Possible Associations between Space Weather and the Incidence of Stroke
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Environmental Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cornelissen, G.; Halberg, F.; Breus, T.; Syutkina, E.V.; Baevsky, R.; Weydahl, A.; Watanabe, Y.; Otsuka, K.; Siegelova, J.; Fiser, B.; et al. Non-photic solar associations of heart rate variability and myocardial infarction. J. Atmos. Sol.-Terr. Phys. 2002, 64, 707–720. [Google Scholar] [CrossRef]
- Palmer, S.J.; Rycroft, M.J.; Cermack, M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv. Geophys. 2006, 27, 557–595. [Google Scholar] [CrossRef]
- Breus, T.K.; Baevskii, R.M.; Chernikova, A.G. Effects of geomagnetic disturbances on humans functional state in space flight. J. Biomed. Sci. Eng. 2012, 5, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Caswell, J.M.; Singh, M.; Persinger, M.A. Simulated sudden increase in geomagnetic activity and its effect on heart rate variability: Experimental verification of correlation studies. Life Sci. Space Res. 2016, 10, 47–52. [Google Scholar] [CrossRef]
- Zilli Vieira, C.L.; Alvares, D.; Blomberg, A.; Schwartz, J.; Coull, B.; Huang, S.; Koutrakis, P. Geomagnetic disturbances driven by solar activity enhance total and cardiovascular mortality risk in 263 U.S. cities. Environ. Health 2019, 18, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrova, S.; Stoilova, I.; Cholakov, I. Influence of local geomagnetic storms on arterial blood pressure. Bioelectromagnetics 2004, 25, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Pikin, D.A.; Gurfinkel, I.I.; Oraevskii, V.N. Effect of geomagnetic disturbances on the blood coagulation system in patients with ischemic heart disease and prospects for correction medication. Biofizika 1998, 43, 617–622. (In Russian) [Google Scholar]
- Stoupel, E.; Abramson, E.; Israelevich, P.; Sulkes, J.; Harell, D. Dynamics of serum C-reactive protein (CRP) level and cosmophysical activity. Eur. J. Int. Med. 2007, 18, 124–128. [Google Scholar] [CrossRef]
- Watanabe, Y.; Cornellissen, G.; Halberg, F.; Otsuka, K.; Ohkawa, S.I. Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity. Biomed. Pharm. 2001, 55 (Suppl. 1), 76–83. [Google Scholar] [CrossRef]
- Weydahl, A.; Sothern, R.B.; Cornellissen, G.; Wetterburg, L. Geomagnetic activity influences the melatoninsecretion at 70 degrees N. Biomed. Pharmocother. 2001, 55 (Suppl. 1), 57–62. [Google Scholar] [CrossRef]
- Stoupel, E. The effect of geomagnetic activity on cardiovascular parameters. Biomed. Pharm. 2002, 56, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Stoupel, E.; Kusniec, J.; Golovchiner, G.; Abramson, E.; Kadmon, U.; Strasberg, B. Association of Time of Occurrence of Electrical Heart Storms with Environmental Physical Activity. Pacing Clin. Electrophysiol. 2014, 37, 1067–1070. [Google Scholar] [CrossRef] [PubMed]
- Kirschvink, J.L.; Jones, D.S.; MacFadden, B.J. Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Binhi, V.N.; Prato, F.S. Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLoS ONE 2017, 12, e0179340. [Google Scholar] [CrossRef]
- Binhi, V.N.; Prato, F.S. Rotations of macromolecules affect nonspecific biological responses to magnetic fields. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Vencloviene, J.; Radisauskas, R.; Vaiciulis, V.; Kiznys, D.; Bernotiene, G.; Kranciukaite-Butylkiniene, D.; Tamosiunas, A. Associations between Quasi-biennial Oscillation phase, solar wind, geomagnetic activity, and the incidence of acute myocardial infarction. Int. J. Biometeorol. 2020, 64, 1207–1220. [Google Scholar] [CrossRef]
- Stoupel, E.; Martfel, J.N.; Rotenberg, Z. Paroxysmal atrial fibrillationand stroke (cerebrovascular accidents) in males and females above and below age 65 on days of different geomagnetic activity level. J. Basic Clin. Physiol. Pharm. 1994, 5, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Villoresi, G.; Breus, T.K.; Dorman, L.I.; Iuchi, N.; Rapoport, S.I. Effect of interplanetary and geomagnetic disturbances on the increase in number of clinically serious medical pathologies (myocardial infarct and stroke). Biofizika 1995, 40, 983–993. [Google Scholar] [PubMed]
- Gurfinkel, I.I.; Kuleshova, V.P.; Oraevskiĭ, V.N. Assessment of the effect of a geomagnetic storm on the frequency of appearance of acute cardiovascular pathology. Biofizika 1998, 43, 654–658. (In Russian) [Google Scholar]
- Shaposhnikov, D.; Revich, B.; Gurfinkel, Y.; Naumova, E. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia. Int. J. Biometeorol. 2013, 58, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Nikitin, Y.P.; Vinogradova, T.E. Solar and geomagnetic activities: Are there associations with stroke occurrence? A population-based study in Siberia, Russia (1982–1992). Cerebrovasc. Dis. 1997, 7, 345–348. [Google Scholar] [CrossRef]
- Feigin, V.L.; Parmar, P.G.; Barker-Collo, S.; Derrick, A.; Bennett, D.A.; Anderson, C.S.; Thrift, A.G.; Stegmayr, B.; Rothwell, P.M.; Giroud, M.; et al. Geomagnetic Storms Can Trigger Stroke Evidence From 6 Large Population-Based Studies in Europe and Australasia. Stroke 2014, 45, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Stoupel, E.; Zhemaityte, D.; Drungiliene, D.; Martinkenas, A.; Abramson, E.; Sulkes, J. Klaipėda cardiovascular emergency aid services correlate with 10 cosmophysical parameters by time of occurrence. J. Clin. Basic Cardiol. 2002, 5, 225–227. [Google Scholar]
- Kleimenova, N.G.; Kozyreva, O.V.; Rapoport, S.I. Pc1 Geomagnetic Pulsations as a Potential Hazard of the Myocardial Infarction. J. Atmos. Sol.-Terr. Phys. 2007, 69, 1759–1764. [Google Scholar] [CrossRef]
- Zenchenko, T.; Poskotinova, L.V.; Rekhtina, A.G.; Zaslavskaya, R.M. Relation between Microcirculation Parameters and Pc3 Geomagnetic Pulsations. Biophysics 2010, 55, 646–651. [Google Scholar] [CrossRef]
- Babayev, E.S.; Crosby, N.B.; Obridko, V.N.; Rycroft, R.J. Potential effects of solar and geomagnetic variability on terrestrial biological systems. In Advances in Solar and Solar-Terrestrial Physics; Georgeta, M., Crisan, D., Eds.; Research Signpost: Thiruvananthapuram, India, 2012; pp. 329–376. [Google Scholar]
- Vencloviene, J.; Babarskiene, R.; Slapikas, R.; Sakalyte, G. The association between phenomena on the sun, geomagnetic activity, meteorological variables, and cardiovascular characteristic of patients with myocardial infarction. Int. J. Biometeorol. 2013, 57, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Podolska, K. The Impact of Ionospheric and Geomagnetic Changes on Mortality from Diseases of the Circulatory System. J. Stroke Cerebrovasc. Dis. 2018, 27, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Kiznys, D.; Vencloviene, J.; Milvidaite, I. The associations of geomagnetic storms, fast solar wind, and stream interaction regions with cardiovascular characteristic in patients with acute coronary syndrome. Life Sci. Space Res. 2020, 25, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Giannaropoulou, E.; Papailiou, M.; Mavromichalaki, H.; Gigolashvili, M.; Tvildiani, L.; Janashia, K.; Preka-Papadema, P.; Papadima, T. A study on the various types of arrhythmias in relation to the polarity reversal of the solar magnetic field. Nat. Hazards 2014, 70, 1575–1587. [Google Scholar] [CrossRef]
- Vencloviene, J.; Babarskiene, R.M.; Kiznys, D. A possible association between space weather conditions and the risk of acute coronary syndrome in patients with diabetes and the metabolic syndrome. Int. J. Biometeorol. 2017, 61, 159–167. [Google Scholar] [CrossRef]
- McCraty, R.; Atkinson, M.; Stolc, V.; Alabdulgader, A.; Vainoras, A.; Ragulskis, M. Synchronization of human autonomic nervous system rhythms with geomagnetic activity in human subjects. Int. J. Environ. Res. Public Health 2017, 14, 770. [Google Scholar] [CrossRef] [Green Version]
- WHO MONICA Project, MONICA Manual, Part IV: Event Registration, Section 2: Stroke Event Registration Data Component. 1990. Available online: http://www.ktl.fi/publications/monica/manual/part4/iv-2.htm (accessed on 4 March 2021).
- Radisauskas, R.; Malinauskiene, V.; Milinaviciene, E.; Kranciukaite-Butylkiniene, D.; Tamosiunas, A.; Bernotiene, G.; Luksiene, D.; Milasauskiene, Z.; Sopagiene, D.; Rastenyte, D. Trends in the Attack Rates, Incidence, and Mortality of Stroke during 1986-2012: Data of Kaunas (Lithuania) Stroke Registry. PLoS ONE 2016, 11, e0153942. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, F.J.G.; Barata, M.T.; Fernandes, J.M. Comparison of Space Weather Services: Information Systems, Activity and Forecasts. J. Comp. Int. Sci. 2016, 7, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Peng, R.D.; Dominci FBaltimore, M.D. Statistical Methods for Environmental Epidemiology with R: A Case Study of Air Pollution and Health; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Vencloviene, J.; Radisauskas, R.; Kranciukaite-Butylkiniene, D.; Tamosiunas, A.; Vaiciulis, V.; Rastenyte, D. Association between stroke occurrence and changes in atmospheric circulation. BMC Public Health 2021, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Richardson, I.G.; Cane, H.V. Near-Earth Interplanetary Coronal Mass Ejections during Solar Cycle 23 (1996–2009): Catalog and Summary of Properties. Solar Physics. Sol. Phys. 2010, 264, 189–273. [Google Scholar] [CrossRef]
- Stoupel, E.; Petrauskiene, J.; Abramson, E.; Kalediene, R.; Sulkes, J. Distribution of monthly deaths, solar (SA) and geomagnetic (GMA) activity: Their interrelationship in the last decade of the second millennium: The Lithuanian study 1990–1999. Biomed. Pharm. 2002, 56, 301–308. [Google Scholar] [CrossRef]
- Stoupel, E.; Abramson, J.; Domarkiene, S.; Shimshoni, M.; Sulkes, J. Space proton flux and the temporal distribution of cardiovascular deaths. Int. J. Biometeorol. 1997, 40, 113–116. [Google Scholar] [CrossRef]
- Seppälä, A.; Verronen, P.T.; Sofieva, V.F.; Tamminen, J.; Kyrölä, E.; Rodger, C.J.; Clilverd, M.A. Destruction of the tertiary ozone maximum during a solar proton event. Geophys. Res. Lett. 2006, 33, L07804. [Google Scholar] [CrossRef] [Green Version]
- Veretenenko, S.V.; Tejll, P. Solar proton events and evolution of cyclones in the North Atlantic. Geomagn. Aeron. 2008, 48, 518–528. [Google Scholar] [CrossRef]
- Lian, H.; Ruan, Y.; Liang, R.; Liu, X.; Fan, Z. Short-Term Effect of Ambient Temperature and the Risk of Stroke: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2015, 12, 9068–9088. [Google Scholar] [CrossRef] [PubMed]
- Buxton, N.; Liu, C.; Dasic, D.; Moody, P.; Hope, D.T. Relationship of aneurysmal subarachnoid hemorrhage to changes in atmospheric pressure: Results of a prospective study. J. Neurosurg. 2001, 95, 391–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setzer, M.; Beck, J.; Hermann, E.; Raabe, A.; Seifert, V.; Vatter, H.; Marquardt, G. The influence of barometric pressure changes and standard meteorological variables on the occurrence and clinical features of subarachnoid hemorrhage. Surg. Neurol. 2007, 67, 264–272. [Google Scholar] [CrossRef]
- Jimez-Conde, J.; Ois, A.; Gomis, M.; Campello, A.R.; Godia, E.C.; Subirana, I.; Roquer, J. Weather as a Trigger of Stroke. Daily meteorological factors and incidence of stroke subtypes. Cerebrovasc. Dis. 2008, 26, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Van Donkelaar, C.E.; Potgieser, A.R.; Groen, H.; Foumani, M.; Abdulrahman, H.; Sluijter, R.; van Dijk, J.M.C.; Groen, R.J. Atmospheric Pressure Variation is a Delayed Trigger for Aneurysmal Subarachnoid Hemorrhage. World Neurosurg. 2018, 112, e783–e790. [Google Scholar] [CrossRef] [PubMed]
- Cherry, N. Schumann Resonances, a plausible biophysical mechanism for the human health effects of Solar/Geomagnetic Activity. Nat. Hazards 2002, 26, 279–331. [Google Scholar] [CrossRef]
- Roldugin, V.C.; Maltsev, Y.P.; Vasiljev, A.N.; Schokotov, A.Y.; Belyajev, G.G. Schumann resonance frequency increase during solar X-ray bursts. J. Geophys. Res. 2004, 108. [Google Scholar] [CrossRef]
Sex/Groups | Total | SAH | ICH | HS (SAH + ICH) | IS | Other |
---|---|---|---|---|---|---|
All, n (%) | 9277 (100.0/100.0) | 597 (6.4) | 1147 (12.4) | 1744 (18.8) | 7482 (80.7) | 51 (0.5) |
Men, n (%) | 5230 (56.4/100.0) | 281 (5.3) | 631 (12.1) | 912 (17.4) | 4294 (82.1) | 24 (0.5) |
Women, n (%) | 4047 (43.6/100.0) | 316 (7.8) | 516 (12.7) | 832 (20.5) | 3188 (78.8) | 27 (0.7) |
Variable | N | SAH | ICH | HS | IS | All Types |
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | ||
The effects of geomagnetic activity level defined by the Ap index | ||||||
Ap = 0 | 49 | 0.12 (0.3) | 0.33 (0.5) | 0.45 (0.6) | 1.04 (0.9) | 1.49 (1.0) |
0 < Ap < 30 | 8346 | 0.06 (0.3) | 0.12 (0.4) | 0.19 (0.4) | 0.82 (0.9) | 1.01 (1.0) |
Minor GS (30 ≤ Ap < 50) | 504 | 0.05 (0.2) | 0.13 (0.4) | 0.19 (0.4) | 0.83 (0.9) | 1.02 (1.0) |
Major GS (50 ≤ Ap < 100) | 186 | 0.08 (0.3) | 0.15 (0.4) | 0.23 (0.5) | 0.86 (0.9) | 1.09 (1.0) |
Severe GS (Ap ≥ 100) | 46 | 0.17 (0.4) | 0.17 (0.4) | 0.35 (0.5) | 0.78 (0.9) | 1.13 (1.1) |
p | 0.023 | 0.002 | <0.001 | 0.485 | 0.015 | |
The effects of GS, defined by 3-h Kp index (days of Ap = 0 excluded) | ||||||
All 3-h Kp < 5 | 8359 | 0.07 (0.3) | 0.13 (0.4) | 0.19 (0.4) | 0.82 (0.9) | 1.02 (1.0) |
Minor GS * (Kp = 5) | 1103 | 0.06 (0.3) | 0.12 (0.3) | 0.18 (0.4) | 0.82 (0.9) | 1.01 (1.0) |
Moderate GS * (Kp = 6) | 450 | 0.05 (0.3) | 0.13 (0.4) | 0.18 (0.4) | 0.82 (0.9) | 0.99 (1.0) |
Strong/severe GS * (Kp ≥ 7) | 273 | 0.10 (0.3) | 0.14 (0.4) | 0.23 (0.5) | 0.86 (1.0) | 1.09 (1.1) |
p | 0.108 | ns | 0.273 | ns | ns | |
The effects of the maximum of SPE | ||||||
Other days | 9090 | 0.07 (0.3) | 0.13 (0.4) | 0.19 (0.4) | 0.82 (0.9) | 1.02 (1.0) |
Strong event (1000–9999 pfu) | 31 | 0.10 (0.3) | 0.19 (0.4) | 0.29 (0.4) | 0.84 (0.9) | 1.13 (1.1) |
Severe event (≥10,000 pfu) | 10 | 0 | 0.40 (0.5) | 0.40 (0.4) | 0.70 (0.9) | 1.10 (1.0) |
p | ns | 0.039 | 0.151 | ns | ns | |
The effects of the X-class solar flare | ||||||
X ≥ 9.0 lag 0–1 ** | 34 | 0.03 (0.2) | 0.15 (0.4) | 0.18 (0.4) | 1.21 (1.12) | 1.38 (1.2) |
Other days | 9048 | 0.07 (0.3) | 0.12 (0.4) | 0.19 (0.4) | 0.82 (0.9) | 1.01 (1.0) |
p | 0.426 | ns | ns | 0.013 | 0.034 |
Model | Variable | RR (95% CI) | p | RR (95% CI) | p |
---|---|---|---|---|---|
Subarachnoid hemorrhages | Haemorrhagic stroke | ||||
I | Ap = 0 | 1.88 (0.81–4.34) | 0.142 | 2.33 (1.50–3.61) | <0.001 |
50 ≤ Ap < 100 | 1.17 (0.68–2.00) | ns | 1.26 (0.92–1.71) | 0.152 | |
Ap ≥ 100 | 2.75 (1.35–5.59) | 0.005 | 2.04 (1.24–3.35) | 0.005 | |
II | Strong/severe GS, defined by daily Kp | 1.58 * (1.07–2.35) | 0.023 | 1.30 * (1.01–1.68) | 0.041 |
III | Kp = 6 at 06:00–09:00 UT | 1.21 * (0.60–2.45) | ns | ||
Kp ≥ 7 at 06:00–09:00 UT | 2.65 * (1.49–4.72) | 0.001 | |||
IV | Extreme GMA (Ap = 0 or Ap ≥ 100) | 2.30 (1.33–3.96) | 0.003 | ||
Intracerebral hemorrhages | |||||
V | Ap = 0 | 2.51 (1.50–4.20) | <0.001 | ||
30 ≤ Ap < 50 | 1.13 (0.88–1.45) | 0.359 | |||
50≤ Ap < 100 | 1.34 (0.89–1.92) | 0.168 | |||
Ap ≥ 100 | 1.63 (0.81–3.29) | 0.173 | |||
VI | Kp ≥ 6 at 15:00–21:00 UT | 1.42 * (1.07–1.89) | 0.016 | ||
VII | Days of the maximum of strong SPE | 1.67 * (0.74–3.77) | 0.214 | ||
Days of the maximum of severe SPE | 3.33 * (1.23–9.01) | 0.018 | |||
VIII | Ap = 0 | 2.51 (1.50–4.21) | <0.001 | ||
Days of the maximum of severe SPE | 2.62 (0.95–7.27) | 0.064 | |||
Kp ≥ 6 at 15:00–21:00 UT | 1.36 (1.02–1.83) | 0.039 | |||
IX | Days of the maximum of SPE ** | 1.71 * (0.99–2.98) | 0.056 | ||
X | 1 day after of the maximum of SPE ** | 2.07 * (1.24–3.47) | 0.006 | ||
XI | 2 day after of the maximum of SPE ** | 1.51 * (0.83–2.76) | 0.173 | ||
XII | Ap = 0 | 2.33 (1.50–3.61) | <0.001 | ||
Ap ≥ 100 | 1.77 (1.05–2.98) | 0.031 | |||
1 day after of the maximum of SPE ** | 1.81 (1.06–3.10) | 0.030 |
Variable | RR ♦ (95% CI) | p | RR ♦ (95% CI) | p | |
---|---|---|---|---|---|
Ischemic stroke | All strokes | ||||
I | Ap = 0 | 1.36 (1.03–1.81) | 0.032 | 1.56 (1.23–1.98) | <0.001 |
Kp ≥ 6 at 06:00–09:00 UT | 1.17 (1.00–1.36) | 0.047 | 1.18 (1.03–1.36) | 0.016 | |
II | Kp ≥ 5 at 06:00–09:00 UT and 09:00–12:00 UT | 1.14 * (1.01–1.29) | 0.042 | 1.15 * (1.02–1.28) | 0.019 |
III | X ≥ 9 lag 0–1 ** | 1.41 * (1.03–1.92) | 0.032 | 1.34 * (1.00–1.79) | 0.048 |
IV | Ap = 0 | 1.36 (1.03–1.81) | 0.032 | 1.56 (1.23–1.98) | <0.001 |
Kp ≥ 5 at 06:00–09:00 UT and 09:00–12:00 UT | 1.13 (1.00–1.28) | 0.051 | 1.14 (1.02–1.28) | 0.023 | |
X ≥ 9 lag 0–1 ** | 1.39 (1.02–1.89) | 0.040 | 1.32 (0.99–1.77) | 0.060 | |
V | Ap = 0 | 1.36 (1.03–1.81) | 0.033 | 1.56 (1.23–1.98) | <0.001 |
Kp ≥ 5 at 06:00–09:00 UT and 09:00–12:00 UT | 1.13 (1.00–1.28) | 0.058 | 1.14 (1.02–1.28) | 0.025 | |
X ≥ 9 lag 0–1 ** and Ap ≥ 30 lag 1–2 | 1.76 (1.18–2.62) | 0.006 | 1.60 (1.09–2.35) | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vencloviene, J.; Radisauskas, R.; Tamosiunas, A.; Luksiene, D.; Sileikiene, L.; Milinaviciene, E.; Rastenyte, D. Possible Associations between Space Weather and the Incidence of Stroke. Atmosphere 2021, 12, 334. https://doi.org/10.3390/atmos12030334
Vencloviene J, Radisauskas R, Tamosiunas A, Luksiene D, Sileikiene L, Milinaviciene E, Rastenyte D. Possible Associations between Space Weather and the Incidence of Stroke. Atmosphere. 2021; 12(3):334. https://doi.org/10.3390/atmos12030334
Chicago/Turabian StyleVencloviene, Jone, Ricardas Radisauskas, Abdonas Tamosiunas, Dalia Luksiene, Lolita Sileikiene, Egle Milinaviciene, and Daiva Rastenyte. 2021. "Possible Associations between Space Weather and the Incidence of Stroke" Atmosphere 12, no. 3: 334. https://doi.org/10.3390/atmos12030334
APA StyleVencloviene, J., Radisauskas, R., Tamosiunas, A., Luksiene, D., Sileikiene, L., Milinaviciene, E., & Rastenyte, D. (2021). Possible Associations between Space Weather and the Incidence of Stroke. Atmosphere, 12(3), 334. https://doi.org/10.3390/atmos12030334