Spatial Characteristics of Precipitation in the Greater Sydney Metropolitan Area as Revealed by the Daily Precipitation Concentration Index
Abstract
:1. Introduction
2. Climatology of the Study Area
3. Data and Method
3.1. Data
3.2. The Daily Precipitation Concentration Index (DPCI)
3.3. Spatial Correlation
4. Results
4.1. Spatial Distribution of DPCI
4.2. Spatial Correspondences
5. Conclusions and Discussion
5.1. Summary
- Within the GSMA, the essential features of climate in different districts are characterized by narrow rainfall zones close to the coast, under the combined influence of the Tasman Sea and the topography and land use patterns, leading to very different rainfall spatial distributions.
- The DPCI values in the Illawarra coastal elevated areas, parts of the Sydney Metropolitan area and the Blue Mountains are high, with concentration index values close to 0.60–0.63. This reflects the fact that very few rainy days could bring a high percentage of annual precipitation.
- The DPCI values obtained and distribution pattern of constant “b” are largely subject to influences from the topography and land use of the region. Generally, western and central regions inside GSMA are areas where rainfall is regular compared to eastern regions, while the southeastern districts and small parts of Metropolitan areas show the most aggressive DPCI values.
- Despite the significant variations in spatial cross−correlating models between the DPCI and 6 other rain−related parameters (AP, CV, TN, MxR, “a” and “b”), there are considerable positive relationships among data layers at 0.95 significance levels for most parts of the study area.
- The spatial patterns of the DPCI and “b” constant highlight the importance of catastrophic effects of such intense rainfall events, predominantly originating with severe thunderstorm and flash flood events.
5.2. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Station Name (With Abbreviated Map Codes) | Latitude | Longitude | Altitude (m) | Study Period (year) | AP (mm) | CV (%) | TN |
---|---|---|---|---|---|---|---|
Albion Park (AP) | −4.57 | 150.78 | 8 | 1950–2015 | 1186.9 | 35.1 | 4811 |
Bankston Airport (BA) | −33.92 | 150.99 | 6.5 | 1969–2015 | 874.6 | 25.1 | 3910 |
Berambing (BE) | −33.54 | 150.44 | 792 | 1950–2015 | 1452.1 | 27.7 | 6774 |
Bilpin (BI) | −33.52 | 150.49 | 610 | 1950–2015 | 1363.2 | 26.2 | 7224 |
Blackheath (BL) | −33.63 | 150.29 | 1060 | 1950–2015 | 1240.6 | 28.3 | 6395 |
Bowral (BO) | −34.49 | 150.40 | 690 | 1962–2015 | 931.7 | 26.6 | 5041 |
Bringelly (BR) | −33.97 | 150.73 | 122 | 1950–2015 | 803.3 | 32.9 | 4496 |
Bundanoon (BU) | −34.65 | 150.31 | 688 | 1950–2015 | 1249.6 | 30.7 | 5894 |
Camden (CA) | −34.03 | 150.65 | 61 | 1950–2015 | 805.6 | 32.7 | 4964 |
Colo Heights (CH) | −33.36 | 150.71 | 320 | 1963–2015 | 1034.4 | 26.7 | 4991 |
Dapto (DA) | −34.50 | 150.79 | 10 | 1950–2015 | 1232.0 | 35.4 | 4822 |
Darkes Forest (DF) | −34.23 | 150.91 | 370 | 1950–2015 | 1558.4 | 31.1 | 6994 |
Faulconbridge (FA) | −33.69 | 150.53 | 460 | 1950–2015 | 1225.3 | 34.7 | 3351 |
Frenchs Forest (FF) | −33.75 | 151.23 | 158 | 1957–2015 | 1374.9 | 25.5 | 6012 |
Glenorie (GL) | −33.59 | 151.01 | 170 | 1950–2015 | 1002.7 | 27.7 | 5249 |
Katoomba (KA) | −33.71 | 150.31 | 1015 | 1950–2015 | 1449.9 | 27.8 | 7479 |
Kiama (KI) | −34.68 | 150.85 | 10 | 1950–2011 | 1332.9 | 31.1 | 5689 |
Kurrajong Heights (KH) | −33.53 | 150.63 | 460 | 1950–2015 | 1278.8 | 28.9 | 6347 |
Lucas Heights (LH) | −34.05 | 150.98 | 140 | 1958–2015 | 1021.9 | 26.6 | 5090 |
Maroota (MA) | −33.46 | 151.00 | 203 | 1950-2015 | 952.9 | 31.7 | 4062 |
Moss Vale (MV) | −34.54 | 150.38 | 675 | 1950–2015 | 961.6 | 30.1 | 6106 |
Mount Kuring-Gai (MK) | −33.64 | 151.14 | 215 | 1965–2015 | 1171.1 | 28.7 | 4560 |
Ourimbah (OU) | −33.36 | 151.33 | 195 | 1954–2015 | 1406.5 | 25.3 | 6183 |
Parramatta North (PN) | −33.79 | 151.02 | 55 | 1966–2015 | 970.6 | 26.9 | 4554 |
Picton (PI) | −34.17 | 150.61 | 165 | 1950–2015 | 886.5 | 32.8 | 4224 |
Port Kembla (PK) | −34.47 | 150.88 | 9 | 1964–2015 | 1119.9 | 30.4 | 4440 |
Prospect Reservoir (PR) | −33.82 | 150.91 | 61 | 1950–2015 | 936.4 | 28.6 | 5692 |
Richmond (RI) | −33.62 | 150.75 | 20 | 1950–2015 | 868.8 | 29.5 | 5287 |
Riverview Observatory (RO) | −33.83 | 151.16 | 40 | 1950–2015 | 1204.2 | 26.6 | 4946 |
Sans Souci (SS) | −33.99 | 151.13 | 9 | 1950–2015 | 1153.5 | 28.3 | 6728 |
Springwood (SW) | −33.71 | 150.58 | 320 | 1950–2015 | 1166.5 | 30.0 | 5727 |
Sydney Airport (SA) | −33.95 | 151.17 | 6 | 1950–2015 | 1123.0 | 27.5 | 6384 |
Sydney Observatory Hill (SO) | −33.86 | 151.21 | 39 | 1950–2015 | 1264.7 | 26.8 | 6607 |
The Entrance (EN) | −33.35 | 151.50 | 22 | 1950–2015 | 1176.8 | 25.6 | 5889 |
Wallacia (WA) | −33.86 | 150.64 | 50 | 1950–2015 | 890.9 | 33.0 | 5027 |
West Pennant Hills (WP) | −33.75 | 151.04 | 120 | 1950–2014 | 1115.2 | 30.8 | 4858 |
Wollondilly (WO) | −34.34 | 150.08 | 270 | 1974–2015 | 692.1 | 25.8 | 2781 |
Wombeyan Caves (WC) | −34.31 | 149.97 | 580 | 1952–2015 | 847.8 | 22.7 | 4466 |
Woonona (WN) | −34.34 | 150.90 | 45 | 1950–2015 | 1328.3 | 32.5 | 5679 |
Wyee (WY) | −33.20 | 151.44 | 40 | 1950–2015 | 1250.9 | 24.8 | 6293 |
Classes | Midpoint | Ni | ΣNi | Pi | Σpi | ΣN (%) = X | Σpi (%) = Y |
---|---|---|---|---|---|---|---|
1–10 | 5 | 3037 | 3037 | 15,185 | 15,185 | 63.13 | 19.43 |
10.1–20 | 15 | 796 | 3833 | 11,940 | 27,125 | 79.67 | 34.70 |
20.1–30 | 25 | 367 | 4200 | 9175 | 36,300 | 87.30 | 46.44 |
30.1–40 | 35 | 187 | 4387 | 6545 | 42,845 | 91.19 | 54.81 |
40.1–50 | 45 | 109 | 4496 | 4905 | 47,750 | 93.45 | 61.09 |
50.1–60 | 55 | 71 | 4567 | 3905 | 51,655 | 94.93 | 66.08 |
60.1–70 | 65 | 52 | 4619 | 3380 | 55,035 | 96.01 | 70.41 |
70.1–80 | 75 | 38 | 4657 | 2850 | 57,885 | 96.80 | 74.05 |
80.1–90 | 85 | 22 | 4679 | 1870 | 59,755 | 97.26 | 76.45 |
90.1–100 | 95 | 30 | 4709 | 2850 | 62,605 | 97.88 | 80.09 |
100.1–110 | 105 | 20 | 4729 | 2100 | 64,705 | 98.30 | 82.78 |
110.1–120 | 115 | 12 | 4741 | 1380 | 66,085 | 98.55 | 84.55 |
120.1–130 | 125 | 8 | 4749 | 1000 | 67,085 | 98.71 | 85.82 |
130.1–140 | 135 | 12 | 4761 | 1620 | 68,705 | 98.96 | 87.90 |
140.1–150 | 145 | 13 | 4774 | 1885 | 70,590 | 99.23 | 90.31 |
150.1–200 | 175 | 25 | 4799 | 4375 | 74,965 | 99.75 | 95.91 |
200.1–250 | 225 | 8 | 4807 | 1800 | 76,765 | 99.92 | 98.21 |
250.1–300 | 275 | 2 | 4809 | 550 | 77,315 | 99.96 | 98.91 |
300.1–350 | 325 | 1 | 4810 | 325 | 77,640 | 99.98 | 99.33 |
500.1–550 | 525 | 1 | 4811 | 525 | 78,165 | 100.00 | 100.00 |
Sum | 4811 | 78,165 | 1890.96 | 1507.27 |
Appendix B
Appendix C
- The empirical cross-covariance for a pair of locations (NSW rainfall stations) between two datasets (DPCI and “b”) is first plotted as a function of the distance between the two locations (Figure A2 upper panel). In this illustration, each red dot shows the empirical cross-covariance between the pair of stations, with the attribute of one station taken from the first dataset and the attribute of the second station taken from the second dataset. The Cross-covariance cloud can be used to examine the local characteristics of spatial correlation between two datasets, and it can be used to look for spatial shifts in the correlation between two datasets. A cross-covariance cloud looks something like the NSW example.
- The values in the cross-covariance cloud are put into bins based on the direction and distance separating a pair of locations. These binned values are then averaged and smoothed to produce a cross-covariance surface. The legend (Figure A2 lower panel left) shows the colors and values separating classes of covariance values.
- A covariance surface with search direction capabilities is also provided in the ArcGIS tool. The extent of the cross-covariance surface is controlled by the lag size and number of lags that are specified (Figure A2 lower panel right). The search direction and width are indicated by the blue and red lines over the cross-covariance surface. One example has been shown in the figure and these options can be modified.
References
- Rasuly, A.A.; Cheung, K. The Spatial Distribution of Severe Thunderstorm Rainfall Events throughout the GMSTWA and Adjacent Tasman Sea. In Proceedings of the the 7th Annual CAWCR Workshop, Observing, Estimating and Forecasting Rainfall: From Science to Applications, Melbourne, Australia, 21–23 October 2013; Centre for Australian Weather and Climate Research: Melbourne, Australia, 2013. [Google Scholar]
- Monjo, R.; Martin-Vide, J. Daily precipitation concentration around the world according to several indices. Int. J. Climatol. 2016, 36, 3828–3838. [Google Scholar] [CrossRef]
- Máyer, P.; Jaén, M.V.M. Daily precipitation concentration and the rainy spells in the Canary Islands: Two risk factors. Boletín de la Assoc. de Geogr. Espaanoles 2014, 65, 463–468. [Google Scholar]
- Martin-Vide, J. Geographical factors in the pluviometry of Mediterranean Spain: Drought and torrential rainfall. In The U.S.-Spain Workshop on Natural Hazards, Iowa. Inst. Hydra Res.; The University of Iowa: Iowa City, IA, USA, 1994; pp. 9–25. [Google Scholar]
- Benhamrouche, A.; Boucherf, D.; Hamadache, R.; Bendahmane, L.; Martin-Vide, J.; Teixeira Nery, J. The spatial distribution of the daily precipitation concentration index in Algeria. Nat. Hazards Earth Syst. Sci. 2015, 15, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Alijani, B.; O’Brien, J.; Yarnal, B. Spatial analysis of precipitation intensity and concentration in Iran. Theor. Appl. Climatol. 2008, 94, 107–124. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Gemmer, M.; Chen, Y.Q.; Liu, C.L. Changing properties of precipitation concentration in the Pearl River basin, China. Stoch. Env. Res. Risk Assess. 2009, 23, 377–385. [Google Scholar] [CrossRef]
- Suhaila, J.; Jemain, A.A. Spatial analysis of daily rainfall intensity and concentration index in Peninsular Malaysia. Theor. Appl. Climatol. 2012, 108, 235–245. [Google Scholar] [CrossRef]
- Cortesi, N.; Gonzalez-Hidalgo, J.C.; Brunetti, M.; Martin-Vide, J. Daily precipitation concentration across Europe 1971–2010. Nat. Hazards Earth Syst. Sci. 2012, 12, 2799–2810. [Google Scholar] [CrossRef] [Green Version]
- Coscarelli, R.; Caloiero, T. Analysis of daily and monthly rainfall concentration in Southern Italy (Calabria region). J. Hydrol. 2012, 416–417, 145–156. [Google Scholar] [CrossRef]
- Caloiero, T. Analysis of daily rainfall concentration in New Zealand. Nat. Hazards 2014, 72, 389–404. [Google Scholar] [CrossRef]
- Voskresenskaya, E. Precipitation inequality over Ukraine. J. Sci. Res. Rep. 2014, 3, 384–396. [Google Scholar]
- Sarricolea, P.; Martín-Vide, J. Spatial analysis of rainfall daily trends and concentration in Chile. Investig. Geogr. 2014, 47, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Zubieta, R.; Saavedra, M.; Silva, Y.; Gira’Idez, L. Spatial analysis and temporal trends of daily precipitation concentration in the Mantaro River basin: Central Andes of Peru. Stoch. Env. Res. Risk Assess. 2017, 31, 1305–1318. [Google Scholar] [CrossRef]
- AL-Shamarti, H.K.A. The variation of annual precipitation and precipitation concentration index of IRAQ. IOSR J. Appl. Phys. 2016, 8, 36–44. [Google Scholar] [CrossRef]
- Ezenwaji, E.E.; Nzoiwu, C.P.; Chima, G.N. Analysis of precipitation concentration index (PCI) for Awka urban area, Nigeria. Hydrol. Current Res. 2017, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Nandargi, S.S.; Aman, K. Precipitation concentration changes over India during 1951 to 2015. Sci. Res. Essays 2018, 13, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Yao, Y.; Qian, X.; Wang, J. Various characteristics of precipitation concentration index and its cause analysis in China between 1960 and 2016. Int. J. Climatol. 2019, 39, 4648–4658. [Google Scholar] [CrossRef]
- Patel, N.R.; Shete, D.T. Analyzing Precipitation Using Concentration Indices for North Gujarat Agro Climatic Zone, India. In Proceedings of the International Conference on Water Resources, Coastal and Ocean Engineering (ICWRCOE), Mangalore, Karnataka, Indian; Elsevier Procedia: Amsterdam, The Netherlands, 2015; Volume 4, pp. 917–924. [Google Scholar]
- Rasuly, A.A. The spatial variation and distribution of thunderstorm rainfall in the Greater Sydney Region. In Proceedings of the International Conference on Storms, Brisbane, Australia, 4–9 July 2004. [Google Scholar]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Klein Tank, A.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Kalyan, A.V.S.; Ghose, D.K.; Thalagapu, R.; Guntu, R.K.; Agarwal, A.; Kurths, K.; Rathinasamy, M. Multiscale spatiotemporal analysis of extreme events in the Gomati River basin, India. Atmosphere 2021, 12, 480. [Google Scholar] [CrossRef]
- Griffiths, D.J.; Colquhoun, J.R.; Batt, K.L.; Casinader, T.R. Severe thunderstorms in New South Wales: Climatology and means of assessing the impact of climate change. Clim. Chang. 1993, 25, 369–388. [Google Scholar] [CrossRef]
- Risbey, J.S.; Pook, M.J.; McIntosh, P.C.; Wheeler, M.C.; Hendon, H.H. On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev. 2009, 137, 3233–3253. [Google Scholar] [CrossRef]
- Rasuly, A.; Cheung, K. Applying a climatologically oriented GIS in comparison of TRMM estimated severe thunderstorm rainfalls with ground truth in Sydney metropolitan area. J. Appl. Hydrol. 2014, 1, 1–13. [Google Scholar]
- Rasuly, A.A.; Cheung, K.; McBurney, B. Hail events across the Greater Metropolitan Severe Thunderstorm Warning Area. Nat. Haz. Earth Syst. Sci. 2015, 15, 973–984. [Google Scholar] [CrossRef]
- Martin-Vide, J. The spatial distribution of a daily precipitation concentration index in Peninsular Spain. Int. J. Climatol. 2004, 24, 959–971. [Google Scholar] [CrossRef]
- Brooks, C.E.P.; Carruthers, N. Handbook of Statistical Methods in Meteorology. Her Majesty’s Stationery Office, M.O.538.: London, UK, 1953; p. 412. [Google Scholar]
- Mitchell, A. The ESRI Guide to GIS Analysis; ESRI Press: Redlands, CA, USA, 2005; Volume 2. [Google Scholar]
- Karnieli, A. Application of Kriging technique to areal precipitation mapping in Arizona. GeoJournal 1990, 22, 391–398. [Google Scholar] [CrossRef]
- Ly, S.; Charles, C.; Degre, A. Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: A review. Biotechnol. Agron. Soc. Environ. 2013, 17, 392–406. [Google Scholar]
- Yang, X.; Xie, X.; Liu, D.L.; Ji, F.; Wang, L. Spatial interpolation of daily rainfall data for local climate impact assessment over Greater Sydney region. Adv. Meteorol. 2015. [Google Scholar] [CrossRef] [Green Version]
- Cressie, N. The origins of Kriging. Math. Geol. 1990, 21, 239–252. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Muttil, N.; Yilmaz, A.G. Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments. Hydrol. Process. 2017, 31, 2143–2161. [Google Scholar] [CrossRef] [Green Version]
- Usowicz, B.; Lipiec, J.; Lukowski, M.; Sloninski, J. Improvement of spatial interpolation of precipitation distribution using cokriging incorporating rain-gauge and satellite (SMOS) soil moisture data. Remote Sens. 2021, 13, 1039. [Google Scholar] [CrossRef]
- Zhang, P.; Huang, Y.; Shekhar, S.; Kumar, V. Exploiting spatial autocorrelation to efficiently process correlation-based similarity queries. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2750. [Google Scholar]
- Haining, R. Spatial Data Analysis: Theory and Practice; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Johnson, F.; White, C.J.; van Dijk, A.; Ekstrom, M.; Evans, J.P.; Jakob, D.; Kiem, A.S.; Leonard, M.; Rouillard, A.; Westra, S. Natural hazards in Australia: Floods. Clim. Chang. 2016, 139, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.; White, C.J.; McInnes, K.; Holmes, J.; Schuster, S.; Richter, H.; Evans, J.P.; Luca, A.D.; Warren, R.A. Natural hazards in Australia: Storms, wind and hail. Clim. Chang. 2016, 139, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, L.C.; Holland, G. Australian Heavy-rain days and associated east coast cyclones: 1958–1992. J. Clim. 1997, 10, 621–635. [Google Scholar] [CrossRef]
- Pepler, A.S.; Dowdy, A.J.; Rensch, P.; Rudeva, I.; Catto, J.L.; Hope, P. The contributions of fronts, lows and thunderstorms to southern Australian rainfall. Clim. Dyn. 2020, 55, 1489–1505. [Google Scholar] [CrossRef]
- Speer, M.; Wiles, P.; Pepler, A. Low pressure systems off the New South Wales coast and associated hazardous weather: Establishment of a database. Aust. Meteorol. Oceanogr. J. 2009, 58, 29–39. [Google Scholar] [CrossRef]
- Risbey, J.S.; McIntosh, P.C.; Pook, M. Synoptic components of rainfall variability and trends in southeast Australia. Intl. J. Climatol. 2013, 33, 2459–2472. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Stormy Weather, A Century of Storms, Flood and Drought in New South Wales; Australian Government: Melbourne, Australia, 2011; p. 40. [Google Scholar]
- Dare, R.A.; Davidson, N.E.; McBride, J.L. Tropical cyclone contribution to rainfall over Australia. Mon. Wea. Rev. 2012, 140, 3606–3619. [Google Scholar] [CrossRef]
- Lavender, S.L.; Abbs, D.J. Trends in Australian rainfall: Contribution of tropical cyclones and closed lows. Clim. Dyn. 2013, 40, 317–326. [Google Scholar] [CrossRef]
- Pepler, A.; Timbal, B.; Rakich, C.; Coutts-Smith, A. Indian ocean dipole overrides ENSO’s influence on cool season rainfall across the Eastern seaboard of Australian. J. Clim. 2014, 27, 3816–3826. [Google Scholar] [CrossRef]
- Chang, L.T.-C.; Cheung, K.K.W.; McAneney, J. Case Study of TRMM satellite rainfall estimation for landfalling tropical cyclones: Issues and challenges. Trop. Cycl. Res. Rev. 2013, 2, 109–123. [Google Scholar]
- Abbate, A.; Papini, M.; Longoni, L. Extreme rainfall over complex terrain: An application of the linear model of orographic precipitation to a case study in the Italian pre-alps. Geosciences 2021, 11, 18. [Google Scholar] [CrossRef]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc. 2000, 81, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Allan, R.J.; Haylock, M.R. Circulation Features Associated with the winter rainfall decrease in Southwestern Australia. J. Clim. 1993, 6, 1356–1367. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.V.; Wang, X.L.L.; Wan, H.; Trewin, B. Significant decline in storminess over southeast Australia since the late 19th century. Aust. Meteorol. Oceanogr. J. 2011, 61, 23–30. [Google Scholar] [CrossRef]
- Dey, R.; Lewis, S.; Abram, N.; Arblaster, J. A review of past and projected changes in Australia’s rainfall. Wiley Interdiscip. Rev. 2019, 10. [Google Scholar] [CrossRef]
Station | “a” | “b” | DPCI | 90% Rain | Max Daily Rain |
---|---|---|---|---|---|
AP | 0.033 | 0.032 | 0.619 | 52 | 536.4 |
BA | 0.053 | 0.029 | 0.609 | 58 | 243 |
BE | 0.056 | 0.028 | 0.583 | 57.5 | 248 |
BI | 0.055 | 0.028 | 0.590 | 58 | 237.6 |
BL | 0.053 | 0.029 | 0.582 | 58 | 245 |
BO | 0.053 | 0.029 | 0.568 | 58.5 | 214.2 |
BR | 0.062 | 0.027 | 0.572 | 59 | 203.2 |
BU | 0.040 | 0.031 | 0.618 | 54 | 399.6 |
CA | 0.058 | 0.028 | 0.564 | 58.5 | 231.1 |
CH | 0.056 | 0.028 | 0.567 | 58 | 229 |
DA | 0.038 | 0.032 | 0.612 | 52 | 336.8 |
DF | 0.037 | 0.032 | 0.612 | 53 | 415 |
FA | 0.049 | 0.030 | 0.580 | 57 | 280.4 |
FF | 0.048 | 0.030 | 0.583 | 56.5 | 248.4 |
GL | 0.048 | 0.030 | 0.577 | 56 | 220 |
KA | 0.047 | 0.030 | 0.621 | 57 | 285 |
KI | 0.047 | 0.030 | 0.618 | 56 | 304.4 |
KH | 0.049 | 0.030 | 0.579 | 56 | 283.7 |
LH | 0.047 | 0.030 | 0.584 | 56 | 254.5 |
MA | 0.059 | 0.028 | 0.565 | 58 | 325 |
MV | 0.047 | 0.030 | 0.585 | 57 | 422 |
MK | 0.055 | 0.028 | 0.574 | 58 | 243.2 |
OU | 0.047 | 0.030 | 0.584 | 55 | 320 |
PN | 0.047 | 0.030 | 0.590 | 57 | 293 |
PI | 0.054 | 0.029 | 0.603 | 58 | 245.9 |
PK | 0.039 | 0.032 | 0.622 | 54 | 322.5 |
PR | 0.051 | 0.029 | 0.581 | 57 | 321 |
RI | 0.052 | 0.029 | 0.570 | 58 | 210 |
RO | 0.045 | 0.030 | 0.601 | 56 | 196.6 |
SS | 0.045 | 0.030 | 0.602 | 57 | 239 |
SW | 0.048 | 0.030 | 0.606 | 56 | 274.4 |
SA | 0.051 | 0.029 | 0.583 | 57 | 216.2 |
SO | 0.048 | 0.030 | 0.616 | 57 | 327.6 |
EN | 0.054 | 0.029 | 0.598 | 59 | 246 |
WA | 0.054 | 0.029 | 0.603 | 58 | 215.9 |
WP | 0.041 | 0.031 | 0.597 | 54 | 409.8 |
WO | 0.072 | 0.026 | 0.587 | 62 | 165 |
WC | 0.071 | 0.026 | 0.544 | 61 | 230.6 |
WN | 0.039 | 0.032 | 0.626 | 54 | 436.8 |
WY | 0.050 | 0.029 | 0.595 | 57 | 256.2 |
Parameter to Correlate with DPCI | Correlation Coefficient (r) | Significance Level (p) | Cross−Covariance Spatial Shifting |
---|---|---|---|
Mean annual precipitation (AP) | 0.472 | 0.01 | High |
CV of annual rainfall | 0.314 | 0.05 | Medium |
Total number of rainy days (TN) | 0.239 | Non−significant | Very low |
Maximum daily rainfall (MxR) | 0.508 | 0.01 | High |
“a” | −0.701 | 0.01 | Very high |
“b” | 0.703 | 0.01 | Very high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheung, K.K.W.; Rasuly, A.A.; Ji, F.; Chang, L.T.-C. Spatial Characteristics of Precipitation in the Greater Sydney Metropolitan Area as Revealed by the Daily Precipitation Concentration Index. Atmosphere 2021, 12, 627. https://doi.org/10.3390/atmos12050627
Cheung KKW, Rasuly AA, Ji F, Chang LT-C. Spatial Characteristics of Precipitation in the Greater Sydney Metropolitan Area as Revealed by the Daily Precipitation Concentration Index. Atmosphere. 2021; 12(5):627. https://doi.org/10.3390/atmos12050627
Chicago/Turabian StyleCheung, Kevin K. W., Aliakbar A. Rasuly, Fei Ji, and Lisa T.-C. Chang. 2021. "Spatial Characteristics of Precipitation in the Greater Sydney Metropolitan Area as Revealed by the Daily Precipitation Concentration Index" Atmosphere 12, no. 5: 627. https://doi.org/10.3390/atmos12050627
APA StyleCheung, K. K. W., Rasuly, A. A., Ji, F., & Chang, L. T. -C. (2021). Spatial Characteristics of Precipitation in the Greater Sydney Metropolitan Area as Revealed by the Daily Precipitation Concentration Index. Atmosphere, 12(5), 627. https://doi.org/10.3390/atmos12050627