, radar reflectivity, and liquid water content [2–5], and help distinguish
between stratiform and convective precipitation [6]. Throughout this article, we suppose that the RSD
follows a gamma distribution. While the gamma distribution is not always appropriate, it often is
(see e.g., [7] and [8]). Given a sample of raindrops, a variety of estimates have been proposed over
the years for how this data may be used to estimate the gamma parameters. Among these, method
of moments estimates are the most popular as the various moments may be understood as physical
quantities [9]. For example, total drop surface area is related to the second moment, total drop volume
or liquid water content to the third moment, and the reflectivity factor to the sixth moment. Another
estimation procedure is maximum likelihood [10–13]. In this article, we compared seven different sets
of gamma parameter estimates: five method of moments estimates [1–6,9,12], maximum likelihood
estimates [10–13], and pseudo-maximum likelihood estimates [14], and did so only for the case of a
“large” (>2000) sample of drop sizes, which were accurately measured across the full spectrum of size.
All disdrometers are limited by truncation or quantization effects, and hence the ideal RSD, which is
assumed in this article, will never be measured. However, a close approximation may be feasible by
combining multiple disdrometers that enable sampling of both small and large drops. While not yet
widely available, the technology to measure drop size quite accurately across nearly the full drop size
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spectrum is now available and will continue to improve over time. Presently, meteorological particle
spectrometers may be used to measure small drop size (100 microns to 1.5 mm) with a resolution
of 50 microns [15]. Additionally, third generation 2D-video disdrometers may be used to measure
larger drops (0.7 mm and larger) with a resolution of 170 microns [15,16]. The large sample estimate
comparisons in this article, then, may be viewed as exact in the presence of perfect drop size information
or as a near approximation using the best current technology for recording drop size.

As it turns out, all seven sets of gamma parameter estimates presented below are correct on
average in the case of large sample sizes; that is, they are unbiased. How do we decide which of the
seven estimation procedures should be used? To settle this issue, we could look at the variabilities,
specifically the variances (or their square roots, the standard deviations), to help us choose between
estimates. Small variability, of course, is desirable. A technique sometimes referred to as the delta
method from the engineering and statistical literature [17–19] was used to establish the lack of bias and
the variances in all but the case of maximum likelihood.

2. Raindrop Size Distribution and Parameter Estimates

Use of the gamma distribution was proposed by [4,20], among others, as it often gives an
appropriate description of the natural variations of the observed RSDs. For the present study,
we represent the raindrop sizes as a gamma distribution function where n(D) represents the number of
raindrops per unit diameter interval and per unit volume of air

n(D) = NT· f (D;µ,λ) (1)

and the gamma density is given by

f (D) = f (D;µ,λ) =
λµ+1

Γ(µ+ 1)
Dµe−λD, D > 0 (2)

following the notation in [21]. Here, NT is the total drop number concentration; µ is the shape
parameter; and λ is the rate parameter (in mm−1 if drop size is in mm). Additionally, Γ refers to the
gamma function

Γ(α) ≡
∫
∞

0
xα−1e−x dx, for α > 0

which may be thought of as a generalized factorial function since Γ(n) = (n − 1)! for n a positive
integer. Assuming a gamma density for atmospheric samples is equivalent to assuming a gamma
density for surface samples, albeit with modified shape and rate parameters, under standard models of
terminal raindrop fall velocities as a function of size. Further details may be found in [22] (Section 8).

In the maximum likelihood (ML) and pseudo-maximum likelihood gamma parameter estimates
to follow, we will need to refer to the digamma function

ψ(x) ≡
d

dx
ln Γ(x)

as well as its derivative ψ′(x) = d
dxψ(x), sometimes referred to as the trigamma function (see, e.g., [23]).

The gamma parameter estimates we compared are listed in Table 1. As a number of these estimates
are obtained by the method of moments (MM) some moment notation is appropriate. Given measured
raindrop size values D1, D2, . . . , Dn let

m j =
1
n

n∑
i=1

D j
i

denote the jth sample moment with n the total number of raindrops. In Table 1, the MMrst notation
indicates the method of moments is implemented using moments of order r, s, t, which will have
distinct values from 0–6. In what follows, we will use m1 and D (the sample mean raindrop diameter)
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interchangeably. The weighting of moments using division by n above, by the way, is arbitrary for the
method of moments estimates to be discussed. So, for example, volume-weighted moments may be
used instead.

Table 1. Selected gamma shape and rate parameter estimates from the literature. Corresponding
references appear in the first column. The estimates in all but the last two rows make use of an auxiliary
variable ‘a’ in the last column. The last two rows do not make use of an auxiliary variable a so this
column is filled with an asterisk.

Approach
Gamma Parameter Estimates

a
^
µ

^
λ

MM012 [1] 2−a
a−1

m0
m1

1
a−1

m0m2
m2

1

MM123 3−2a
a−1

m1
m2

1
a−1

m1m3
m2

2

MM234 [9,12] 4−3a
a−1

m2
m3

1
a−1

m2m4
m2

3

MM246 [2,3] (11−7a)+
√

a2+14a+1
2(a−1)

√
2m2
m4
·
2(a+1)+

√
a2+14a+1

(a−1)2

m2m6
m2

4

MM346 [4–6] (11−8a)+
√

8a+1
2(a−1)

m3
m4

3+
√

8a+1
2(a−1)

m2
3m6

m3
4

Ye/Chen [14] −1 + D[
1
n

n∑
i=1

Di ln(Di)−D· 1n
n∑

i=1
ln(Di)

] 1[
1
n

n∑
i=1

Di ln(Di)−D· 1n
n∑

i=1
ln(Di)

]
*

ML [12] µ̂ML not expressible in closed form
(see Equation (3) in the text)

µ̂ML+1
D

*

Various combinations of three of these moments have commonly been used by atmospheric
scientists to estimate the gamma parameters µ,λ, NT. Among these, we find use of the zeroth,
first, and second moments [1]; the second, third, and fourth moments [9,12]; the second, fourth,
and sixth moments [2,3]; and the third, fourth, and sixth moments [4–6]. Table 1 lists the parameter
estimates for these four different combinations of moments along with the use of the first, second,
and third moments. For ease of presentation, the method of moments estimates for µ and λ in Table 1
are expressed in terms of values of an a appearing in the last column. The estimates in the last two
rows of Table 1 do not make use of an auxiliary variable; to denote it these rows have an asterisk in
the a column. We point out that each a value in Table 1 is at least one (note the (a − 1) denominators)
because of Hölder’s inequality [24] (Equation (3.2.10)) with a equal to one only in the pathological case
where all the drop sizes are identical.

Table 1 also includes two other types of gamma parameter estimates: (i) maximum likelihood
(ML) estimates discussed, for example, in [11–13], and (ii) the pseudo maximum likelihood estimates
by Ye and Chen in [14], who determined the maximum likelihood equations for a more encompassing
generalized gamma distribution and then specialized these to the case of an “ordinary” gamma.
The ML estimate for the shape parameter is obtained by numerically solving the equation

ln

D/

 n∏
i=1

Di

1/n = ln(µ̂ML + 1) −
Γ′(µ̂ML + 1)
Γ(µ̂ML + 1)

(3)

(see e.g., [12]). The maximum likelihood estimate of the rate parameter is then given by
λ̂ML = (µ̂ML + 1)/D.

Table 1 only lists estimates of the gamma parameters µ and λ because the large sample variance
expressions for N̂T are especially complicated when using moment estimators, and partly because
large sample maximum likelihood theory is developed only for estimates of density parameters
(i.e., parameters appearing within just the density function f in Equation (1)).
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3. Large Sample Behavior of the Estimates

For large sample sizes, each of the estimates in Table 1 is normal, unbiased, and has variance as
given in Table 2. We used the delta method, described in detail in Appendix B, to establish these results
for all but the maximum likelihood procedure, whose large sample results are given, for example,
in [10]. It is not surprising that the delta method conclusions require large sample sizes as the delta
method may be viewed as a multivariate version of the central limit theorem. For small samples, biases
will occur and the variances will be larger than those stated in Table 2. To exemplify our large sample
results more precisely, consider the method of moments estimate of, say, the shape parameter µ using
moments 2, 3, and 4, from Table 1. Here,

µ̂MM234 =
4− 4a
a− 1

, where a =
m2m4

m2
3

Table 2. Large sample variances of the shape and rate parameter estimates shown in Table 1.

Approach
Large Sample Estimate Variance

Shape Parameter:Var(
^
µ) Rate Parameter:Var(

^
λ)

MM012 1
n ·2(µ+ 1)(µ+ 2) λ2

n ·
(2µ+5)
(µ+1)

MM123 1
n ·

2(µ+2)(µ+3)(µ+6)
(µ+1)

λ2

n ·
(2µ2+23µ+52)
(µ+1)(µ+2)

MM234 (Appendix B) 1
n ·

2(µ+3)(µ+4)(µ2+19µ+72)
(µ+1)(µ+2)

λ2

n ·
(µ+4)(2µ2+47µ+201)
(µ+1)(µ+2)(µ+3)

MM246
Complicated—Listed in Appendix A

MM346

Ye/Chen 1
n ·(µ+ 1)[µ+(µ+ 1)2ψ′ (µ+ 1)] λ2

n ·(1 + (µ+ 1)ψ′ (µ+ 1))

ML 1
n ·

(µ+1)
[(µ+1) ψ′ (µ+1)−1]

λ2

n ·
ψ′ (µ+1)

[(µ+1) ψ′ (µ+1)−1]

(1) The variance expressions for the Ye/Chen and ML estimates are all well-defined and positive for values of the
shape parameter larger than −1. It is known, for example, that ψ′ (x) > 0 and xψ′ (x) − 1 > 0 for x > 0 from [25]
(Equation (1.46)).

If E(µ̂MM234) denotes the expected value or mean of the estimated shape parameter µ̂MM234 and
Var(µ̂MM234) denotes its variance, the claim is that E(µ̂MM234) � µ, and

Var(µ̂MM234) �
1
n
·
2(µ+ 3)(µ+ 4)(µ2 + 19µ+ 72)

(µ+ 1)(µ+ 2)

where µ is the true value of the shape parameter in the RSD. The � symbol indicates that the ratio of
the left- and right-hand sides approaches one as the sample size increases. At the end of this section,
more will be said about the sample size n needed for the large sample approximations in Table 2 to
closely hold. For now, we mention that sample sizes as small as 2000 or more will suffice for several of
the estimates.

As stated in the Introduction, when choosing between several estimates, each of which are
unbiased, we will generally prefer estimates with smaller variance (or smaller standard deviation,
the square root of the variance). As the variance expressions in Table 2 are fairly complicated, it is best
to compare the variabilities graphically.

We started by examining the estimates of the shape parameter µ. The estimate standard deviations
which follow from Table 2 (by taking square roots) are all of the form 1/

√
n multiplied by a function of

(just) the shape parameter µ. In Figure 1, we take the ordinates to be
√

n multiplied by the standard
deviation to compare the large sample variabilities of all of the estimates listed in Table 1. To clarify,
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the curve displayed in Figure 1 associated the MM123 estimate of the shape parameter, for example,
has ordinates

√
2(µ+ 2)(µ+ 3)(µ+ 6)/(µ+ 1).
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From Figure 1, we observe the moment estimates of the shape parameter incorporating the
higher-order moments are least desirable as they have the highest variabilities, and the Ye/Chen and
maximum likelihood estimates are most desirable as they have the lowest variabilities. The MM012
method has the smallest variability among the method of moments estimates and, in fact, compares
favorably with the Ye/Chen and maximum likelihood methods.

The Ye/Chen and maximum likelihood curves are practically identical and appear as a single
curve in Figure 1. Consequently, only the single key entry of “ML/YC” is given in the Figure 1 legend.
No attempt is made here to analytically quantify how close these two standard deviation curves are,
but this is largely a consequence of

[xψ′ (x)]2 � 1 +ψ′ (x)

being a near identity over much of the region x > −1.
Now we turn to the estimates of the rate parameter λ. It will again be easiest to compare estimates

graphically. All estimate standard deviations that follow from Table 2 (by taking square roots) are
of the form λ/

√
n multiplied by a function of (just) the shape parameter µ. In Figure 2, we take the

ordinates to be
√

n/λ multiplied by the standard deviation to compare the large sample variabilities of
all of the estimates listed in Table 1. To clarify, the curve displayed in Figure 2 associated the MM123
estimate of the rate parameter, for example, has ordinates

√
(2µ2 + 23µ+ 52)/(µ+ 1)(µ+ 2).
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As with the shape parameter, we see from Figure 2 that the moment estimates of the rate parameter
incorporating the higher-order moments are least desirable as they have the largest variabilities,
and the Ye/Chen and maximum likelihood estimates are the most desirable as they have the smallest
variabilities. The MM012 method has the smallest variability among the method of moments estimates
and compares favorably with the Ye/Chen and maximum likelihood methods.

The large sample variabilities given in Table 2 are attained, in a limiting sense, as the sample size
grows. A natural question, then, is how large the sample size must be for these variabilities to hold to
good approximation. A careful analysis would involve looking at both of the estimates µ̂ and λ̂ across
each of the seven different estimation procedures, with the behavior undoubtedly depending on the
true parameter values of µ and λ. For our purposes here, we only very briefly discuss how empirical
values of the standard deviations through simulated observations from a gamma RSD match-up to
values from Table 2 for large samples in two cases: µ = 2,λ = 5 and µ = 5,λ = 13 (essentially the
values used in [22]).

For a sample size of 2000 and both pairs of the shape and rate parameter values just stated, we
found the relative errors in the standard deviations for the MM012, MM123, ML, and Ye/Chen µ̂ and λ̂
estimates (but not the MM234, MM246, and MM346 estimates) to vary from about 1% to 3%. For the
MM234 estimates with a sample size of 2000, we found relative errors for the standard deviations of
the shape and rate parameters to each be about 1% in the case µ = 5,λ = 13, but were each about 10%
in the case µ = 2,λ = 5. Sample sizes larger than 2000 are needed for the variabilities listed for MM246
and MM346 in Table 2 to be reasonably accurate.

Increasing the sample size to 10,000, the MM246 and MM346 estimates had relative errors for the
standard deviations of the shape and rate parameters to each be about 5% in the case µ = 5,λ = 13 and
to each be about 15% in the case µ = 2,λ = 5. Upon increasing the sample size to 100,000, these relative
errors decreased to at most 0.8% in the case µ = 5,λ = 13 and to 4% to 5% in the case µ = 2,λ = 5 for
both of these two method of moments procedures.
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In practice, raindrop size samples are likely to be observed under stable conditions, corresponding
to having fixed µ and λ parameter values, only over rather short time intervals, perhaps on the
order of minutes. Multiple disdrometers would then be needed to collect sample sizes as large as,
say 2000 drops. For more moderate sample sizes, the variabilities listed in Table 2 and displayed in
Figures 1 and 2 should not, of course, be fully trusted. However, the ranking of estimates according
to variability given in Table 2 and Figures 1 and 2 should persist to some degree as the sample size
decreases and can be investigated through simulation. Such simulation for less than large sample sizes,
however, is beyond the scope of this article.

4. Discussion and Conclusions

We used the delta method, a result known in the engineering and statistical literature, as a viable
approach in deciding which of several gamma parameter estimates may be used when raindrop
sizes can be accurately measured over the full spectrum of size. With the aid of the delta method,
the estimates of the gamma shape and rate parameters listed in Table 1 were found, for large sample
sizes, to be normal and unbiased with variances given in Table 2. Given several unbiased estimates,
it is natural to prefer estimates with small variance.

If a method of moments procedure is to be used then to reduce estimate variance, we determined
that gamma parameter estimates having the smallest order moments feasible should be preferred.
We say ‘feasible’ as, for example, the lowest order moments might not always be reliable. Wind,
for instance, can affect the reliability of the first moment. For some discussion related to this see,
for example, [3,26,27].

We determined the maximum likelihood and pseudo maximum likelihood estimates of Table 1
have the smallest variances among the seven estimation procedures examined when estimating the
gamma shape and rate parameters, but the MM012 method of moments procedure is very nearly as
good in terms of variance.

When using instrumentation that does not accurately measure drop size over the full spectrum
of drop size, then the variance results of Table 2 only hold approximately for large sample sizes.
To compare gamma parameter estimates in this situation (or in the case of small sample size), samples
of drop sizes from a gamma with known values of the shape and rate parameter may be randomly
generated. Using these randomly generated samples, estimates may be compared in terms of their bias
and variance. Such comparisons, for truncated and binned disdrometer data, were performed in [22]
where we also suggested that the smallest order moments feasible be used when estimating gamma
shape and rate parameters by method of moments.
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Appendix A Additional Table 2 Entries

Here are the additional entries that did not easily fit into Table 2:

Var(µ̂MM246) =
1
n ·

2(µ+3)(µ+4)(µ+5)(µ+6)(2µ+15)(2µ3+75µ2+739µ+2196)

(µ+1)(µ+2)(2µ2+18µ+39)2

Var(λ̂ MM246) =

λ2

n
(16µ8+1096µ7+28612µ6+393920µ5+3207215µ4+16016320µ3+48257292µ2+80562249µ+57222072)

2(µ+1)(µ+2)(µ+3)(µ+4)(2µ2+18µ+39)2

Var(µ̂MM346) =
1
n

6(µ+4)(µ+5)(µ+6)(3µ4+154µ3+2433µ2+15482µ+34800)

(µ+1)(µ+2)(µ+3)(3µ+16)2
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Var(λ̂ MM346) =
λ2

n
(µ+5)(µ+6)(18µ4+1041µ3+17250µ2+111820µ+252064)

(µ+1)(µ+2)(µ+3)(µ+4)(3µ+16)2

Appendix B Large Sample Calculations and the Delta Method

The large sample results for the maximum likelihood estimation given in Table 2 appear elsewhere
in the literature (see, for example, [28] and [29](Equations (38) and (55))). The remaining large sample
results in Table 2 all follow from the technique called the delta method [17–19]. The delta method
details for the Ye and Chen estimates appear in [14]. As the remaining estimates in Table 1 are all
method of moments estimates, and the delta method is perhaps not well-known, it seems appropriate
to illustrate this technique for one of the method of moments procedures in Table 1. We did so for
an MM234 estimate. We chose this particular combination of moments in large part because the
calculations are a bit easier and the process is more transparent. With this example, it will be clear,
in principle, how to compute the large sample properties for the other method of moments estimates
in Table 1.

Before doing so, we mention what the delta method amounts to in the one-dimensional case.
Readers may recognize this under the phrase “propagation of errors.” Letting θ = E(D) denote the
expected value or mean drop size, we have

g(D) � g(θ) + g′ (θ)(D− θ)

where g′ denotes the derivative of g, g is a function of a single variable. We conclude the normality of
g(D) as a consequence of that of D (technically, use the fact that the right-hand side above is an affine
transformation of D) and that g(D) has mean

E [g(θ) + g′ (θ)(D− θ)] = g(θ) + g′ (θ)E [(D− θ)] = g(θ) + g′ (θ)·0 = g(θ)

Furthermore, if the variance of the drop sizes is represented as σ2 = Var(D), then g(D) has variance

Var[g(θ) + g′ (θ)(D− θ)] = Var[g′ (θ)(D− θ)] = [g′ (θ)] 2
·Var(D− θ) = [g′ (θ)] 2

·Var(D) = [g′ (θ)] 2σ2/n

To summarize the expected value and variance calculations above, we have

E(g(D)) � g(E(D)) and Var(g(D)) � [g′(E(D))] 2
·Var(D)

with the large sample normality of g(D) following from that of D by the central limit theorem.
The general delta method deals with a function of several arguments, each of which is

approximately normal. The large sample mean and variance expressions of the delta method
are generalizations of the example of propagation of errors above. The large sample normality depends
on the fact that each of the sample moments m j are approximately normal, which is a consequence of
the central limit theorem.

For the MM234 method of moments estimates, the general delta method concludes for large
samples that the gamma parameter estimates given by[

µ̂234

λ̂234

]
≡

[
g1(m2, m3, m4)

g2(m2, m3, m4)

]
(we drop the MM on the 234 subscript) are approximately normal with corresponding mean[

E(µ̂234)

E(λ̂234)

]
�

[
g1(E(D2), E(D3), E(D4))

g2(E(D2), E(D3), E(D4))

]
(4)



Atmosphere 2020, 11, 333 9 of 11

and with covariance matrix for µ̂234, λ̂234 given by the expression 1
n A

∑
At where A is the Jacobian

matrix

A =

 ∂g1
∂m2

∂g1
∂m3

∂g1
∂m4

∂g2
∂m2

∂g2
∂m3

∂g2
∂m4


∣∣∣∣∣∣∣
(m2,m3,m4)=(E(D2),E(D3),E(D4))

(5)

and
∑

is the covariance matrix of the moments used

∑
=


Cov(D2, D2) Cov(D2, D3) Cov(D2, D4)

Cov(D3, D2) Cov(D3, D3) Cov(D3, D4)

Cov(D4, D2) Cov(D4, D3) Cov(D4, D4)

 (6)

The details are best accomplished using a computer algebra system that includes basic matrix
computation (we used Maple 18 [30]), but we provide a few details showing how the rest of the
computation is accomplished.

To carry out the above calculations, we require the population moments of raindrop size for our
gamma distribution setting. Using the gamma density in Equation (2), these are given by

E(D k) =

∫
∞

0
D k f (D) dD =

(µ+ 1)(µ+ 2) · · · (µ+ k)
λk

for positive integer values of k. To determine, for example, the large sample mean of µ̂234 (the top entry
in Equation (4)) we evaluate, from Table 1,

µ̂234 =
4− 3a
a− 1

where a =
m2m4

m2
3

at (m2, m3, m4) = (E(D2), E(D3), E(D4)). Straightforward calculation shows that a evaluates to
(µ+ 4)/(µ+ 3) giving (4− 3a)/(a− 1) = µ. That is, E(µ̂234) � µ.

We now turn to the covariance matrix for our estimates. Starting with the A matrix, we illustrate
the calculation of the 1,3 element (i.e., the entry in the first row and third column of the A matrix in
Equation (5)). Note that

∂g1

∂m4
=

∂
∂m4

[4− 3a
a− 1

]
=

∂
∂m4

4− 3m2m4/m2
3

m2m4/m2
3 − 1

 = − m2m2
3[

m2m4 −m2
3

] 2

Evaluating this at

(m2, m3, m4) = (E(D2), E(D3), E(D4))

=
(
(µ+1)(µ+2)

λ2 , (µ+1)(µ+2)(µ+3)
λ3 , (µ+1)(µ+2)(µ+3)(µ+4)

λ4

)
and simplifying gives −λ4

(µ+1)(µ+2) .
Additionally, to illustrate the calculation of an entry in the covariance matrix

∑
of the moments,

the 1,2 element in Equation (6) is

Cov(D2, D3) = E(D2D3) − E(D2)E(D3)

= E(D5) − E(D2)E(D3)

=
(µ+1)(µ+2)(µ+3)(µ+4)(µ+5)

λ5 −
(µ+1)(µ+2)

λ2 ·
(µ+1)(µ+2)(µ+3)

λ3

=
6(µ+1)(µ+2)(µ+3)2

λ5

By symmetry, this is also the 2,1 element, Cov(D3, D2) == E(D3D2) − E(D3)E(D2), of the
∑

matrix.
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After a considerable amount of calculation (again, with the help of Maple [30]), we found the
large sample covariance matrix of µ̂234, λ̂234 to be given by

1
n

A
∑

At =
1
n


2(µ+3)(µ+4)(µ2+19µ+72)

(µ+1)(µ+2)
2λ(µ+4)(µ2+21µ+84)

(µ+1)(µ+2)
2λ(µ+4)(µ2+21µ+84)

(µ+1)(µ+2)
λ2(µ+4)(2µ2+47µ+201)

(µ+1)(µ+2)(µ+3)


The large sample variances of µ̂234 and λ̂234 appear along the diagonal (the 1,1 and 2,2 elements,

respectively).
Tangential to the focus of this article, we can also determine the large sample (Pearson) correlation

coefficient between µ̂234 and λ̂234 using, by definition,

ρ =
Cov(µ̂, λ̂)√

Var(µ̂) Var(λ̂)

(the 1,2 or 2,1 element divided by the square root of the product of the diagonal elements). After some
calculation, we found the large sample squared value of the correlation coefficient to be given by

ρ2 =
2(µ2 + 21µ+ 84)2

(2µ2 + 47µ+ 201)(µ2 + 19µ+ 72)
= 1−

(µ+ 5)(µ2 + 15µ+ 72)
(2µ2 + 47µ+ 201)(µ2 + 19µ+ 72)

indicating, in general, very high correlation values between the shape and rate estimates (e.g.,ρ above
0.987 for µ larger than zero, regardless of the value of λ).
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