Impact of Encouraging Vehicles to Refuel at Night on Ozone and Non-Methane Hydrocarbons (NMHCs): A Case Study in Ji’nan, China
Abstract
:1. Introduction
2. Methodology
2.1. Online Measurements of O3 and Its Precursors
2.2. Models
2.2.1. Observation-Based Model (OBM)
2.2.2. Positive Matrix Factorization (PMF) Model
3. Results and Discussion
3.1. Meteorological Conditions during May–July of 2019 and 2020
3.2. Ambient Levels of O3 and Non-Methane Hydrocarbons (NMHCs) during 2019 and 2020
3.2.1. Comparison of O3 Concentrations
3.2.2. Variations of NMHCs Mixing Ratios
3.2.3. Diurnal Variations of O3 and NMHCs Levels
3.2.4. Variations of Pentanes Mixing Ratios
3.3. NMHCs Sources Apportionment during May–July of 2020
3.3.1. Identification of PMF-Resolved Factors
3.3.2. Relative Contributions of Individual Sources to NMHCs Levels and Ozone Formation Potential (OFP) during May–July of 2020
3.4. O3 Formation Analysis during 2020
3.4.1. Sensitivity of O3 Production of NMHCs and NOx
3.4.2. The Impact of This Policy on Simulated O3 Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 12–14. [Google Scholar] [CrossRef]
- Guo, H.; Ling, Z.; Cheng, H.; Simpson, I.; Lyu, X.; Wang, X.; Shao, M.; Lu, H.; Ayoko, G.; Zhang, Y.; et al. Tropospheric volatile organic compounds in China. Sci. Total Environ. 2017, 574, 1021–1043. [Google Scholar] [CrossRef] [Green Version]
- Barrett, B.; Raga, G. Variability of winter and summer surface ozone in Mexico City on the intraseasonal timescale. Atmos. Chem. Phys. 2016, 16, 15359–15370. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Shao, M.; Keßel, S.; Li, Y.; Lu, K.; Lu, S.; Williams, J.; Zhang, Y.; Zeng, L.; Nölscher, A.; et al. How the OH reactivity affects the ozone production efficiency: Case studies in Beijing and Heshan, China. Atmos. Chem. Phys. 2017, 17, 7127–7142. [Google Scholar] [CrossRef] [Green Version]
- Kleinman, L.; Daum, P.; Lee, Y.; Nunnermacker, L.; Springston, S.; Weinstein-Lloyd, J.; Rudolph, J. A comparative study of ozone production in five U.S. metropolitan areas. J. Geophys. Res. Atmos. 2005, 110, D02301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Su, H.; Zhong, L.; Cheng, Y.; Zeng, L.; Wang, X.; Xiang, Y.; Wang, J.; Gao, D.; Shao, M.; et al. Regional ozone pollution and observation-based approach for analyzing ozone–precursor relationship during the PRIDE-PRD2004 campaign. Atmos. Environ. 2008, 42, 6203–6218. [Google Scholar] [CrossRef]
- Tan, Z.; Lu, K.; Dong, H.; Hu, M.; Li, X.; Liu, Y.; Lu, S.; Shao, M.; Su, R.; Wang, H.; et al. Explicit diagnosis of the local ozone production rate and the ozone-NOx-VOC sensitivities. Sci. Bull. 2018, 63, 1067–1076. [Google Scholar] [CrossRef] [Green Version]
- Kansal, A. Sources and reactivity of NMHCs and VOCs in the atmosphere: A review. J. Hazard. Mater. 2009, 166, 17–26. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Zheng, B.; Tong, D.; Lei, Y.; Liu, F.; Hong, C.; Kang, S.; Yan, L.; Zhang, Y.; et al. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: Drivers, speciation and ozone formation potential. Atmos. Chem. Phys. 2019, 19, 8897–8913. [Google Scholar] [CrossRef] [Green Version]
- Gentner, D.; Harley, R.; Miller, A.; Goldstein, A. Diurnal and seasonal variability of gasoline-related volatile organic compound emissions in Riverside, California. Environ. Sci. Technol. 2009, 43, 4247–4252. [Google Scholar] [CrossRef]
- Gentner, D.; Jathar, S.; Gordon, T.; Bahreini, R.; Day, D.; El Haddad, I.; Hayes, P.; Pieber, S.; Platt, S.; de Gouw, J.; et al. Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. Environ. Sci. Technol. 2017, 51, 1074–1093. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Liu, B.; Dai, Q.; Li, H.; Mao, H. Temperature dependence and source apportionment of volatile organic compounds (VOCs) at an urban site on the north China plain. Atmos. Environ. 2019, 207, 167–181. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zhang, Z.; Lu, S.; Shao, M.; Lee, F.; Yu, J. Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China. Atmos. Environ. 2013, 79, 110–118. [Google Scholar] [CrossRef]
- Yuan, Z.; Lau, A.; Shao, M.; Louie, P.; Liu, S.; Zhu, T. Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing. J. Geophys. Res. Atmos. 2009, 114, D00G15. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, H.; Jing, S.; Gao, Y.; Peng, Y.; Lou, S.; Cheng, T.; Tao, S.; Li, L.; Li, J.; et al. Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport. Atmos. Environ. 2019, 215, 116902. [Google Scholar] [CrossRef]
- Cardelino, C.; Chameides, W. An observation-based model for analyzing ozone precursor relationships in the urban atmosphere. J. Air Waste Manag. Assoc. 1995, 45, 161–180. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; EPA/600/R-14/108 (NTIS PB2015–105147); U.S. Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- de Gouw, J.; Middlebrook, A.; Warneke, C.; Goldan, P.; Kuster, W.; Roberts, J.; Fehsenfeld, F.; Worsnop, D.; Canagaratna, M.; Pszenny, A.; et al. Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002. J. Geophys. Res. Atmos. 2005, 110, D16305. [Google Scholar] [CrossRef]
- Song, C.; Liu, Y.; Sun, L.; Zhang, Q.; Mao, H. Emissions of volatile organic compounds (VOCs) from gasoline- and liquified natural gas (LNG)-fueled vehicles in tunnel studies. Atmos. Environ. 2020, 234, 117626. [Google Scholar] [CrossRef]
- Mo, Z.; Shao, M.; Lu, S. Compilation of a source profile database for hydrocarbon and OVOC emissions in China. Atmos. Environ. 2016, 143, 209–217. [Google Scholar] [CrossRef]
- Cao, X.; Yao, Z.; Shen, X.; Ye, Y.; Jiang, X. On-road emission characteristics of VOCs from light-duty gasoline vehicles in Beijing, China. Atmos. Environ. 2016, 124, 146–155. [Google Scholar] [CrossRef]
- Yuan, B.; Shao, M.; Lu, S.; Wang, B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmos. Environ. 2010, 44, 1919–1926. [Google Scholar] [CrossRef]
- Wang, H.; Qiao, Y.; Chen, C.; Lu, J.; Dai, H.; Qiao, L.; Lou, S.; Huang, C.; Li, L.; Jing, S.; et al. Source profiles and chemical reactivity of volatile organic compounds from solvent use in Shanghai, China. Aerosol Air Qual. Res. 2014, 14, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Mo, Z.; Shao, M.; Wang, W.; Liu, Y.; Wang, M.; Lu, S. Evaluation of biogenic isoprene emissions and their contribution to ozone formation by ground-based measurements in Beijing, China. Sci. Total Environ. 2018, 627, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Venecek, M.; Carter, W.; Kleeman, M. Updating the SAPRC maximum incremental reactivity (MIR) scale for the United States from 1988 to 2010. J. Air Waste Manag. Assoc. 2018, 68, 1301–1316. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Mok, W.; Yam, Y.; Zhou, J.; Surawski, N.; Organ, B.; Chan, E.; Mofijur, M.; Mahlia, T.; Ong, H. Evaluating in-use vehicle emissions using air quality monitoring stations and on-road remote sensing systems. Sci. Total Environ. 2020, 740, 139868. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, W.; Shi, Y.; Hu, K.; Hou, Y.; Liang, S.; Chen, W.; Wang, M.; Tang, G. Impact of Encouraging Vehicles to Refuel at Night on Ozone and Non-Methane Hydrocarbons (NMHCs): A Case Study in Ji’nan, China. Atmosphere 2021, 12, 555. https://doi.org/10.3390/atmos12050555
Chai W, Shi Y, Hu K, Hou Y, Liang S, Chen W, Wang M, Tang G. Impact of Encouraging Vehicles to Refuel at Night on Ozone and Non-Methane Hydrocarbons (NMHCs): A Case Study in Ji’nan, China. Atmosphere. 2021; 12(5):555. https://doi.org/10.3390/atmos12050555
Chicago/Turabian StyleChai, Wenxuan, Yaolong Shi, Kun Hu, Yujing Hou, Siyuan Liang, Wentai Chen, Ming Wang, and Guigang Tang. 2021. "Impact of Encouraging Vehicles to Refuel at Night on Ozone and Non-Methane Hydrocarbons (NMHCs): A Case Study in Ji’nan, China" Atmosphere 12, no. 5: 555. https://doi.org/10.3390/atmos12050555
APA StyleChai, W., Shi, Y., Hu, K., Hou, Y., Liang, S., Chen, W., Wang, M., & Tang, G. (2021). Impact of Encouraging Vehicles to Refuel at Night on Ozone and Non-Methane Hydrocarbons (NMHCs): A Case Study in Ji’nan, China. Atmosphere, 12(5), 555. https://doi.org/10.3390/atmos12050555