What Are the Effects of Meteorological Factors on Exacerbations of Chronic Obstructive Pulmonary Disease?
Abstract
:1. Introduction
2. Materials and Methods
3. Review of the Literature
3.1. The Influence of Air Temperature on Acute Exacerbations of COPD
3.2. The Influence of Atmospheric Pressure, Solar Radiation, Rainfall, Wind Speed, and Humidity on Acute Exacerbations of COPD
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AECOPD | Acute exacerbations of chronic obstructive pulmonary disease |
COPD | Chronic obstructive pulmonary disease |
DTR | Diurnal temperature range |
NO2 | Nitrogen dioxide |
PM | Particulate matter |
PM2.5 | Particulate matter with a diameter of 2.5 microns or less |
SARS-CoV-2 | Severe acute respiratory syndrome novel coronavirus 2 |
SO2. | Sulfur dioxide |
UVB | Ultraviolet B |
WHO | World Health Organization |
References
- Vukoja, M.; Kopitovic, I.; Lazic, Z.; Milenkovic, B.; Stankovic, I.; Zvezdin, B.; Ilic, A.D.; Cekerevac, I.; Vukcevic, M.; Zugic, V.; et al. Diagnosis and management of chronic obstructive pulmonary disease in Serbia: An expert group position statement. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 1993–2002. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Li, S.; Coelho, M.D.S.Z.S.; Saldiva, P.H.N.; Xu, R.; Huxley, R.R.; Abramson, M.J.; Guo, Y. Ambient heat and hospitalisation for COPD in Brazil: A nationwide case-crossover study. Thorax 2019, 74, 1031–1036. [Google Scholar] [CrossRef]
- Burden of COPD [Homepage on the Internet]. WHO: Geneva, Switzerland, 2020. Available online: http://www.who.int/respiratory/copd/burden/en/ (accessed on 11 April 2020).
- Guarascio, A.J.; Ray, S.M.; Finch, C.K.; Self, T.H. The clinical and economic burden of chronic obstructive pulmonary disease in the USA. Clinicoecon. Outcomes Res. 2013, 5, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.-T.; Kor, C.-T.; Chang, C.-C.; Chai, W.-H.; Soon, M.-S.; Ciou, Y.-S.; Bin Lian, I.; Chang, C.-C. Association of meteorological factors and air NO2 and O3 concentrations with acute exacerbation of elderly chronic obstructive pulmonary disease. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Huang, F.; Zhao, A.; Chen, R.J.; Kan, H.D.; Kuang, X.Y. Ambient temperature and outpatient visits for acute exacerbation of chronic bronchitis in Shanghai: A time series analysis. Biomed. Environ. Sci. 2015, 28, 76–79. [Google Scholar]
- De Miguel-Díez, J.; Hernández-Vázquez, J.; López-de-Andrés, A.; Álvaro-Meca, A.; Hernández-Barrera, V.; Jiménez-García, R. Analysis of environmental risk factors for chronic obstructive pulmonary disease exacerbation: A case-crossover study (2004–2013). PLoS ONE 2019, 14, e0217143. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, C.R.; Celli, B.; Anderson, J.A.; Ferguson, G.T.; Jones, P.W.; Vestbo, J.; Yates, J.C.; Calverley, P.M.A. Seasonality and determinants of moderate and severe COPD exacerbations in the TORCH study. Eur. Respir. J. 2012, 39, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.F.; Fabbri, L.M.; Vogelmeier, C.; Kögler, H.; Schmidt, H.; Beeh, K.M.; Glaab, T. Seasonal distribution of COPD exacerbations in the Prevention of Exacerbations with Tiotropium in COPD trial. Chest 2013, 143, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Mu, Z.; Chen, P.-L.; Geng, F.-H.; Ren, L.; Gu, W.-C.; Ma, J.-Y.; Peng, L.; Li, Q.-Y. Synergistic effects of temperature and humidity on the symptoms of COPD patients. Int. J. Biometeorol. 2017, 61, 1919–1925. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, X.; Wang, X.; Li, W.; Qu, W.; Dong, L.; Li, X.; Rui, Z.; Yang, X. Risk of temperature, humidity and concentrations of air pollutants on the hospitalization of AECOPD. PLoS ONE 2019, 14, e0225307. [Google Scholar] [CrossRef] [PubMed]
- Almagro, P.; Hernandez, C.; Martinez-Cambor, P.; Tresserras, R.; Escarrabill, J. Seasonality, ambient temperatures and hospitalizations for acute exacerbation of COPD: A population-based study in a metropolitan area. Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 899–908. [Google Scholar] [CrossRef] [Green Version]
- Brzezińska-Pawłowska, O.E.; Rydzewska, A.D.; Łuczyńska, M.; Majkowska-Wojciechowska, B.; Kowalski, M.L.; Makowska, J.S. Environmental factors affecting seasonality of ambulance emergency service visits for exacerbations of asthma and COPD. J. Asthma 2016, 53, 139–145. [Google Scholar] [CrossRef]
- Shek, L.P.; Lee, B.W. Epidemiology and seasonality of respiratory tract infections in the tropics. Paediatr. Respir. Rev. 2003, 4, 105–111. [Google Scholar] [CrossRef]
- Hicks, A.; Healy, E.; Sandeman, N.; Feelisch, M.; Wilkinson, T. A time for everything and everything in its time–exploring the mechanisms underlying seasonality of COPD exacerbations. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 2739–2749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, G.C.; Wedzicha, J.A. The causes and consequences of seasonal variation in COPD exacerbations. Int. J. Chron. Obstruct. Pulmon. Dis. 2014, 9, 1101–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormack, M.C.; Paulin, L.M.; Gummerson, C.E.; Peng, R.D.; Diette, G.B.; Hansel, N.O. Colder temperature is associated with increased COPD morbidity. Eur. Respir. J. 2017, 49, 1601501. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.-M.; Chen, Y.-T.; Ou, S.-M.; Hsiao, Y.-H.; Li, S.-Y.; Wang, S.-J.; Yang, A.C.; Chen, T.-J.; Perng, D.-W. The Effect of Cold Temperature on Increased Exacerbation of Chronic Obstructive Pulmonary Disease: A Nationwide Study. PLoS ONE 2013, 8, e57066. [Google Scholar] [CrossRef] [Green Version]
- Analitis, A.; Katsouyanni, K.; Biggeri, A.; Baccini, M.; Forsberg, B.; Bisanti, L.; Kirchmayer, U.; Ballester, F.; Cadum, E.; Goodman, P.G.; et al. Effects of cold weather on mortality: Results from 15 European cities within the PHEWE project. Am. J. Epidemiol. 2008, 168, 1397–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B.B.; Gu, S.H.; Wang, A.H.; Ge, T.; Wang, Y.; Li, X.H.; Xu, G.Z. Study on influence of air temperature on daily chronic obstructive pulmonary disease mortality in Ningbo. Zhonghua Liu Xing Bing Xue Za Zhi 2017, 38, 1528–1532. [Google Scholar]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Z.; Wang, S.; Hu, J.; Xiao, J.; Li, X.; Liu, T.; Zeng, W.; Guo, L.; Du, Q.; et al. Morbidity burden of respiratory diseases attributable to ambient temperature: A case study in a subtropical city in China. Environ. Health 2019, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-M.; Lemanske, R.F.; Evans, M.D.; Vang, F.; Pappas, T.; Gangnon, R.; Jackson, D.J.; Gern, J.E. Human rhinovirus species and season of infection determine illness severity. Am. J. Respir. Crit. Care Med. 2012, 186, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, G.C.; Goldring, J.J.; Wedzicha, J.A. Influence of season on exacerbation characteristics in patients with COPD. Chest 2012, 141, 94–100. [Google Scholar] [CrossRef]
- Matkovic, V.; Mulić, M.; Azabagić, S.; Jevtić, M. Premature Adult Mortality and Years of Life Lost Attributed to Long-Term Exposure to Ambient Particulate Matter Pollution and Potential for Mitigating Adverse Health Effects in Tuzla and Lukavac, Bosnia and Herzegovina. Atmosphere 2020, 11, 1107. [Google Scholar] [CrossRef]
- Qiu, H.; Tan, K.; Long, F.; Wang, L.; Yu, H.; Deng, R.; Long, H.; Zhang, Y.; Pan, J. The burden of COPD morbidity attributable to the interaction between ambient air pollution and temperature in Chengdu, China. Int. J. Environ. Res. Public Health 2018, 15, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, G.B.; Dominici, F.; Wang, Y.; McCormack, M.C.; Bell, M.L.; Peng, R.D. Heat-related emergency hospitalizations for respiratory diseases in the Medicare population. Am. J. Respir. Crit. Care Med. 2013, 187, 1098–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, G.P.; Yardley, J.; Brown, C.; Sigal, R.J.; Jay, O. Heat stress in older individuals and patients with common chronic diseases. CMAJ 2010, 182, 1053–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepeule, J.; Litonjua, A.A.; Gasparrini, A.; Koutrakis, P.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Lung function association with outdoor temperature and relative humidity and its interaction with air pollution in the elderly. Environ. Res. 2018, 165, 110–117. [Google Scholar] [CrossRef]
- Wu, S.; Deng, F.; Hao, Y.; Wang, X.; Zheng, C.; Lv, H.; Lu, X.; Wei, H.; Huang, J.; Qin, Y.; et al. Fine particulate matter, temperature, and lung function in healthy adults: Findings from the HVNR study. Chemosphere 2014, 108, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Lowen, A.C.; Steel, J. Roles of humidity and temperature in shaping influenza seasonality. J. Virol. 2014, 88, 7692–7695. [Google Scholar] [CrossRef] [Green Version]
- Ding, P.H.; Wang, G.S.; Guo, Y.L.; Chang, S.C.; Wan, G.H. Urban air pollution and meteorological factors affect emergency department visits of elderly patients with chronic obstructive pulmonary disease in Taiwan. Environ. Pollut. 2017, 224, 751–758. [Google Scholar] [CrossRef]
- Chen, R.; Peng, R.D.; Meng, X.; Zhou, Z.; Chen, B.; Kan, H. Seasonal variation in the acute effect of particulate air pollution on mortality in the China Air Pollution and Health Effects Study (CAPES). Sci. Total Environ. 2013, 450–451, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogdanović, D.; Milošević, Z.; Lazarević, K.K.; Dolicanin, Z.C.; Ranđelović, D.; Bogdanović, S. The impact of the July 2007 heat wave on daily mortality in Belgrade, Serbia. Cent. Eur. J. Public Health 2013, 21, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanobetti, A.; O’Neill, M.S.; Gronlund, C.J.; Schwartz, J.D. Summer temperature variability and long-term survival among elderly people with chronic disease. Proc. Natl. Acad. Sci. USA 2012, 109, 6608–6613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, A.; Carvalho, V.; Oliveira, T.; Sousa, C. Excess mortality and morbidity during the July 2006 heat wave in Porto, Portugal. Int. J. Biometeorol. 2012, 57, 155–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga, A.L.; Zanobetti, A.; Schwartz, J. The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environ. Health Perspect. 2002, 110, 859–863. [Google Scholar] [CrossRef]
- Åström, D.O.; Schifano, P.; Asta, F.; Lallo, A.; Michelozzi, P.; Rocklöv, J.; Forsberg, B. The effect of heat waves on mortality in susceptible groups: A cohort study of a Mediterranean and a northern European City. Environ. Health 2015, 14, 30. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Luo, M.; Walker, R.J.; Liu, X.; Hwang, S.A.; Chinery, R. Extreme high temperatures and hospital admissions for respiratory and cardiovascular diseases. Epidemiology 2009, 20, 738–746. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, Z.; Bambrick, H.; Prescott, V.; Wang, N.; Zhang, Y.; Su, H.; Tong, S.; Hu, W. Cardiorespiratory effects of heatwaves: A systematic review and metaanalysis of global epidemiological evidence. Environ. Res. 2019, 177, 108610. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, Z.; Bambrick, H.; Su, H.; Tong, S.; Hu, W. Heatwave and elderly mortality: An evaluation of death burden and health costs considering short-term mortality displacement. Environ. Int. 2018, 115, 334–342. [Google Scholar] [CrossRef]
- Witt, C.; Schubert, J.A.; Jehn, M.; Holzgreve, A.; Liebers, U.; Endlicher, W.; Scherer, D. The effects of climate change on patients with chronic lung disease—a systematic literature review. Dtsch. Arztebl. Int. 2015, 112, 878–883. [Google Scholar] [CrossRef] [Green Version]
- Vutcovici, M.; Goldberg, M.S.; Valois, M.F. Effects of diurnal variations in temperature on non-accidental mortality among the elderly population of Montreal, Quebec, 1984–2007. Int. J. Biometeorol. 2014, 58, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.H.; Hong, Y.C.; Kim, H. Effects of diurnal temperature range on cardiovascular and respiratory hospital admissions in Korea. Sci. Total Environ. 2012, 417–418, 55–60. [Google Scholar] [CrossRef]
- Lim, Y.H.; Reid, C.E.; Mann, J.K.; Jerrett, M.; Kim, H. Diurnal temperature range and short-term mortality in large US communities. Int. J. Biometeorol. 2015, 59, 1311–1319. [Google Scholar] [CrossRef]
- Lee, W.-H.; Lim, Y.-H.; Dang, T.N.; Seposo, X.; Honda, Y.; Guo, Y.-L.L.; Jang, H.-M.; Kim, H. An investigation on attributes of ambient temperature and diurnal temperature range on mortality in five East-Asian countries. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Li, L.; Xin, L.; Pi, F.; Dong, W.; Wen, Y. High diurnal temperature range and mortality: Effect modification by individual characteristics and mortality causes in a case-only analysis. Sci. Total Environ. 2015, 544, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Chen, G.; Jiang, L.; Zhang, Y.; Zhao, N.; Chen, B.; Kan, H. Diurnal temperature range as a novel risk factor for COPD death. Respirology 2008, 13, 1066–1069. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhao, Y.; Zhou, J.; Jiang, Y.; Yang, S.; Yu, Z. The relationship between diurnal temperature range and COPD hospital admissions in Changchun, China. Environ. Sci. Pollut. Res. 2018, 25, 17942–17949. [Google Scholar] [CrossRef]
- Zhou, X.F.; Yu, S.Y.; Ruan, X.N.; Yang, L.M.; Geng, F.H.; Zhou, Y.; Qiu, H.; Wu, K.; Song, Z.W.; Wang, X.N.; et al. Effect of meteorological factors on outpatient visits in patients with chronic obstructive pulmonary disease. J. Environ. Occup. Med. 2015, 08, 711–716. [Google Scholar]
- Kim, J.; Shin, J.; Lim, Y.-H.; Honda, Y.; Hashizume, M.; Guo, Y.L.; Kan, H.; Yi, S.; Kim, H. Comprehensive approach to understand the association between diurnal temperature range and mortality in East Asia. Sci. Total Environ. 2016, 539, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiang, Q.; Yu, Y.; Zhan, Z.; Hu, K.; Ding, Z. Socio-geographic disparity in cardiorespiratory mortality burden attributable to ambient temperature in the United States. Environ. Sci. Pollut. Res. 2019, 26, 694–705. [Google Scholar] [CrossRef]
- Yang, J.; Yin, P.; Zhou, M.; Ou, C.-Q.; Li, M.; Li, J.; Liu, X.; Gao, J.; Liu, Y.; Qin, R.; et al. The burden of stroke mortality attributable to cold and hot ambient temperatures: Epidemiological evidence from China. Environ. Int. 2016, 92–93, 232–238. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, Z.; Bambrick, H.; Su, H.; Tong, S.; Hu, W. Impacts of exposure to ambient temperature on burden of disease: A systematic review of epidemiological evidence. Int. J. Biometeorol. 2019, 63, 1099–1115. [Google Scholar] [CrossRef]
- Đonović, N.; Vasiljević, D.; Stepović, M.; Milojević, D.; Gajić, V.; Stajić, D.; Sekulić, M. Effects of meteorological conditions on mortality from chronic obstructive pulmonary disease. Srp. Arh. Celok. Lek. 2020, 148, 436–439. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Garduño, E.; Garduño-Alanís, A.; Santamaría-Benhumea, A.M.; Santamaría-Benhumea, N.; Meneses-Calderón, J.; Herrera-Villalobos, J.E. Climate change, air pollution, and COPD outcomes: Too many factors to be considered, even barometric pressure! Chest 2013, 144, 1731. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Saito, J.; Suzuki, Y.; Uematsu, M.; Fukuhara, A.; Togawa, R.; Sato, Y.; Misa, K.; Nikaido, T.; Wang, X.; et al. Association between typhoon and asthma symptoms in Japan. Respir. Investig. 2016, 54, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Ehelepola, N.D.B.; Ariyaratne, K.; Jayaratne, A. The association between local meteorological changes and exacerbation of acute wheezing in Kandy, Sri Lanka. Glob. Health Action 2018, 11, 1482998. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.; Patel, K.; Reardon, J.Z.; Goldstein, M.; Godar, T.J.; ZuWallack, R.L. The influence of spring and summer New England meteorologic conditions on the respiratory status of patients with chronic lung disease. Chest 1993, 103, 1369–1374. [Google Scholar] [CrossRef]
- Ferrari, U.; Exner, T.; Wanka, E.R.; Bergemann, C.; Meyer-Arnek, J.; Hildenbrand, B.; Tufman, A.; Heumann, C.; Huber, R.M.; Bittner, M.; et al. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany. Int. J. Biometeorol. 2012, 56, 137–143. [Google Scholar] [CrossRef]
- Schwarz, T.; Schwarz, A. Molecular mechanisms of ultraviolet radiation-induced immunosuppression. Eur. J. Cell Biol. 2010, 90, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Kokturk, N.; Baha, A.; Oh, Y.M.; Ju, J.Y.; Jones, P.W. Vitamin D deficiency: What does it mean for chronic obstructive pulmonary disease (COPD)? A comprehensive review for pulmonologists. Clin. Respir. J. 2018, 12, 382–397. [Google Scholar] [CrossRef] [Green Version]
- Hart, P.H.; Gorman, S.; Finlay-Jones, J.J. Modulation of the immune system by UV radiation: More than just the effects of vitamin D? Nat. Rev. Immunol. 2011, 11, 584–596. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.C.; Chan, E.Y.; Goggins, W.B. Comparison of short-term associations with meteorological variables between COPD and pneumonia hospitalization among the elderly in Hong Kong—A time-series study. Int. J. Biometeorol. 2018, 62, 1447–1460. [Google Scholar] [CrossRef]
- Soneja, S.; Jiang, C.; Fisher, J.; Upperman, C.R.; Mitchell, C.; Sapkota, A. Exposure to extreme heat and precipitation events associated with increased risk of hospitalization for asthma in Maryland, USA. Environ. Health 2016, 15, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amato, G.; Holgate, S.T.; Pawankar, R.; Ledford, D.K.; Cecchi, L.; Al-Ahmad, M.; Al-Enezi, F.; Al-Muhsen, S.; Ansotegui, I.; Baena-Cagnani, C.E.; et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ. J. 2015, 8, 1–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, A.D.; Alves Fernandes, W.; Pavão Hamilton, G.; Lastoria, G.; Albrez, E.D.A. Potential impacts of climate variability on respiratory morbidity in children, infants, and adults. J. Bras. Pneumol. 2012, 38, 708–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, E.-J.; Lee, W.-S.; Jo, H.-Y.; Kim, C.-H.; Eom, J.-S.; Mok, J.-H.; Kim, M.-H.; Lee, K.; Kim, K.-U.; Lee, M.-K.; et al. Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan, Korea. Respir. Med. 2017, 124, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rea, H.; McAuley, S.; Jayaram, L.; Garrett, J.; Hockey, H.; Storey, L.; O’Donnell, G.; Haru, L.; Payton, M.; O’Donnell, K. The clinical utility of long-term humidification therapy in chronic airway disease. Respir. Med. 2010, 104, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.E.; McGregor, G.R.; Enfield, K.B. Humidity: A review and primer on atmospheric moisture and human health. Environ. Res. 2016, 144, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Yang, C.; Zhou, Z.; Wu, Z.T.; Pan, X.C.; Clements, A.C.A. Spatial patterns and effects of air pollution and meteorological factors on hospitalization for chronic lung diseases in Beijing, China. Sci. China Life Sci. 2019, 62, 1381–1388. [Google Scholar] [CrossRef]
- Jevtić, M.; Dragić, N.; Bijelović, S.; Popović, M. Air pollution and hospital admissions for chronic obstructive pulmonary disease in Novi Sad. HealthMED 2012, 6, 1207–1215. [Google Scholar]
- Steel, J.; Palese, P.; Lowen, A.C. Transmission of a 2009 pandemic influenza virus shows a sensitivity to temperature and humidity similar to that of an H3N2 seasonal strain. J. Virol. 2011, 85, 1400–1402. [Google Scholar] [CrossRef] [Green Version]
- Lowen, A.C.; Mubareka, S.; Steel, J.; Palese, P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007, 3, 1470–1476. [Google Scholar] [CrossRef]
- Shaman, J.; Kohn, M. Absolute humidity modulates influenza survival, transmission, and seasonality. Proc. Natl. Acad. Sci. USA 2009, 106, 3243–3248. [Google Scholar] [CrossRef] [Green Version]
- Arnold, F.W.; Mahmood, K.; Prabhu, A.; Aden, D.; Raghuram, A.; Burns, M.; Beavin, L.A.; Chung, D.; Palmer, K.E.; Ramirez, J.A. COPD exacerbation caused by SARS-CoV-2: A case report from the Louisville COVID-19 surveillance program. Univ. Louisville J. Respir. Infect. 2020, 4, 5. [Google Scholar] [CrossRef]
- Bolaño-Ortiz, T.; Pascual-Flores, R.; Puliafito, S.; Camargo-Caicedo, Y.; Berná-Peña, L.; Ruggeri, M.; Lopez-Noreña, A.; Tames, M.; Cereceda-Balic, F. Spread of COVID-19, Meteorological Conditions and Air Quality in the City of Buenos Aires, Argentina: Two Facets Observed during Its Pandemic Lockdown. Atmosphere 2020, 11, 1045. [Google Scholar] [CrossRef]
- Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature, humidity and latitude analysis to predict potential spread and seasonality for COVID-19. SSRN 3550308 [Preprint] 2020. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jing, W.; Liu, J.; Ma, Q.; Yuan, J.; Wang, Y.; Du, M.; Liu, M. Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Sci. Total Environ. 2020, 729, 139051. [Google Scholar] [CrossRef]
- Ahmadi, M.; Sharifi, A.; Dorosti, S.; Jafarzadeh Ghoushchi, S.; Ghanbari, N. Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Sci. Total Environ. 2020, 729, 138705. [Google Scholar] [CrossRef] [PubMed]
Study | Number of Participants | Gender | The Mean Age | Observed Period | Daily Average Temperature (±SD) | Study Design | Adjustment ** | Main Findings |
---|---|---|---|---|---|---|---|---|
Lin et al., 2018 [5] Changhua County, Taiwan | No = 277 hospitalized patients due to AECOPD | 240 males 37 females | 75.3 ± 9.3 years | 2011–2015 | October to March 19.36 °C (±3.64) | case-crossover study | RH, BP, NO2, CO, SO2, PM10, PM2.5, O3 | During the cooling-down season, the exacerbation likely occurred on days of temperature decrease; a decrease by 1 °C with the 95% CI of OR of 0.68−0.88 and p < 0.001. No significant differences in age and gender were noted (all p > 0.05). |
Huang et al., 2015 [6] Shanghai, China | No = 31.092 outpatient visits due to acute exacerbation of chronic bronchitis (AECB) * | no data | no data | 1 January 2010 to 31 December 2011 | 17 °C | time-series study | NO2, SO2, PM10, RH, day of the week, sex, age | The RR for outpatients visits due to AECB at extreme cold (first percentiles of temperature throughout the study period) and cold (10th percentile of temperature) temperature over lags 0–14 days were 2.98 (95% CI: 1.77, 5.04) and 1.63 (95% CI: 1.21, 2.19), compared with the 25th percentile of temperature. The between-gender difference was statistically insignificant. For extreme cold temperature, the association among residents ≥ 65 years of age has a 2-fold bigger effect than those with 0–65 years of age. However, the difference was statistically insignificant across age subgroups for cold temperature. |
de Miguel- Díez et al., 2019 [7] Spain | No = 162.338 hospitalized patients due to AECOPD | 83.5% males 16.5% females | 75.1 ± 10.76 years | 1 January 2004 to 31 December 2013 | no data | case-crossover study | RH, NO2, O3, PM10, CO | AECOPD admissions were less common in the second and third quarter of the year, and more abundant in the last and first quarter of the year. A similar pattern was found in COPD exacerbation -related death. Lower temperatures significantly increased the incidence of hospitalization (OR after 1 week lag was 0.99 (95% CI 0.98 to 0.99), p < 0.001) due to AECOPD. |
Almagro et al., 2015 [11] Barcelona, Spain | No = 9.804 hospitalized patients due to AECOPD | 75.4% males 24.6% females | 74.9 ± 10.5 years | January to December of 2009 | 13.7 °C (±6.2) | population-based study | RH, comorbidity, air pollution, influenza-like illness | For each degree Celsius decrease in mean weekly temperature, hospital admissions increased by 5.04% (B, −9.5, 95% CI −11.7, −7.3, r2 = 0.591; p < 0.001). After adjustment for humidity, comorbidity, air pollution, and influenza-like illness, only mean temperatures retained statistical significance, with a mean increase of 4.7% in weekly admissions for each degree Celsius of temperature (r2 = 0.599; p < 0.001). |
Tseng et al., 2013 [17] Taiwan | No = 16.254 hospitalized patients due to AECOPD and outpatients’ visits | 77.4% males 22.6% females | 75.5 ± 10.2 years | 1999–2009 | winter months 17.9 ± 3.3 °C summer months 28.4 ± 1.5 °C | case-crossover study | RH, BP, WS, duration of sunshine and rainfall days | A 1 °C decrease in temperature was linked with a 0.8% increase for AECOPD admission on event-days (OR, 1.008, 95% CI: 1.015–1.138, p = 0.015). A decrease of 5 °C in mean temperature was significantly correlated with increased numbers of exacerbations from event-days (OR, 1.039, 95% CI 1.007–1.071, p = 0.015) to 28 days (OR, 1.106, 95% CI 1.063–1.152, p < 0.001). The association between a mean temperature decrease of 5 °C and an increased rate of COPD exacerbation was more significant in the elderly (≥65 years). |
Study | Number of Participants Hospitalized due to the AECOPD | Gender Distribution | Age Distribution | Observed Period | Daily Average Temperature (±SD) | Study Design | Adjustment ** | Main Findings |
---|---|---|---|---|---|---|---|---|
Zhao et al., 2019 [2] Brazil (1642 cities) | No = 523.307 | 46% females 54% males | median age 65 years (IQR: 57–77 years) | 2000–2015; hot season | 25.0 °C ± 2.8 °C | case-crossover study | sex, age, socioeconomic status, RH | The OR of hospitalization due to AECOPD was 1.05 (95% CI 1.04 to 1.06) for every 5 °C increase in daily mean temperature. The effect was similar in women and in men but was greatest for those aged ≥75 years. |
Lin et al., 2018 [5] Changhua County, Taiwan | No = 277 | 240 males 37 females | the mean age was 75.3 ± 9.3 years | 2011–2015 | April to September 27.02 °C (±2.78) | case-crossover study | RH, BP, NO2, CO, SO2, PM10, PM2.5, O3 | During the warming-up season, COPD exacerbation more likely occurred on days of temperature increase; an increase by 1 °C with 95% CI of OR of 1.73−3.25, and corresponding p of <0.001. No significant differences in age and gender were noted (all p > 0.05). |
Anderson et al., 2013 [26] USA (213 counties) | No = 385.063 | 499,373 males 642,085 females | 65–74 years 358,830 75–84 years 468,002 >85 years 314,626 | 1999–2008; May to September | differs from counties from 12.7 °C to 35 °C | observational study | O3, PM10, PM2.5, sex, age, seasonality, long-term trends | The risk of COPD hospitalization for the elderly (≥65 years) increased by 4.7% for every 5.6 ℃ rise in daily mean temperature in summer. No significant difference was found in respiratory susceptibility to heat by either age or sex. |
Monteiro et al., 2012 [34] Porto, Portugal | No = 24 | 13 females 11 males | no data | 11–18 July 2006 | from 29 °C to 37 °C | observational study | O3, PM10 | For a 1 °C increase in apparent temperature, a 5.4% increase in COPD hospital admissions was observed (RR, 1.054, 95% CI 0.989–1.066, p = 0.006). A statistically significant admissions’ excess for COPD of 7.5 % was found for women of the entire population (RR, 1.075, 95% CI 1.013–1.141, p = 0.018), and 9.0 % (RR, 1.090, 95% CI 1.003–1.185, p = 0.042) for women older than 75 years. For people ≥75 years, an increase in COPD admissions of 7.0 % (RR, 1.070, 95 % CI: 1.011–1.132, p = 0.019) was found. |
Lin et al., 2009 [37] New York City, USA | No = 29.315 | no data | no data | 1991–2004; June, July, August | Staten Island, LGA 24.0 °C (±3.4) JFK 22.8 °C (±3.1) | time-series study | O3, PM10, PM2.5, NO2, CO, SO2, BP, day of week, holidays, long-term trend, race, age, sex, family income | For each 1 °C increase in daily mean apparent temperature above 32 °C, the risk of COPD admission increased by 8% over a lag of 0–3 days. Those over 75 years had a higher ratio of respiratory disease admissions (4.7%) compared with younger age groups, as well as females (3.8%) compared to males (2.35%). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javorac, J.; Jevtić, M.; Živanović, D.; Ilić, M.; Bijelović, S.; Dragić, N. What Are the Effects of Meteorological Factors on Exacerbations of Chronic Obstructive Pulmonary Disease? Atmosphere 2021, 12, 442. https://doi.org/10.3390/atmos12040442
Javorac J, Jevtić M, Živanović D, Ilić M, Bijelović S, Dragić N. What Are the Effects of Meteorological Factors on Exacerbations of Chronic Obstructive Pulmonary Disease? Atmosphere. 2021; 12(4):442. https://doi.org/10.3390/atmos12040442
Chicago/Turabian StyleJavorac, Jovan, Marija Jevtić, Dejan Živanović, Miroslav Ilić, Sanja Bijelović, and Nataša Dragić. 2021. "What Are the Effects of Meteorological Factors on Exacerbations of Chronic Obstructive Pulmonary Disease?" Atmosphere 12, no. 4: 442. https://doi.org/10.3390/atmos12040442
APA StyleJavorac, J., Jevtić, M., Živanović, D., Ilić, M., Bijelović, S., & Dragić, N. (2021). What Are the Effects of Meteorological Factors on Exacerbations of Chronic Obstructive Pulmonary Disease? Atmosphere, 12(4), 442. https://doi.org/10.3390/atmos12040442