Impacts of Meteorology and Emissions on O3 Pollution during 2013–2018 and Corresponding Control Strategy for a Typical Industrial City of China
Abstract
:1. Introduction
2. Data and Methods
2.1. Observation Data
2.2. Model Configuration
2.3. Quantitative Assessment Method of Meteorological and Emission Impacts
2.3.1. Simulation Scenarios Settings
2.3.2. Quantitative Calculation Method of Meteorology and Emission Impacts
2.4. Sensitivity Experimentation
3. Results and Discussion
3.1. Temporal Trends of Ozone Pollution in Downtown Handan
3.2. Emission Trends of Ozone Precursors during June 2013–2018
3.3. Contribution of Meteorology and Emissions to Ozone Trends
3.4. The Sensitivity of Ozone to Precursors’ Reductions at Downtown Handan
3.4.1. Sensitivity Regime Identification
3.4.2. Development of Control Strategies on Both VOCs and NOx
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Option | Parameterization Scheme | |
---|---|---|
Domain 1 (9 km) | Domain 2 (3 km) | |
Map projection | Lambert | Lambert |
Integral time step | 60 | 20 |
Microphysics | Lin microphysics | Lin microphysics |
Cumulus Convection | Kain-Fritsch | none for the 3 km resolution run |
Longwave radiation | Rapid Radiative Transfer Model (RRTM) | RRTM |
Shortwave radiation | Dudhia | Dudhia |
Land surface | Noah | Noah |
Planetary boundary layer | Yonsei University (YSU) | YSU |
Longitude and latitude of grid center | 37.48° N,114.5° E | 37.48° N,114.5° E |
Horizontal advection/Vertical advection | Piecewise Parabolic Method (PPM) | PPM |
Vertical diffusion | Crank-Nicholson | Crank-Nicholson |
Gas-phase chemistry | Carbon Bond mechanism (CB05) | CB05 |
Aerosol chemistry | Aero6 | Aero6 |
Variables | Performance Metric | Year | |||||
---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | ||
T | NMB (%) | −4.0 | −1.0 | −2.0 | 0.0 | 1.3 | 3.0 |
NME (%) | 7.9 | 7.5 | 6.5 | 7.7 | 6.0 | 8.7 | |
R | 0.81 | 0.74 | 0.84 | 0.80 | 0.89 | 0.82 | |
RH | NMB (%) | 11.1 | 2.4 | 8.2 | 3.4 | −2.1 | 1.7 |
NME (%) | 13.5 | 9.7 | 22.9 | 18.7 | 12.1 | 14.4 | |
R | 0.88 | 0.89 | 0.85 | 0.82 | 0.89 | 0.86 | |
WS | NMB (%) | 26.9 | 26.8 | 32.1 | 54.0 | 60.4 | 31.1 |
NME (%) | 54.0 | 45.7 | 56.3 | 72.1 | 80.1 | 51.6 | |
R | 0.53 | 0.54 | 0.56 | 0.53 | 0.48 | 0.53 |
Variables | Performance Metric | Year | |||||
---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | ||
MDA8 ozone data | NMB (%) | −6.1 | −0.8 | −4.0 | −10.8 | −6.9 | −11.7 |
NME (%) | 23.6 | 19.4 | 22.6 | 19.1 | 16.7 | 14.4 | |
R | 0.68 | 0.71 | 0.73 | 0.76 | 0.75 | 0.78 |
References
- Ou, J.; Zheng, J.; Li, R.; Huang, X.; Zhong, Z.; Zhong, L.; Lin, H. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Sci. Total Environ. 2015, 530–531, 393–402. [Google Scholar] [CrossRef]
- Zhai, S.X.; Jacob, D.J.; Wang, X.; Shen, L.; Li, K.; Zhang, Y.Z.; Gui, K.; Zhao, T.L.; Liao, H. Fine particulate matter (PM2.5) trends in China, 2013–2018: Separating contributions from anthropogenic emissions and meteorology. Atmos. Chem. Phys. 2019, 19, 11031–11041. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Jacob, D.J.; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K.H.; Zhang, Q.; Zhai, S.X. A two-pollutant strategy for improving ozone and particulate air quality in China. Nat. Geosci. 2019, 12, 906–910. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.Y.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.B.; Wang, T.; Gao, M.; Zhao, Y.H.; Zhang, Y.H. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.Y.; Lin, J.T.; He, C.L. Ozone trends over the United States at different times of day. Atmos. Chem. Phys. 2018, 18, 1185–1202. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.Y.; Lin, J.T.; Pozzer, A.; Kong, S.F.; Lelieveld, J. Trend reversal from high-to-low and from rural-to-urban ozone concentrations over Europe. Atmos. Environ. 2019, 213, 25–36. [Google Scholar] [CrossRef]
- Zavala, M.; Brune, W.H.; Velasco, E.; Retama, A.; Cruz-Alavez, L.A.; Molina, L.T. Changes in ozone production and VOC reactivity in the atmosphere of the Mexico City Metropolitan Area. Atmos. Environ. 2020, 238, 117747. [Google Scholar] [CrossRef]
- Malley, C.S.; Henze, D.K.; Kuylenstierna, J.C.I.; Vallack, H.W.; Davila, Y.; Anenberg, S.C.; Turner, M.C.; Ashmore, M.R. Updated Global Estimates of Respiratory Mortality in Adults ≥30 Years of Age Attributable to Long-Term Ozone Exposure. Environ. Health Perspect. 2017, 125. [Google Scholar] [CrossRef] [Green Version]
- Avnery, S.; Mauzerall, D.L.; Liu, J.F.; Horowitz, L.W. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos. Environ. 2011, 45, 2297–2309. [Google Scholar] [CrossRef]
- Yue, X.; Unger, N.; Harper, K.; Xia, X.G.; Liao, H.; Zhu, T.; Xiao, J.F.; Feng, Z.Z.; Li, J. Ozone and haze pollution weakens net primary productivity in China. Atmos. Chem. Phys. 2017, 17, 6073–6089. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Liu, S.; Xue, B.R.; Lv, Z.F.; Meng, Z.H.; Yang, X.F.; Xue, T.; Yu, Q.; He, K.B. Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- Li, Q.Y.; Zhang, L.; Wang, T.; Wang, Z.; Fu, X.; Zhang, Q. “New” Reactive Nitrogen Chemistry Reshapes the Relationship of Ozone to Its Precursors. Environ. Sci. Technol. 2018, 52, 2810–2818. [Google Scholar] [CrossRef]
- Li, Y.; Lau, A.K.H.; Fung, J.C.H.; Zheng, J.Y.; Zhong, L.J.; Louie, P.K.K. Ozone source apportionment (OSAT) to differentiate local regional and super-regional source contributions in the Pearl River Delta region, China. J. Geophys. Res.-Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Shen, L.; Lu, X.; De Smedt, I.; Liao, H. Increases in surface ozone pollution in China from 2013 to 2019: Anthropogenic and meteorological influences. Atmos. Chem. Phys. 2020, 20, 11423–11433. [Google Scholar] [CrossRef]
- Fiore, A.M.; Naik, V.; Spracklen, D.V.; Steiner, A.; Unger, N.; Prather, M.; Bergmann, D.; Cameron-Smith, P.J.; Cionni, I.; Collins, W.J.; et al. Global air quality and climate. Chem. Soc. Rev. 2012, 41, 6663–6683. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Xue, L.K.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef]
- Zhang, K.; Li, L.; Huang, L.; Wang, Y.; Huo, J.; Duan, Y.; Wang, Y.; Fu, Q. The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai. Atmos. Environ. 2020, 232. [Google Scholar] [CrossRef]
- Souri, A.H.; Nowlan, C.R.; Abad, G.G.; Zhu, L.; Blake, D.R.; Fried, A.; Weinheimer, A.J.; Wisthaler, A.; Woo, J.H.; Zhang, Q.; et al. An inversion of NOx and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia. Atmos. Chem. Phys. 2020, 20, 9837–9854. [Google Scholar] [CrossRef]
- Wang, M.Y.; Yim, S.H.L.; Wong, D.C.; Ho, K.F. Source contributions of surface ozone in China using an adjoint sensitivity analysis. Sci. Total Environ. 2019, 662, 385–392. [Google Scholar] [CrossRef]
- Wang, Z.B.; Li, J.X.; Liang, L.W. Spatio-temporal evolution of ozone pollution and its influencing factors in the Beijing-Tianjin-Hebei Urban Agglomeration. Environ. Pollut. 2020, 256, 113419. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xie, S.; Zeng, L.; Wu, R.; Li, J. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 2015, 113, 247–254. [Google Scholar] [CrossRef]
- Yang, S.; Ma, Y.L.; Duan, F.K.; He, K.B.; Wang, L.T.; Wei, Z.; Zhu, L.D.; Ma, T.; Li, H.; Ye, S.Q. Characteristics and formation of typical winter haze in Handan, one of the most polluted cities in China. Sci. Total Environ. 2018, 613, 1367–1375. [Google Scholar] [CrossRef]
- Li, L.; Chen, C.H.; Huang, C.; Huang, H.Y.; Zhang, G.F.; Wang, Y.J.; Wang, H.L.; Lou, S.R.; Qiao, L.P.; Zhou, M.; et al. Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system. Atmos. Chem. Phys. 2012, 12, 10971–10987. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, Y.; Hu, Y.; Zhou, W.; Lu, K.; Zhong, L.; Zeng, L.; Shao, M.; Hu, M.; Russell, A.G. Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality modeling system. Atmos. Chem. Phys. 2010, 10, 4423–4437. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Yu, Y.; Yin, D.; He, J.; Liu, N.; Qu, J.; Xiao, J. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ. Int. 2016, 86, 92–106. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Lang, J.; Tian, J.; Zhou, Y.; Li, K.; Chen, D.; Huang, Q.; Xing, X.; Zhang, Y.; Cheng, S. A high temporal-spatial resolution air pollutant emission inventory for agricultural machinery in China. J. Clean. Prod. 2018, 183, 1110–1121. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, S.; Li, J.; Lang, J.; Li, L.; Chen, D. A new statistical modeling and optimization framework for establishing high-resolution PM10 emission inventory—II. Integrated air quality simulation and optimization for performance improvement. Atmos. Environ. 2012, 60, 623–631. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, S.; Chen, D.; Lang, J.; Zhao, B.; Wei, W. A new statistical approach for establishing high-resolution emission inventory of primary gaseous air pollutants. Atmos. Environ. 2014, 94, 392–401. [Google Scholar] [CrossRef]
- Dunker, A.M.; Yarwood, G.; Ortmann, J.P.; Wilson, G.M. Comparison of source apportionment and source sensitivity of ozone in a three-dimensional air quality model. Environ. Sci. Technol. 2002, 36, 2953–2964. [Google Scholar] [CrossRef]
- National Bureau of Statistics Handan Investigation Team. Handan Statistical Bulletin of National Economic and Social Development 2018. Available online: https://www.cnstats.org/tjgb/201905/hdshds-2018-pjl_2.html (accessed on 16 February 2021).
- Wei, W.; Li, Y.; Ren, Y.T.; Cheng, S.Y.; Han, L.H. Sensitivity of summer ozone to precursor emission change over Beijing during 2010–2015: A WRF-Chem modeling study. Atmos. Environ. 2019, 218, 116984. [Google Scholar] [CrossRef]
- Yang, X.Y.; Wu, K.; Wang, H.L.; Liu, Y.M.; Gu, S.; Lu, Y.Q.; Zhang, X.L.; Hu, Y.S.; Ou, Y.H.; Wang, S.G.; et al. Summertime ozone pollution in Sichuan Basin, China: Meteorological conditions, sources and process analysis. Atmos. Environ. 2020, 226, 117392. [Google Scholar] [CrossRef]
- He, Z.R.; Wang, X.M.; Ling, Z.H.; Zhao, J.; Guo, H.; Shao, M.; Wang, Z. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmos. Chem. Phys. 2019, 19, 8801–8816. [Google Scholar] [CrossRef] [Green Version]
- Lyu, X.P.; Chen, N.; Guo, H.; Zhang, W.H.; Wang, N.; Wang, Y.; Liu, M. Corrigendum to “Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China” [Sci. Total Environ. 541 (2016) 200–209]. Sci. Total Environ. 2016, 548–549, 483. [Google Scholar] [CrossRef]
- Wang, L.T.; Zhang, Y.; Wang, K.; Zheng, B.; Zhang, Q.; Wei, W. Application of Weather Research and Forecasting Model with Chemistry (WRF/Chem) over northern China: Sensitivity study, comparative evaluation, and policy implications. Atmos. Environ. 2016, 124, 337–350. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.T.; Wei, Z.; Wei, W.; Fu, J.S.; Meng, C.C.; Ma, S.M. Source apportionment of PM 2.5 in top polluted cities in Hebei, China using the CMAQ model. Atmos. Environ. 2015, 122, 723–736. [Google Scholar] [CrossRef]
- Sun, X.W.; Cheng, S.Y.; Lang, J.L.; Ren, Z.H.; Sun, C. Development of emissions inventory and identification of sources for priority control in the middle reaches of Yangtze River Urban Agglomerations. Sci. Total Environ. 2018, 625, 155–167. [Google Scholar] [CrossRef]
- Hong, C.P.; Zhang, Q.; Zhang, Y.; Tang, Y.H.; Tong, D.; He, K.B. Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: Model evaluation and aerosol direct effects. Geosci. Model Dev. 2017, 10, 2447–2470. [Google Scholar] [CrossRef] [Green Version]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [Green Version]
Simulation Region | Input Data | Scenarios A | Scenarios B |
---|---|---|---|
D1/D2 | Meteorological fields | 2013–2018 WRF results | 2013 WRF result |
Anthropogenic Emissions | 2013–2018 emission inventory | 2013 emission inventory (D1)/2013–2018 emission inventory(D2) | |
Biogenic VOC Emissions | 2013–2018 emission inventory | 2013 emission inventory |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, S.; Wei, W.; Cheng, S.; Niu, Y.; Guan, P. Impacts of Meteorology and Emissions on O3 Pollution during 2013–2018 and Corresponding Control Strategy for a Typical Industrial City of China. Atmosphere 2021, 12, 619. https://doi.org/10.3390/atmos12050619
Yao S, Wei W, Cheng S, Niu Y, Guan P. Impacts of Meteorology and Emissions on O3 Pollution during 2013–2018 and Corresponding Control Strategy for a Typical Industrial City of China. Atmosphere. 2021; 12(5):619. https://doi.org/10.3390/atmos12050619
Chicago/Turabian StyleYao, Shiyin, Wei Wei, Shuiyuan Cheng, Yuan Niu, and Panbo Guan. 2021. "Impacts of Meteorology and Emissions on O3 Pollution during 2013–2018 and Corresponding Control Strategy for a Typical Industrial City of China" Atmosphere 12, no. 5: 619. https://doi.org/10.3390/atmos12050619
APA StyleYao, S., Wei, W., Cheng, S., Niu, Y., & Guan, P. (2021). Impacts of Meteorology and Emissions on O3 Pollution during 2013–2018 and Corresponding Control Strategy for a Typical Industrial City of China. Atmosphere, 12(5), 619. https://doi.org/10.3390/atmos12050619