The Evolution Characteristics of Daily-Scale Silk Road Pattern and Its Relationship with Summer Temperature in the Yangtze River Valley
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Identification of Daily-Scale SRP
4. Evolution Characteristics of Daily-Scale SRP
4.1. The Life Cycle of SRP
4.2. Vertical Structure of Daily-Scale SRP
5. Temperature Anomalies in the YRV Related to SRP
5.1. Influence of SRP on Summer Temperature in China
5.2. Possible Causes of SRP-Related Temperature Anomalies in the YRV
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G.X.; Liu, Y.M.; Liu, X.; Duan, A.M. How the Heating over the Tibetan Plateau Affects the Asian Climate in Summer. Chin. J. Atmos. Sci. 2005, 29, 47–56. [Google Scholar] [CrossRef]
- Wang, L.J.; Ge, J. Relationship between Low–frequency Oscillations of Atmospheric Heat Source over the Tibetan Plateau and Longitudinal Oscillations of the South Asia High in the Summer. Chin. J. Atmos. Sci. 2016, 40, 853–863. [Google Scholar] [CrossRef]
- Wang, G.L.; Wang, D.G.; Kevin, E.T.; Amir, E.; Miao, Y.; Michael, G.B.; Dana, T.P. The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Clim. Chang. 2017, 7, 268. [Google Scholar] [CrossRef]
- Lu, R.Y.; Fu, Y.H. Summer climate variability in East Asian and the western North Pacific and its mechanisms. Adv. Earth Sci. 2009, 24, 123–131. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.J. Combined Effects of Synoptic-Scale Teleconnection Patterns on Summer Precipitation in Southern China. Atmosphere 2018, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.L.; Zhang, R.H.; Han, J.P. Relationship between the Circumglobal Teleconnection and Silk Road Pattern over Eurasian continent. Sci. Bull. 2019, 64, 374–376. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.Y.; Oh, J.H.; Kim, B.J. A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus 2002, 54, 44–55. [Google Scholar] [CrossRef]
- Guan, Z.Y.; Yamagata, T. The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett. 2003, 30, 235–250. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, W.; Qu, X.; Wu, R.G. An Interdecadal Change of the Boreal Summer Silk Road Pattern around the Late 1990s. J. Clim. 2020, 33, 7083–7100. [Google Scholar] [CrossRef]
- Lin, Z.D.; Lu, R.Y.; Zhou, W. Change in early-summer meridional teleconnection over the western North Pacific and East Asia around the late 1970s. Int. J. Climatol. 2010, 30, 2195–2204. [Google Scholar] [CrossRef]
- Enomoto, T.; Hoskins, B.J.; Matsuda, Y. The formation mechanism of the Bonin high in August. Q. J. R. Meteorol. Soc. 2003, 129, 157–178. [Google Scholar] [CrossRef]
- Hong, X.W.; Xue, S.H.; Lu, R.Y.; Liu, Y.Y. Comparison between the interannual and decadal components of the Silk Road pattern. Atmos. Ocean Sci. Lett. 2018, 11, 270–274. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, T.; Kawamura, R. Combined Effects of Teleconnection Patterns on Anomalous Summer Weather in Japan. J. Meteorol. Soc. Jpn. 2007, 85, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.W.; Lu, R.Y. The meridional displacement of summer Asian jet, Silk Road Pattern, and tropical SST anomalies. J. Clim. 2018, 29, 3753–3766. [Google Scholar] [CrossRef]
- Chen, G.S.; Huang, R.H. Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China. J. Clim. 2012, 25, 7834–7851. [Google Scholar] [CrossRef]
- Lin, Z.D. Intercomparison of the impacts of four summer teleconnections over Eurasia on East Asian rainfall. Adv. Atmos. Sci. 2014, 31, 1366–1376. [Google Scholar] [CrossRef]
- Hu, P.; Chen, W.; Chen, S.; Liu, Y.Y.; Huang, R.P. Impact of the September Silk Road Pattern on the South China Sea summer monsoon withdrawal. Int. J. Climatol. 2020, 40, 6361–6368. [Google Scholar] [CrossRef]
- Wakabayashi, S.; Kawamura, R. Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan. J. Meteorol. Soc. Jpn. 2004, 82, 1577–1588. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.Q.; Li, S.L.; Hong, X.W.; Lu, R.Y. Simulated Influence of the Atlantic Multidecadal Oscillation on Summer Eurasian Nonuniform Warming since the Mid-1990s. Adv. Atmos. Sci. 2019, 36, 43–54. [Google Scholar] [CrossRef]
- Guan, W.N.; Hu, H.B.; Ren, X.J.; Yang, X.Q. Subseasonal zonal variability of the western Pacific subtropical high in summer: Climate impacts and underlying mechanisms. Clim. Dyn. 2019, 53, 1577–1588. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zhang, Y.C. Evolution of Eurasian teleconnection pattern and its relationship to climate anomalies in China. Clim. Dyn. 2015, 44, 1017–1028. [Google Scholar] [CrossRef] [Green Version]
- Saeed, S.; Lipzig, N.V.; Müller, W.A.; Saeed, F.; Zanchettin, D. Influence of the circumglobal wave-train on European summer precipitation. Clim. Dyn. 2014, 43, 503–515. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Y.; Huang, R.H. The interannual variability of summer rainfall in the arid and semiarid regions of northern China and its association with the Northern Hemisphere circumglobal teleconnection. Adv. Atmos. Sci. 2011, 28, 257–268. [Google Scholar] [CrossRef]
- Huang, R.H.; Liu, Y.; Feng, T. Interdecadal change of summer precipitation over Eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes. Chin. Sci. Bull. 2013, 58, 1339–1349. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Wang, C.; Guo, D. Evolution mechanism of synoptic-scale EAP teleconnection pattern and its relationship to summer precipitation in China. Atmos. Res. 2018, 214, 150–162. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P.M. Synoptic-scale precursors of the East Asia/Pacific teleconnection pattern responsible for persistent extreme precipitation in the Yangtze River Valley. Q. J. R. Meteorol. Soc. 2015, 141, 1389–1403. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P.M. Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River Valley. Clim. Dyn. 2016, 47, 989–1006. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhai, P.M.; Liao, Z.; Li, L. Persistent precipitation extremes in the Yangtze River Valley prolonged by opportune configuration among atmospheric teleconnections. Q. J. R. Meteorol. Soc. 2019, 145, 2603–2626. [Google Scholar] [CrossRef]
- Li, X.Y.; Lu, R.Y. Subseasonal change in the seesaw pattern of precipitation between the Yangtze River basin and the tropical western North Pacific during summer. Adv. Atmos. Sci. 2018, 35, 1231–1242. [Google Scholar] [CrossRef]
- Gong, Z.Q.; Feng, G.L.; Dogar, M.M.; Huang, G. The possible physical mechanism for the EAP–SR co-action. Clim. Dyn. 2017, 51, 1499–1516. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Dee, D. ERA5 Reanalysis is in Production. ECMWF News 2016, 147, 147. [Google Scholar]
- National Meteorological Information Center. Assessment Report of China’s Ground Precipitation 0.5° × 0.5° Gridded Dataset (V2.0); National Meteorological Information Center: Beijing, China, 2010. [Google Scholar]
- Hutchinson, M.F. Interpolation of Rainfall Data with Thin Plate Smoothing Splines-Part I: Two Dimensional Smoothing of Data with Short Range Correlation. J. Geogr. Inf. Decis. Anal. 1998, 2, 153–167. [Google Scholar]
- Grumm, R.H.; Hart, R.H. Standardized anomalies applied to significant cold season weather events: Preliminary findings. Weather Forecast. 2001, 16, 736–754. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A Formulation of a Phase-Independent Wave-Activity Flux for Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Huang, G. An index measuring the interannual variation of the East Asian Summer Monsoon–the EAP index. Adv. Atmos. Sci. 2004, 21, 41–52. [Google Scholar] [CrossRef]
- Li, X.Y.; Lu, R.Y.; Greatbatch, R.J.; Li, G.; Hong, X.W. Maintenance Mechanism for the Teleconnection Pattern over the High Latitudes of the Eurasian Continent in Summer. J. Clim. 2019, 33, 1017–1030. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.; Huang, G. Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer. Int. J. Climatol. 2012, 32, 2073–2080. [Google Scholar] [CrossRef]
- Kosaka, Y.; Nakamura, H.; Watanabe, M.; Kimoto, M. Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteorol. Soc. Jpn. 2009, 87, 561–580. [Google Scholar] [CrossRef] [Green Version]
- Sato, N.; Takahashi, M. Dynamical processes related to the appearance of quasi-stationary waves on the subtropical jet in the midsummer Northern Hemisphere. J. Clim. 2006, 19, 1531–1544. [Google Scholar] [CrossRef]
- Chen, G.S.; Huang, R.H.; Zhou, L.T. Baroclinic Instability of the Silk Road Pattern Induced by Thermal Damping. J. Atmos. Sci. 2013, 70, 2875–2893. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhou, T.J. Relative contributions of external SST forcing and internal atmospheric variability to July-August heat waves over the Yangtze River valley. Clim. Dyn. 2017, 51, 4403–4419. [Google Scholar] [CrossRef]
- Chen, R.D.; Lu, R.Y. Comparisons of the Circulation Anomalies Associated with Extreme Heat in Different Regions of Eastern China. J. Clim. 2015, 28, 5844–5930. [Google Scholar] [CrossRef]
- Chen, H.S.; Liu, L.; Zhu, Y.J. Possible linkage between winter extreme low temperature events over China and synoptic-scale transient wave activity. Sci. China Earth Sci. 2013, 56, 1266–1280. [Google Scholar] [CrossRef]
- Li, Z.H.; Li, C.Y.; Song, J.; Tan, Y.K.; Li, X. An analysis of the characteristics and causes of extremely high temperature days in the Yangtze–Huaihe River basins in summer 1960–2011. Clim. Environ. Res. 2015, 20, 511–522. (In Chinese) [Google Scholar] [CrossRef]
- Bellprat, O.; Guemas, V.; Doblas-Reyes, F.; Donat, M.G. Towards reliable extreme weather and climate event attribution. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Huang, R.H. Linkages between the South and East Asian Monsoon water vapor transport during boreal summer. J. Clim. 2019, 32, 4509–4524. [Google Scholar] [CrossRef]
- Holton, J.R. An Introduction to Dynamic Meteorology, 4th ed.; Academic Press: Burlington, VT, USA, 2004; pp. 146–147. ISBN 9780123540157. [Google Scholar]
- Li, N.; Xiao, Z.N.; Zhao, L. Analysis on the Mechanism of the 2018 Summer Extreme High Temperature Event in Northeast China. Clim. Environ. Res. 2020, 25, 469–482. (In Chinese) [Google Scholar] [CrossRef]
Year | Start Date | Peak Date | End Date | Duration | SRPI | HWCA | HMO | HFE |
---|---|---|---|---|---|---|---|---|
1979 | 10 Jul | 11 Jul | 14 Jul | 5 | 1.628 | 1.797 | −1.260 | 1.828 |
1980 | 14 Jul | 15 Jul | 16 Jul | 3 | 1.180 | 1.046 | −1.353 | 1.141 |
1982 | 3 Aug | 7 Aug | 11 Aug | 9 | 1.946 | 1.738 | −2.193 | 1.907 |
1983 | 29 Jul | 31 Jul | 6 Aug | 9 | 2.225 | 2.440 | −1.706 | 2.475 |
1983 | 18 Aug | 18 Aug | 21 Aug | 4 | 1.685 | 1.667 | −1.811 | 1.577 |
1984 | 24 Jul | 28 Jul | 30 Jul | 7 | 1.631 | 1.844 | −1.598 | 1.452 |
1984 | 16 Aug | 20 Aug | 30 Aug | 15 | 2.189 | 1.902 | −2.179 | 2.486 |
1985 | 7 Jul | 7 Jul | 13 Jul | 7 | 1.292 | 1.467 | −1.378 | 1.031 |
1985 | 24 Jul | 28 Jul | 31 Jul | 8 | 1.550 | 1.169 | −1.750 | 1.731 |
1986 | 15 Jul | 17 Jul | 19 Jul | 5 | 1.570 | 1.461 | −1.713 | 1.536 |
1986 | 1 Aug | 1 Aug | 3 Aug | 3 | 1.852 | 1.859 | −1.694 | 2.003 |
1986 | 16 Aug | 17 Aug | 19 Aug | 4 | 1.147 | 0.907 | −1.225 | 1.309 |
1987 | 11 Aug | 17 Aug | 29 Aug | 19 | 1.276 | 1.202 | −0.950 | 1.676 |
1988 | 2 Jul | 4 Jul | 6 Jul | 5 | 1.529 | 1.616 | −1.817 | 1.154 |
1990 | 19 Jun | 22 Jun | 26 Jun | 8 | 1.659 | 1.137 | −1.859 | 1.981 |
1990 | 8 Aug | 12 Aug | 14 Aug | 7 | 1.385 | 1.404 | −1.600 | 1.151 |
1991 | 28 Aug | 28 Aug | 30 Aug | 3 | 1.683 | 1.822 | −1.746 | 1.482 |
1992 | 20 Jul | 22 Jul | 23 Jul | 4 | 1.334 | 1.008 | −1.499 | 1.495 |
1992 | 23 Aug | 25 Aug | 27 Aug | 5 | 1.231 | 1.216 | −1.425 | 1.052 |
1994 | 24 Jun | 2 Jul | 11 Jul | 18 | 1.539 | 1.547 | −1.174 | 1.896 |
1994 | 4 Aug | 5 Aug | 7 Aug | 4 | 2.080 | 2.125 | −2.117 | 1.998 |
1995 | 12 Aug | 13 Aug | 20 Aug | 9 | 1.711 | 1.245 | −1.886 | 2.002 |
1997 | 15 Jul | 19 Jul | 19 Jul | 5 | 1.392 | 1.644 | −1.379 | 1.153 |
1997 | 17 Aug | 19 Aug | 20 Aug | 4 | 2.137 | 2.229 | −2.004 | 2.178 |
1998 | 1 Aug | 11 Aug | 13 Aug | 13 | 1.180 | 1.462 | −0.855 | 1.223 |
2001 | 29 Jun | 1 Jul | 2 Jul | 4 | 1.451 | 1.511 | −1.333 | 1.509 |
2002 | 9 Aug | 10 Aug | 11 Aug | 3 | 1.346 | 1.831 | −1.186 | 1.102 |
2003 | 18 Jul | 24 Jul | 27 Jul | 10 | 1.468 | 0.977 | −1.566 | 1.861 |
2003 | 15 Aug | 17 Aug | 18 Aug | 4 | 1.407 | 1.125 | −1.359 | 1.737 |
2005 | 25 Jun | 27 Jun | 28 Jun | 4 | 1.194 | 1.274 | −1.388 | 0.920 |
2008 | 12 Jul | 14 Jul | 17 Jul | 6 | 1.087 | 1.295 | −1.049 | 0.917 |
2008 | 10 Aug | 11 Aug | 12 Aug | 3 | 1.268 | 1.194 | −1.066 | 1.544 |
2009 | 14 Aug | 14 Aug | 17 Aug | 4 | 1.223 | 1.225 | −1.013 | 1.431 |
2011 | 7 Jul | 8 Jul | 12 Jul | 6 | 1.186 | 1.309 | −1.117 | 1.132 |
2012 | 20 Aug | 20 Aug | 24 Aug | 5 | 1.606 | 1.111 | −1.656 | 2.051 |
2013 | 29 Jul | 1 Aug | 9 Aug | 12 | 1.925 | 1.944 | −1.942 | 1.889 |
2015 | 13 Jul | 17 Jul | 20 Jul | 8 | 1.739 | 1.363 | −1.915 | 1.939 |
2017 | 8 Aug | 9 Aug | 10 Aug | 3 | 1.201 | 1.603 | −1.008 | 0.992 |
2019 | 22 Jul | 23 Jul | 24 Jul | 3 | 2.014 | 2.155 | −1.737 | 2.150 |
2020 | 12 Aug | 16 Aug | 20 Aug | 9 | 1.841 | 1.797 | −1.924 | 1.758 |
Year | Start Date | Peak Date | End Date | Duration | SRPI | HWCA | HMO | HFE |
---|---|---|---|---|---|---|---|---|
1979 | 6 Jun | 12 Jun | 16 Jun | 11 | −1.476 | −1.255 | 1.461 | −1.712 |
1981 | 12 Jun | 13 Jun | 19 Jun | 8 | −1.947 | −2.201 | 1.791 | −1.849 |
1982 | 22 Jun | 24 Jun | 24 Jun | 3 | −1.091 | −1.417 | 1.052 | −0.804 |
1982 | 5 Jul | 8 Jul | 9 Jul | 5 | −1.074 | −1.083 | 1.126 | −1.013 |
1983 | 6 Jul | 7 Jul | 11 Jul | 6 | −1.406 | −1.455 | 1.418 | −1.345 |
1985 | 10 Jun | 12 Jun | 18 Jun | 9 | −1.332 | −1.377 | 1.611 | −1.008 |
1987 | 9 Jun | 21 Jun | 25 Jun | 17 | −1.667 | −1.629 | 1.366 | −2.006 |
1988 | 15 Jun | 15 Jun | 19 Jun | 5 | −1.151 | −1.136 | 1.149 | −1.168 |
1989 | 11 Jun | 20 Jun | 22 Jun | 12 | −1.694 | −1.960 | 1.592 | −1.530 |
1989 | 3 Jul | 4 Jul | 6 Jul | 4 | −1.813 | −1.765 | 1.766 | −1.908 |
1991 | 19 Jun | 22 Jun | 28 Jun | 10 | −1.696 | −1.570 | 1.514 | −2.004 |
1992 | 6 Jun | 10 Jun | 20 Jun | 15 | −2.171 | −2.153 | 2.377 | −1.983 |
1992 | 10 Aug | 11 Aug | 13 Aug | 4 | −1.287 | −1.188 | 0.954 | −1.719 |
1993 | 2 Jun | 7 Jun | 9 Jun | 8 | −1.474 | −1.143 | 1.621 | −1.658 |
1995 | 22 Jun | 26 Jun | 28 Jun | 7 | −1.581 | −1.174 | 1.625 | −1.944 |
1996 | 15 Jun | 17 Jun | 19 Jun | 5 | −1.391 | −1.026 | 1.433 | −1.714 |
1996 | 5 Jul | 7 Jul | 8 Jul | 4 | −1.305 | −0.966 | 1.479 | −1.470 |
1997 | 11 Jun | 12 Jun | 15 Jun | 5 | −1.434 | −1.809 | 1.188 | −1.375 |
1998 | 7 Jun | 15 Jun | 18 Jun | 12 | −1.655 | −1.351 | 2.002 | −1.612 |
1999 | 10 Jun | 10 Jun | 13 Jun | 4 | −1.991 | −1.733 | 2.219 | −2.021 |
2000 | 3 Jun | 10 Jun | 14 Jun | 12 | −2.031 | −1.795 | 1.938 | −2.360 |
2000 | 18 Jul | 24 Jul | 26 Jul | 9 | −1.494 | −1.107 | 1.456 | −1.919 |
2002 | 12 Jun | 16 Jun | 20 Jun | 9 | −1.841 | −1.628 | 1.780 | −2.115 |
2002 | 7 Jul | 9 Jul | 16 Jul | 10 | −1.389 | −1.799 | 1.006 | −1.362 |
2005 | 10 Jun | 12 Jun | 20 Jun | 11 | −1.321 | −1.424 | 1.300 | −1.239 |
2006 | 5 Jun | 6 Jun | 11 Jun | 7 | −2.080 | −1.955 | 1.811 | −2.474 |
2009 | 18 Jun | 23 Jun | 27 Jun | 10 | −2.015 | −1.863 | 2.038 | −2.144 |
2009 | 23 Aug | 24 Aug | 25 Aug | 3 | −1.013 | −1.035 | 0.814 | −1.190 |
2010 | 21 Jun | 23 Jun | 24 Jun | 4 | −1.158 | −1.240 | 1.056 | −1.178 |
2010 | 5 Jul | 6 Jul | 7 Jul | 3 | −1.104 | −1.266 | 0.995 | −1.051 |
2012 | 8 Jun | 11 Jun | 14 Jun | 7 | −1.502 | −1.778 | 1.634 | −1.094 |
2013 | 17 Jun | 17 Jun | 20 Jun | 4 | −1.267 | −1.093 | 1.557 | −1.151 |
2014 | 7 Jun | 11 Jun | 13 Jun | 7 | −1.619 | −1.409 | 1.477 | −1.971 |
2015 | 25 Jun | 27 Jun | 28 Jun | 4 | −1.159 | −1.013 | 0.946 | −1.518 |
2016 | 23 Jun | 25 Jun | 26 Jun | 4 | −1.316 | −0.908 | 1.469 | −1.571 |
2016 | 16 Aug | 17 Aug | 18 Aug | 3 | −1.163 | −1.404 | 1.033 | −1.052 |
2017 | 10 Jun | 12 Jun | 17 Jun | 8 | −1.790 | −2.032 | 1.588 | −1.570 |
2018 | 19 Jun | 22 Jun | 29 Jun | 11 | −1.525 | −1.341 | 1.896 | −1.338 |
2019 | 20 Jun | 23 Jun | 25 Jun | 6 | −1.514 | −1.937 | 1.772 | −0.833 |
2020 | 28 Jun | 29 Jun | 1 Jul | 4 | −1.194 | −1.026 | 1.308 | −1.248 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wen, Y.; Wang, L.; Kang, X.; Liu, Y. The Evolution Characteristics of Daily-Scale Silk Road Pattern and Its Relationship with Summer Temperature in the Yangtze River Valley. Atmosphere 2021, 12, 747. https://doi.org/10.3390/atmos12060747
Wang C, Wen Y, Wang L, Kang X, Liu Y. The Evolution Characteristics of Daily-Scale Silk Road Pattern and Its Relationship with Summer Temperature in the Yangtze River Valley. Atmosphere. 2021; 12(6):747. https://doi.org/10.3390/atmos12060747
Chicago/Turabian StyleWang, Chao, Ying Wen, Lijuan Wang, Xianbiao Kang, and Yunfeng Liu. 2021. "The Evolution Characteristics of Daily-Scale Silk Road Pattern and Its Relationship with Summer Temperature in the Yangtze River Valley" Atmosphere 12, no. 6: 747. https://doi.org/10.3390/atmos12060747
APA StyleWang, C., Wen, Y., Wang, L., Kang, X., & Liu, Y. (2021). The Evolution Characteristics of Daily-Scale Silk Road Pattern and Its Relationship with Summer Temperature in the Yangtze River Valley. Atmosphere, 12(6), 747. https://doi.org/10.3390/atmos12060747