Is New Always Better? Frontiers in Global Climate Datasets for Modeling Treeline Species in the Himalayas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Climate Datasets
2.2. Methodology of Climate Datasets
2.3. Modeling Procedure
3. Results
3.1. Comparison of Chelsa and Worldclim Climate Datasets
3.2. Effects of Climate Datasets on Model Performance and Prediction
3.3. Comparison of Future Projections between Chelsa and Worldclim
4. Discussion
4.1. How Does the Methodology of Climate Datasets Influence Model Performance and Predictions?
4.2. Modeling Treeline Species—Oversimplifying Treeline Dynamics?
4.3. Implications for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Troll, C. The three-dimensional zonation of the Himalayan system. In Geoecology of the High-Mountain Regions of Eurasia; Troll, C., Ed.; Erdwissenschaftliche Forschung IV; Franz Steiner: Wiesbaden, Germany, 1972; pp. 264–275. [Google Scholar]
- Zurick, D.; Pacheco, J. Illustrated Atlas of the Himalaya; University Press of Kentucky: Lexington, KY, USA, 2006; ISBN 978-0-8131-2388-2. [Google Scholar]
- Miehe, G. Landscapes of Nepal. In Nepal: An Introduction to the Natural History, Ecology and Human Environment of the Himalayas; Miehe, G., Pendry, C.A., Chaudhary, R.P., Eds.; Royal Botanic Garden: Edinburgh, UK, 2015; pp. 7–16. ISBN 978-1-910877-02-9. [Google Scholar]
- Singh, P.; Dash, S.S. Plant diversity in Indian Himalayan regions: An overview. In Plant Diversity in the Himalaya Hotspot Region; Das, A.P., Bera, S., Eds.; Bishen Singh Mahendra Pal Singh: Dehra Dun, India, 2018; pp. 1–43. ISBN 978-81-211-0946-8. [Google Scholar]
- Xu, J.; Badola, R.; Chettri, N.; Chaudhary, R.P.; Zomer, R.; Pokhrel, B.; Hussain, S.A.; Pradhan, S.; Pradhan, R. Sustaining Biodiversity and Ecosystem Services in the Hindu Kush Himalaya. In The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Wester, P., Mishra, A., Mukherji, A., Shrestha, A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 127–165. ISBN 978-3-319-92288-1. [Google Scholar]
- Rajbhandary, S.; Siwakoti, M.; Rai, S.K.; Jha, P.K. An Overview of Plant Diversity in Nepal. In Plant Diversity in Nepal; Siwakoti, M., Jha, P.K., Rajbhandary, S., Eds.; Botanical Society of Nepal: Kathmandu, Nepal, 2020; pp. 1–15. ISBN 978-81-211-0106-6. [Google Scholar]
- Schickhoff, U.; Bobrowski, M.; Böhner, J.; Bürzle, B.; Chaudhary, R.P.; Gerlitz, L.; Heyken, H.; Lange, J.; Müller, M.; Scholten, T.; et al. Do Himalayan Treelines Respond to Recent Climate Change? An Evaluation of Sensitivity Indicators. Earth Syst. Dyn. 2015, 6, 245–265. [Google Scholar] [CrossRef]
- Malanson, G.P.; Resler, L.M.; Butler, D.R.; Fagre, D.B. Mountain Plant Communities: Uncertain Sentinels? Prog. Phys. Geogr. Earth Environ. 2019, 43, 521–543. [Google Scholar] [CrossRef]
- Holtmeier, F.-K.; Broll, G. Treeline Research—From the Roots of the Past to Present Time. A Review. Forests 2019, 11, 38. [Google Scholar] [CrossRef] [Green Version]
- Theurillat, J.-P.; Guisan, A. Potential Impact of Climate Change on Vegetation in the European Alps: A Review. Clim. Chang. 2001, 50, 77–109. [Google Scholar] [CrossRef]
- Bell, D.M.; Bradford, J.B.; Lauenroth, W.K. Mountain Landscapes Offer Few Opportunities for High-Elevation Tree Species Migration. Glob. Chang. Biol. 2014, 20, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Braunisch, V.; Coppes, J.; Arlettaz, R.; Suchant, R.; Schmid, H.; Bollmann, K. Selecting from Correlated Climate Variables: A Major Source of Uncertainty for Predicting Species Distributions under Climate Change. Ecography 2013, 36, 971–983. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Andrews-Key, S.A.; Edwards, J.E.; Johnston, M.H.; Nelson, H.W.; Peterson, D.L.; Schmitt, K.M.; Swanston, C.W.; Williamson, T.B. Adapting Forest Management to Climate Change: The State of Science and Applications in Canada and the United States. For. Ecol. Manag. 2018, 421, 84–97. [Google Scholar] [CrossRef]
- Scherrer, D.; Vitasse, Y.; Guisan, A.; Wohlgemuth, T.; Lischke, H. Competition and Demography Rather than Dispersal Limitation Slow down Upward Shifts of Trees’ Upper Elevation Limits in the Alps. J. Ecol. 2020, 108, 2416–2430. [Google Scholar] [CrossRef]
- Schickhoff, U. The Upper Timberline in the Himalayas, Hindu Kush and Karakorum: A Review of Geographical and Ecological Aspects. In Mountain Ecosystems; Broll, G., Keplin, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 275–354. ISBN 978-3-540-24325-0. [Google Scholar]
- Telwala, Y.; Brook, B.W.; Manish, K.; Pandit, M.K. Climate-Induced Elevational Range Shifts and Increase in Plant Species Richness in a Himalayan Biodiversity Epicentre. PLoS ONE 2013, 8, e57103. [Google Scholar] [CrossRef] [Green Version]
- Dutta, P.K.; Dutta, B.K.; Das, A.K.; Sundriyal, R.C. Alpine Timberline Research Gap in Himalaya: A Literature Review. Indian For. 2014, 140, 419–427. [Google Scholar]
- Bobrowski, M.; Weidinger, J.; Schwab, N.; Schickhoff, U. Searching for Ecology in Species Distribution Models in the Himalayas. Ecol. Model. under review.
- Werkowska, W.; Márquez, A.L.; Real, R.; Acevedo, P. A Practical Overview of Transferability in Species Distribution Modeling. Environ. Rev. 2017, 25, 127–133. [Google Scholar] [CrossRef]
- Yates, K.L.; Bouchet, P.J.; Caley, M.J.; Mengersen, K.; Randin, C.F.; Parnell, S.; Fielding, A.H.; Bamford, A.J.; Ban, S.; Barbosa, A.M.; et al. Outstanding Challenges in the Transferability of Ecological Models. Trends Ecol. Evol. 2018, 33, 790–802. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wolter, C.; Xian, W.; Jeschke, J.M. Species Distribution Models Have Limited Spatial Transferability for Invasive Species. Ecol. Lett. 2020, 23, 1682–1692. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists: Statistical Explanation of MaxEnt. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Rocchini, D.; Hortal, J.; Lengyel, S.; Lobo, J.M.; Jiménez-Valverde, A.; Ricotta, C.; Bacaro, G.; Chiarucci, A. Accounting for Uncertainty When Mapping Species Distributions: The Need for Maps of Ignorance. Prog. Phys. Geogr. Earth Environ. 2011, 35, 211–226. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting Pseudo-Absences for Species Distribution Models: How, Where and How Many?: How to Use Pseudo-Absences in Niche Modelling? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-0-511-81060-2. [Google Scholar]
- Saupe, E.E.; Barve, V.; Myers, C.E.; Soberón, J.; Barve, N.; Hensz, C.M.; Peterson, A.T.; Owens, H.L.; Lira-Noriega, A. Variation in Niche and Distribution Model Performance: The Need for a Priori Assessment of Key Causal Factors. Ecol. Model. 2012, 237–238, 11–22. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS): Assessing the Accuracy of Distribution Models. J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A Misleading Measure of the Performance of Predictive Distribution Models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at High Resolution for the Earth’s Land Surface Areas. Physics 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at High Resolution for the Earth’s Land Surface Areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobrowski, M.; Gerlitz, L.; Schickhoff, U. Modelling the Potential Distribution of Betula Utilis in the Himalaya. Glob. Ecol. Conserv. 2017, 11, 69–83. [Google Scholar] [CrossRef]
- Bobrowski, M.; Bechtel, B.; Böhner, J.; Oldeland, J.; Weidinger, J.; Schickhoff, U. Application of Thermal and Phenological Land Surface Parameters for Improving Ecological Niche Models of Betula Utilis in the Himalayan Region. Remote Sens. 2018, 10, 814. [Google Scholar] [CrossRef] [Green Version]
- Gilani, H.; Arif Goheer, M.; Ahmad, H.; Hussain, K. Under Predicted Climate Change: Distribution and Ecological Niche Modelling of Six Native Tree Species in Gilgit-Baltistan, Pakistan. Ecol. Indic. 2020, 111, 106049. [Google Scholar] [CrossRef]
- Kalan, K.; Ivović, V.; Glasnović, P.; Buzan, E. Presence and Potential Distribution of Aedes Albopictus and Aedes Japonicus Japonicus (Diptera: Culicidae) in Slovenia. J. Med. Entomol. 2017, 54, 1510–1518. [Google Scholar] [CrossRef]
- Bastidas Osejo, B.; Betancur Vargas, T.; Alejandro Martinez, J. Spatial Distribution of Precipitation and Evapotranspiration Estimates from Worldclim and Chelsa Datasets: Improving Long-Term Water Balance at the Watershed-Scale in the Urabá Region of Colombia. Int. J. Sustain. Dev. Plan. 2019, 14, 105–117. [Google Scholar] [CrossRef]
- Charitonidou, M.; Kougioumoutzis, K.; Halley, J.M. An Orchid in Retrograde: Climate-Driven Range Shift Patterns of Ophrys Helenae in Greece. Plants 2021, 10, 470. [Google Scholar] [CrossRef]
- Morales-Barbero, J.; Vega-Álvarez, J. Input Matters Matter: Bioclimatic Consistency to Map More Reliable Species Distribution Models. Methods Ecol. Evol. 2019, 10, 212–224. [Google Scholar] [CrossRef]
- Datta, A.; Schweiger, O.; Kuehn, I. Origin of Climatic Data Can Determine the Transferability of Species Distribution Models. Neobiota 2020, 61–76. [Google Scholar] [CrossRef]
- Suwal, M.K.; Huettmann, F.; Regmi, G.R.; Vetaas, O.R. Parapatric Subspecies of Macaca Assamensis Show a Marginal Overlap in Their Predicted Potential Distribution: Some Elaborations for Modern Conservation Management. Ecol. Evol. 2018, 8, 9712–9727. [Google Scholar] [CrossRef]
- Bobrowski, M.; Schickhoff, U. Why Input Matters: Selection of Climate Data Sets for Modelling the Potential Distribution of a Treeline Species in the Himalayan Region. Ecol. Model. 2017, 359, 92–102. [Google Scholar] [CrossRef]
- New, M.; Hulme, M.; Jones, P. Representing Twentieth-Century Space–Time Climate Variability. Part I: Development of a 1961–1990 Mean Monthly Terrestrial Climatology. J. Clim. 1999, 12, 28. [Google Scholar] [CrossRef]
- New, M.; Hulme, M.; Jones, P. Representing Twentieth-Century Space–Time Climate Variability. Part II: Development of 1901–1996 Monthly Grids of Terrestrial Surface Climate. J. Clim. 2000, 13, 22. [Google Scholar] [CrossRef]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); Open-File Report 2011–1073; U.S. Geological Survey: Sioux Falls, SD, USA, 2011; 26p.
- Paulsen, J.; Körner, C. A Climate-Based Model to Predict Potential Treeline Position around the Globe. Alp. Bot. 2014, 124, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Irl, S.D.H.; Anthelme, F.; Harter, D.E.V.; Jentsch, A.; Lotter, E.; Steinbauer, M.J.; Beierkuhnlein, C. Patterns of Island Treeline Elevation—A Global Perspective. Ecography 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bivand, R.; Rundel, C. Rgeos: Interface to Geometry Engine—Open Source (’GEOS’). R Package Version 0.5-5. 2020. Available online: https://CRAN.R-project.org/package=rgeos (accessed on 21 April 2021).
- Bivand, R.; Pebesma, E.; Gomez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-7618-4. [Google Scholar]
- Kuhn, M. Caret: Classification and Regression Training. R package Version 6.0-86. 2020. Available online: https://CRAN.R-project.org/package=caret (accessed on 21 April 2021).
- McGullagh, P.; Nelder, J.A. Generalized Linear Models; Vol. 37 of Monographs on Statistics and Applied Probability, 2nd ed.; Chapman and Hall: London, UK, 1989; ISBN 978-0-412-31760-6. [Google Scholar]
- Nagelkerke, N.J.D. A Note on a General Definition of the Coefficient of Determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Jentsch, H. ClimDatDownloadR: Downloads Climate Data from Chelsa and WorldClim. R Package Version 0.1.5. 2021. Available online: https://gitlab.rrz.uni-hamburg.de/helgejentsch/climdatdownloadr (accessed on 21 April 2021).
- Revelle, W. Psych: Procedures for Personality and Psychological Research. Northwestern University, Evanston, IL, USA, R Package Version 2.0.12. 2020. Available online: https://CRAN.R-project.org/package=psych (accessed on 21 April 2021).
- Liang, E.; Dawadi, B.; Pederson, N.; Eckstein, D. Is the Growth of Birch at the Upper Timberline in the Himalayas Limited by Moisture or by Temperature? Ecology 2014, 95, 2453–2465. [Google Scholar] [CrossRef] [Green Version]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The Community Climate System Model Version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R version 4.0.2, R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10.7.1 Environmental Systems Research Institute; ESRI: Redlands, CA, USA, 2019. [Google Scholar]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically Sensitive Mapping of Climatological Temperature and Precipitation across the Conterminous United States. Int. J. Clim. 2008, 34. [Google Scholar] [CrossRef]
- Soria-Auza, R.W.; Kessler, M.; Bach, K.; Barajas-Barbosa, P.M.; Lehnert, M.; Herzog, S.K.; Böhner, J. Impact of the Quality of Climate Models for Modelling Species Occurrences in Countries with Poor Climatic Documentation: A Case Study from Bolivia. Ecol. Model. 2010, 221, 1221–1229. [Google Scholar] [CrossRef]
- Deblauwe, V.; Droissart, V.; Bose, R.; Sonké, B.; Blach-Overgaard, A.; Svenning, J.-C.; Wieringa, J.J.; Ramesh, B.R.; Stévart, T.; Couvreur, T.L.P. Remotely Sensed Temperature and Precipitation Data Improve Species Distribution Modelling in the Tropics: Remotely Sensed Climate Data for Tropical Species Distribution Models. Glob. Ecol. Biogeogr. 2016, 25, 443–454. [Google Scholar] [CrossRef]
- Baker, D.J.; Hartley, A.J.; Pearce-Higgins, J.W.; Jones, R.G.; Willis, S.G. Neglected Issues in Using Weather and Climate Information in Ecology and Biogeography. Divers. Distrib. 2017, 23, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Marchi, M.; Sinjur, I.; Bozzano, M.; Westergren, M. Evaluating WorldClim Version 1 (1961–1990) as the Baseline for Sustainable Use of Forest and Environmental Resources in a Changing Climate. Sustainability 2019, 11, 3043. [Google Scholar] [CrossRef] [Green Version]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical Orthogonal Functions and Related Techniques in Atmospheric Science: A Review. Int. J. Clim. 2007, 34. [Google Scholar] [CrossRef]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Sayre, R.; Trabucco, A.; Zomer, R. A High-Resolution Bioclimate Map of the World: A Unifying Framework for Global Biodiversity Research and Monitoring: High-Resolution Bioclimate Map of the World. Glob. Ecol. Biogeogr. 2013, 22, 630–638. [Google Scholar] [CrossRef] [Green Version]
- Schueler, S.; Falk, W.; Koskela, J.; Lefèvre, F.; Bozzano, M.; Hubert, J.; Kraigher, H.; Longauer, R.; Olrik, D.C. Vulnerability of Dynamic Genetic Conservation Units of Forest Trees in Europe to Climate Change. Glob. Chang. Biol. 2014, 20, 1498–1511. [Google Scholar] [CrossRef]
- Bedia, J.; Herrera, S.; Gutiérrez, J.M. Dangers of Using Global Bioclimatic Datasets for Ecological Niche Modeling. Limitations for Future Climate Projections. Glob. Planet. Chang. 2013, 107, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fernández, M.; Hamilton, H.; Kueppers, L.M. Characterizing Uncertainty in Species Distribution Models Derived from Interpolated Weather Station Data. Ecosphere 2013, 4, art61. [Google Scholar] [CrossRef]
- Watling, J.I.; Fletcher, R.J.; Speroterra, C.; Bucklin, D.N.; Brandt, L.A.; Romañach, S.S.; Pearlstine, L.G.; Escribano, Y.; Mazzotti, F.J. Assessing Effects of Variation in Global Climate Data Sets on Spatial Predictions from Climate Envelope Models. J. Fish Wildl. Manag. 2014, 5, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Stoklosa, J.; Daly, C.; Foster, S.D.; Ashcroft, M.B.; Warton, D.I. A Climate of Uncertainty: Accounting for Error in Climate Variables for Species Distribution Models. Methods Ecol. Evol. 2015, 6, 412–423. [Google Scholar] [CrossRef]
- Baker, D.J.; Hartley, A.J.; Butchart, S.H.M.; Willis, S.G. Choice of Baseline Climate Data Impacts Projected Species’ Responses to Climate Change. Glob. Chang. Biol. 2016, 22, 2392–2404. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Winkler, J.A.; Viña, A.; Liu, J.; Zhang, Y.; Zhang, X.; Li, X.; Wang, F.; Zhang, J.; Zhao, Z. Uncertainty of Future Projections of Species Distributions in Mountainous Regions. PLoS ONE 2018, 13, e0189496. [Google Scholar] [CrossRef] [Green Version]
- Marston, R.A. Geomorphology and Vegetation on Hillslopes: Interactions, Dependencies, and Feedback Loops. Geomorphology 2010, 116, 206–217. [Google Scholar] [CrossRef]
- Singh, C.P.; Panigrahy, S.; Parihar, J.S. Alpine Vegetation Ecotone Dynamics in Gangotri Catchment Using Remote Sensing Techniques. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII-8/W20, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Singh, C.P.; Panigrahy, S.; Parihar, J.S.; Dharaiya, N. Modeling Environmental Niche of Himalayan Birch and Remote Sensing Based Vicarious Validation. Trop. Ecol. 2013, 54, 321–329. [Google Scholar]
- Manish, K.; Telwala, Y.; Nautiyal, D.C.; Pandit, M.K. Modelling the Impacts of Future Climate Change on Plant Communities in the Himalaya: A Case Study from Eastern Himalaya, India. Model. Earth Syst. Environ. 2016, 2, 92. [Google Scholar] [CrossRef] [Green Version]
- Chhetri, P.K.; Gaddis, K.D.; Cairns, D.M. Predicting the Suitable Habitat of Treeline Species in the Nepalese Himalayas under Climate Change. Mt. Res. Dev. 2018, 38, 153. [Google Scholar] [CrossRef]
- Hamid, M.; Khuroo, A.A.; Charles, B.; Ahmad, R.; Singh, C.P.; Aravind, N.A. Impact of Climate Change on the Distribution Range and Niche Dynamics of Himalayan Birch, a Typical Treeline Species in Himalayas. Biodivers. Conserv. 2019, 28, 2345–2370. [Google Scholar] [CrossRef]
- Mohapatra, J.; Singh, C.P.; Hamid, M.; Verma, A.; Semwal, S.C.; Gajmer, B.; Khuroo, A.A.; Kumar, A.; Nautiyal, M.C.; Sharma, N.; et al. Modelling Betula Utilis Distribution in Response to Climate-Warming Scenarios in Hindu-Kush Himalaya Using Random Forest. Biodivers. Conserv. 2019, 28, 2295–2317. [Google Scholar] [CrossRef]
- Körner, C.; Paulsen, J. A World-Wide Study of High Altitude Treeline Temperatures: Study of High Altitude Treeline Temperatures. J. Biogeogr. 2004, 31, 713–732. [Google Scholar] [CrossRef]
- Holtmeier, F.-K. Mountain Timberlines: Ecology, Patchiness, and Dynamics; Advances in Global Change Research, 2nd ed.; Springer: Dordrecht, The Netherlands, 2009; ISBN 978-1-4020-9704-1. [Google Scholar]
- Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits; Springer: Basel, Switzerland, 2012; ISBN 978-3-0348-0396-0. [Google Scholar]
- Wieser, G. Alpine and Polar Treelines in a Changing Environment. Forests 2020, 11, 254. [Google Scholar] [CrossRef] [Green Version]
- Schweinfurth, U. Die horizontale und vertikale Verbreitung der Vegetation im Himalaya. In Bonner Geographische Abhandlungen; Dümmler: Bonn, Germany, 1957. [Google Scholar]
- Schickhoff, U. Die Degradierung Der Gebirgswälder Nordpakistans: Faktoren, Prozesse Und Wirkungszusammenhänge in Einem Regionalen Mensch-Umwelt-System; Erdwissenschaftliche Forschung; Steiner: Stuttgart, Germany, 2002; ISBN 978-3-515-07572-5. [Google Scholar]
- Miehe, G.; Miehe, S.; Böhner, J.; Bäumler, R.; Ghimire, S.K.; Bhattarai, K.; Chaudhary, R.P.; Subedi, M.; Jha, P.K.; Pendry, C. Vegetation ecology. In Nepal: An Introduction to the Natural History, Ecology and Human Environment of the Himalayas; Miehe, G., Pendry, C.A., Chaudhary, R.P., Eds.; Royal Botanic Garden: Edinburgh, UK, 2015; pp. 385–472. ISBN 978-1-910877-02-9. [Google Scholar]
- Böhner, J. Climate and Weather. In Nepal: An Introduction to the Natural History, Ecology and Human Environment of the Himalayas; Miehe, G., Pendry, C.A., Chaudhary, R.P., Eds.; Royal Botanic Garden: Edinburgh, UK, 2015; pp. 23–89. ISBN 978-1-910877-02-9. [Google Scholar]
- Zhang, L.; Liu, S.; Sun, P.; Wang, T.; Wang, G.; Zhang, X.; Wang, L. Consensus Forecasting of Species Distributions: The Effects of Niche Model Performance and Niche Properties. PLoS ONE 2015, 10, e0120056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbogga, M.S.; Wang, X.; Hamann, A. Bioclimate Envelope Model Predictions for Natural Resource Management: Dealing with Uncertainty. J. Appl. Ecol. 2010, 47, 731–740. [Google Scholar] [CrossRef]
- Hamann, A.; Roberts, D.R.; Barber, Q.E.; Carroll, C.; Nielsen, S.E. Velocity of Climate Change Algorithms for Guiding Conservation and Management. Glob. Chang. Biol. 2015, 21, 997–1004. [Google Scholar] [CrossRef]
- Schuwirth, N.; Borgwardt, F.; Domisch, S.; Friedrichs, M.; Kattwinkel, M.; Kneis, D.; Kuemmerlen, M.; Langhans, S.D.; Martínez-López, J.; Vermeiren, P. How to Make Ecological Models Useful for Environmental Management. Ecol. Model. 2019, 411, 108784. [Google Scholar] [CrossRef]
- Ackerly, D.D.; Loarie, S.R.; Cornwell, W.K.; Weiss, S.B.; Hamilton, H.; Branciforte, R.; Kraft, N.J.B. The Geography of Climate Change: Implications for Conservation Biogeography: Geography of Climate Change. Divers. Distrib. 2010, 16, 476–487. [Google Scholar] [CrossRef]
- Pliscoff, P.; Luebert, F.; Hilger, H.H.; Guisan, A. Effects of Alternative Sets of Climatic Predictors on Species Distribution Models and Associated Estimates of Extinction Risk: A Test with Plants in an Arid Environment. Ecol. Model. 2014, 288, 166–177. [Google Scholar] [CrossRef]
- Bazzato, E.; Rosati, L.; Canu, S.; Fiori, M.; Farris, E.; Marignani, M. High Spatial Resolution Bioclimatic Variables to Support Ecological Modelling in a Mediterranean Biodiversity Hotspot. Ecol. Model. 2021, 441, 109354. [Google Scholar] [CrossRef]
- Engler, R.; Randin, C.F.; Thuiller, W.; Dullinger, S.; Zimmermann, N.E.; Araújo, M.B.; Pearman, P.B.; Le Lay, G.; Piedallu, C.; Albert, C.H.; et al. 21st Century Climate Change Threatens Mountain Flora Unequally across Europe. Glob. Chang. Biol. 2011, 17, 2330–2341. [Google Scholar] [CrossRef]
- Kollas, C.; Körner, C.; Randin, C.F. Spring Frost and Growing Season Length Co-Control the Cold Range Limits of Broad-Leaved Trees. J. Biogeogr. 2014, 41, 773–783. [Google Scholar] [CrossRef]
- Shrestha, U.B.; Bawa, K.S. Impact of Climate Change on Potential Distribution of Chinese Caterpillar Fungus (Ophiocordyceps Sinensis) in Nepal Himalaya. PLoS ONE 2014, 9, e106405. [Google Scholar] [CrossRef] [PubMed]
- Zischg, A.P.; Gubelmann, P.; Frehner, M.; Huber, B. High Resolution Maps of Climatological Parameters for Analyzing the Impacts of Climatic Changes on Swiss Forests. Forests 2019, 10, 617. [Google Scholar] [CrossRef] [Green Version]
- Stewart, S.B.; Elith, J.; Fedrigo, M.; Kasel, S.; Roxburgh, S.H.; Bennett, L.T.; Chick, M.; Fairman, T.; Leonard, S.; Kohout, M.; et al. Climate Extreme Variables Generated Using Monthly Time-series Data Improve Predicted Distributions of Plant Species. Ecography 2021, ecog.05253. [Google Scholar] [CrossRef]
- Lenoir, J.; Graae, B.J.; Aarrestad, P.A.; Alsos, I.G.; Armbruster, W.S.; Austrheim, G.; Bergendorff, C.; Birks, H.J.B.; Bråthen, K.A.; Brunet, J.; et al. Local Temperatures Inferred from Plant Communities Suggest Strong Spatial Buffering of Climate Warming across Northern Europe. Glob. Chang. Biol. 2013, 19, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, J.; Hattab, T.; Pierre, G. Climatic Microrefugia under Anthropogenic Climate Change: Implications for Species Redistribution. Ecography 2017, 40, 253–266. [Google Scholar] [CrossRef]
- Trivedi, M.R.; Berry, P.M.; Morecroft, M.D.; Dawson, T.P. Spatial Scale Affects Bioclimate Model Projections of Climate Change Impacts on Mountain Plants. Glob. Chang. Biol. 2008, 14, 1089–1103. [Google Scholar] [CrossRef] [Green Version]
- Hannah, L.; Flint, L.; Syphard, A.D.; Moritz, M.A.; Buckley, L.B.; McCullough, I.M. Fine-Grain Modeling of Species’ Response to Climate Change: Holdouts, Stepping-Stones, and Microrefugia. Trends Ecol. Evol. 2014, 29, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Lembrechts, J.J.; Lenoir, J.; Nuñez, M.A.; Pauchard, A.; Geron, C.; Bussé, G.; Milbau, A.; Nijs, I. Microclimate Variability in Alpine Ecosystems as Stepping Stones for Non-native Plant Establishment above Their Current Elevational Limit. Ecography 2018, 41, 900–909. [Google Scholar] [CrossRef]
- He, K.S.; Bradley, B.A.; Cord, A.F.; Rocchini, D.; Tuanmu, M.-N.; Schmidtlein, S.; Turner, W.; Wegmann, M.; Pettorelli, N. Will Remote Sensing Shape the next Generation of Species Distribution Models? Remote Sens. Ecol. Conserv. 2015, 1, 4–18. [Google Scholar] [CrossRef] [Green Version]
- NASA/METI/AIST/Japan Spacesystems; U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2019. [CrossRef]
- Vega, G.C.; Pertierra, L.R.; Olalla-Tárraga, M.Á. MERRAclim, a High-Resolution Global Dataset of Remotely Sensed Bioclimatic Variables for Ecological Modelling. Sci. Data 2017, 4, 170078. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.M.; Jetz, W. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions. PLOS Biol. 2016, 14, e1002415. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. MODIS/Terra Snow Cover Daily L3 Global 0.05Deg CMG; Version 6; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016. [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone J. 2017, 16, vzj2016.10.0105. [Google Scholar] [CrossRef] [Green Version]
- Bobrowski, M. Modelling the ecological niche of a treeline tree species (Betula utilis) in the Himalayas—A methodological overview. In Mountain Landscapes in Transition: Effects of Land Use and Climate Change; Schickhoff, U., Singh, R.P., Mal, S., Eds.; Springer: Berlin, Germany, 2021. [Google Scholar]
- Amiri, M.; Tarkesh, M.; Jafari, R.; Jetschke, G. Bioclimatic Variables from Precipitation and Temperature Records vs. Remote Sensing-Based Bioclimatic Variables: Which Side Can Perform Better in Species Distribution Modeling? Ecol. Inform. 2020, 57, 101060. [Google Scholar] [CrossRef]
- Lembrechts, J.J.; Nijs, I.; Lenoir, J. Incorporating Microclimate into Species Distribution Models. Ecography 2019, 42, 1267–1279. [Google Scholar] [CrossRef]
- Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J. HESS Opinions “Should We Apply Bias Correction to Global and Regional Climate Model Data?”. Hydrol. Earth Syst. Sci. 2012, 16, 3391–3404. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D.; Shepherd, T.G.; Widmann, M.; Zappa, G.; Walton, D.; Gutiérrez, J.M.; Hagemann, S.; Richter, I.; Soares, P.M.M.; Hall, A.; et al. Towards Process-Informed Bias Correction of Climate Change Simulations. Nat. Clim. Chang. 2017, 7, 764–773. [Google Scholar] [CrossRef] [Green Version]
- Lembrechts, J.J.; Lenoir, J.; Roth, N.; Hattab, T.; Milbau, A.; Haider, S.; Pellissier, L.; Pauchard, A.; Ratier Backes, A.; Dimarco, R.D.; et al. Comparing Temperature Data Sources for Use in Species Distribution Models: From In-situ Logging to Remote Sensing. Glob. Ecol. Biogeogr. 2019, 28, 1578–1596. [Google Scholar] [CrossRef]
- Mod, H.K.; Scherrer, D.; Luoto, M.; Guisan, A. What We Use Is Not What We Know: Environmental Predictors in Plant Distribution Models. J. Veg. Sci. 2016, 27, 1308–1322. [Google Scholar] [CrossRef]
- Sofaer, H.R.; Barsugli, J.J.; Jarnevich, C.S.; Abatzoglou, J.T.; Talbert, M.K.; Miller, B.W.; Morisette, J.T. Designing Ecological Climate Change Impact Assessments to Reflect Key Climatic Drivers. Glob. Chang. Biol. 2017, 23, 2537–2553. [Google Scholar] [CrossRef]
- Descombes, P.; Walthert, L.; Baltensweiler, A.; Meuli, R.G.; Karger, D.N.; Ginzler, C.; Zurell, D.; Zimmermann, N.E. Spatial Modelling of Ecological Indicator Values Improves Predictions of Plant Distributions in Complex Landscapes. Ecography 2020, 43, 1448–1463. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Webber, B.L.; Leriche, A.; Ota, N.; Macadam, I.; Bathols, J.; Scott, J.K. CliMond: Global High-Resolution Historical and Future Scenario Climate Surfaces for Bioclimatic Modelling. Methods Ecol. Evol. 2012, 3, 53–64. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Jarošik, V.; Ota, N. Extending the Suite of BIOCLIM Variables: A Proposed Registry System and Case Study Using Principal Components Analysis. Methods Ecol. Evol. 2014, 5, 956–960. [Google Scholar] [CrossRef]
- Lima-Ribeiro, M.S.; Varela, S.; González-Hernández, J.; De Oliveira, G.; Diniz-Filho, J.A.F.; Terrible, L.C. EcoClimate: A Database of Climate Data from Multiple Models for Past, Present, and Future for Macroecologists and Biogeographers. Biodivers. Inform. 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Title, P.O.; Bemmels, J.B. ENVIREM: An Expanded Set of Bioclimatic and Topographic Variables Increases Flexibility and Improves Performance of Ecological Niche Modeling. Ecography 2018, 41, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Noce, S.; Caporaso, L.; Santini, M. A New Global Dataset of Bioclimatic Indicators. Sci. Data 2020, 7, 398. [Google Scholar] [CrossRef]
Climate Dataset | Version | Author | Current Climate | Future Climate | Past Climate | Number of Citations, WOK | Highest Spatial Resolution |
---|---|---|---|---|---|---|---|
Chelsa | 1.1 | Karger et al., 2016 | 1979–2013 | 30 arc seconds | |||
Chelsa | 1.2 | Karger et al., 2017 | 1979–2013 | 2050–2070 | 21,000 BP LGM | 523 | 30 arc seconds |
Worldclim | 1.4 | Hijmans et al., 2005 | 1960–1990 | 2050–2070 | 6000 BP; 22,000 BP LGM | 12,497 | 30 arc seconds |
Worldclim | 2.1 | Fick and Hijmans 2017 | 1970–2000 | 2021–2040 *, 2041–2060 *, 2061–2080 *, 2081–2100 * | 1939 | 30 arc seconds |
Chelsa 1.1 | Chelsa 1.2 | Worldclim 1.4 | Worldclim 2.1 | |
---|---|---|---|---|
Chelsa 1.1 | ||||
Chelsa 1.2 | 1.00 | |||
Worldclim 1.4 | 0.99 | 0.99 | ||
Worldclim 2.1 | 0.98 | 0.98 | 0.99 |
Chelsa 1.1 | Chelsa 1.2 | Worldclim 1.4 | Worldclim 2.1 | |
---|---|---|---|---|
Chelsa 1.1 | ||||
Chelsa 1.2 | 0.90 | |||
Worldclim 1.4 | 0.52 | 0.48 | ||
Worldclim 2.1 | 0.78 | 0.67 | 0.68 |
Chelsa 1.1 | Chelsa 1.2 | Worldclim 1.4 | Worldclim 2.1 | |
---|---|---|---|---|
Chelsa 1.1 | ||||
Chelsa 1.2 | 0.89 | |||
Worldclim 1.4 | 0.27 | 0.49 | ||
Worldclim 2.1 | 0.43 | 0.62 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobrowski, M.; Weidinger, J.; Schickhoff, U. Is New Always Better? Frontiers in Global Climate Datasets for Modeling Treeline Species in the Himalayas. Atmosphere 2021, 12, 543. https://doi.org/10.3390/atmos12050543
Bobrowski M, Weidinger J, Schickhoff U. Is New Always Better? Frontiers in Global Climate Datasets for Modeling Treeline Species in the Himalayas. Atmosphere. 2021; 12(5):543. https://doi.org/10.3390/atmos12050543
Chicago/Turabian StyleBobrowski, Maria, Johannes Weidinger, and Udo Schickhoff. 2021. "Is New Always Better? Frontiers in Global Climate Datasets for Modeling Treeline Species in the Himalayas" Atmosphere 12, no. 5: 543. https://doi.org/10.3390/atmos12050543
APA StyleBobrowski, M., Weidinger, J., & Schickhoff, U. (2021). Is New Always Better? Frontiers in Global Climate Datasets for Modeling Treeline Species in the Himalayas. Atmosphere, 12(5), 543. https://doi.org/10.3390/atmos12050543