The Possible Effect of Space Weather Factors on Various Physiological Systems of the Human Organism
Abstract
:1. Introduction: Systematizing the Question and Setting the Problem
- The sampling rate of experimental data (years, days, hours, minutes, seconds);
- The level of organization of the studied biological systems (population, group, body, body system, organ, cell, biomolecule);
- The degree of probable biosystem response (1 = norm (within the variation of the norm and without a shift in the mean value); 2 = adaptation (reversible shift in the mean values of bioparameters); 3 = failure of adaptation (disease); 4 = death of the organism).
- Population studies, in which datasets on sudden deaths or hospital admissions for exacerbations of various diseases serve as materials for analysis;
- Laboratory and clinical studies, which are based on observations and comparisons of groups of sick and healthy people during GMS or other SpW events;
- Individual monitoring, which involves multiple repeated measurements of a certain physiological indicator in the same person for a long time.
2. Features of the Use of Solar-Geospheric Indicators in Heliobiology
2.1. Evolution of the Problem Statement
2.2. Annual Scale
2.3. Daily Scale
2.4. Intraday Scale
3. Review of the Results of Heliobiology
3.1. Annual Scale
3.2. Daily Scale
3.2.1. Population Studies
3.2.2. Individual Approach
Blood Pressure and Heart Rate
Heart Rate Variability
3.2.3. Development of Traditional Approaches
Influence of Earth Weather Factors
Possible Influence of Geomagnetic Activity Current Level
3.2.4. Clinical Research
Endocrine System
Brain Research
3.3. Intraday Scale
3.3.1. EEG Registration
3.3.2. HR and HRV Registration
4. Experimental Confirmation of the Action of Magnetic Storms
5. Theoretical Studies of Possible Mechanisms of the Magneto Effect
6. Discussion and Conclusions
- Increased morbidity on days of magnetic storms in patients and increased blood pressure in healthy people;
- A delay in the possible biological response (population or organism) for 0–4 days from the storm beginning;
- A specific and a nonspecific reaction to geomagnetic storms. (A nonspecific reaction occurred as a general adaptation syndrome, typical for a reaction to the effects of any external factor causing stress, such as physical and psycho-emotional overload. A specific reaction occurred as a change in vascular tone, which is typical for meteotropic reactions);
- The probable involvement of melatonin in the formation of the body’s response
- Significant variability of individual responses;
- The hypothesis that the geomagnetic field of the ULF and ELF ranges (0–300 Hz) is an evolutionarily conditioned external synchronizer of biological rhythm, and geomagnetic storms likely cause a breakdown of this rhythm.
- Space and Earth weather factors potentially affect the same body systems and can modify each other’s action; simultaneous consideration of these two classes of factors significantly improves the identification of the heliobiological effect and its reproducibility;
- In laboratory conditions, reliable experimental evidence of the action of various components of the storm was obtained;
- A theoretical mechanism of nonspecific magnetic sensitivity of biological systems of any level to GMF variations has been proposed;
- The biosystems response to geomagnetic variations, with no shift in the average physiological indicator value was experimental observed: the effect of synchronization of heart and brain rhythms with GMF fluctuations on the intraday time scale is shown.
- provide data for medical and epidemiological research on the most dangerous days;
- detecting the potential response of various body systems to action of geomagnetic storms;
- studying the peculiarities of an individual reaction and developing algorithms for predicting individual risks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BP | blood pressure |
CIR | Corotating Interaction Region |
CVD | cardiovascular disease |
DBP | diastolic blood pressure |
ECG | electrocardiogram |
EEG | electroencephalogram |
FD | Forbush Decreases |
GCR | galactic cosmic rays |
GLE | Ground Level Enhancement - |
GMA | geomagnetic activity |
GMF | geomagnetic field |
GMS | geomagnetic storm |
ICME | interplanetary CME |
HR | heart rate |
HRV | heart rate variability |
MF | magnetic field |
RF10.7 | solar radio flux at a wavelength of 10.7 cm |
SA | solar activity |
SBP | systolic blood pressure |
SCR | solar cosmic rays |
SF | solar flares |
SR | Schumann resonance |
SPE | solar proton events |
SpW | space weather |
SW | solar wind |
VLF | very low-frequency |
WN | Wolf numbers |
References
- Chijevsky, A.L. The correlation between the variation of sun-spot activity and the rise and spreading of epidemils. Rapport le 17 Octobre 1930. In Proceedings of the XIII Congresso international de Hidrologia, Climatologia e Geologia Medicas, Programa des Sessoes Scientificas, 2 Sessao, Lisbon, Portugal, 17 October 1930. [Google Scholar]
- Chijevsky, A.-L. Les Epidemies et Les Perturbations Electromagnetiques Du Milieu Exterieur; Depot General Le Francois: Paris, France, 1938. [Google Scholar]
- Chizhevsky, A.-L. The Terrestrial Echo of Solar Storms; Mysl: Moscow, Russia, 1976; p. 366. (In Russian) [Google Scholar]
- Presman, A.S. Electromagnetic Field and Wildlife; Nauka: Moscow, Russia, 1968; p. 310. (In Russian) [Google Scholar]
- Otsuka, K.; Cornélissen, G.; Halberg, F. Chronobiology. In Chronomics and Continuous Ambulatory Blood Pressure Monitoring; Springer: Berlin/Heidelberg, Germany, 2016; Volume 31, pp. 163–184. [Google Scholar] [CrossRef]
- Yagodinsky, V.N. The Cosmic Pulse of the Biosphere; Znanie: Moscow, Russia, 1975; p. 144. (In Russian) [Google Scholar]
- Miroshnichenko, L.I. Solar Activity and the Earth; Nauka: Moscow, Russia, 1981; p. 145. (In Russian) [Google Scholar]
- Vladimirsky, B.M.; Temuryants, N.A. Influence of Solar Activity on the Biosphere-Noosphere; MNEPU: Moscow, Russia, 2000; p. 374. (In Russian) [Google Scholar]
- Breus, T.K.; Rapoport, S.I. Magnetic Storms—Biomedical and Geophysical Aspects; Sovetskiy Sport: Moscow, Russia, 2003; p. 192. (In Russian) [Google Scholar]
- Miroshnichenko, L.I. Cosmic Rays and Evolution of the Biosphere: Search for New Approaches. In Proceedings of the International Conference “Space Weather Effects on Humans in Space and on Earth”, Moscow, Russia, 4–8 June 2012; Grigoriyev, A.I., Zeleny, L.M., Eds.; Space Research Institute: Moscow, Russia, 2013; pp. 110–136. [Google Scholar]
- Cosmophysical Correlations in Biological and Physicochemical Processes. In Proceedings of the III International Symposium, Pushchino, Russia, October 1993. (In Russian).
- Cosmophysical Correlations in Biological and Physicochemical Processes. In Proceedings of the IV International Symposium, Pushchino, Russia, October 1996. (In Russian).
- Cosmos and Biosphere. In Proceedings of the X International Conference, Koktebel, Ukraine, 23–28 September 2013; Available online: http://biophys.ru/archive/crimea-2013.pdf (accessed on 6 March 2021).
- Space Weather Effects on Humans in Space and on Earth. In Proceedings of the International Conference, 4–8 June 2012; Grigoriyev, A.I.; Zeleny, L.M. (Eds.) Space Research Institute: Moscow, Russia, 2013; Available online: http://www.iki.rssi.ru/books/2013breus1.pdf (accessed on 6 March 2021).
- Palmer, S.J.; Rycroft, M.J.; Cermack, M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv. Geophys. 2006, 27, 557–595. [Google Scholar] [CrossRef]
- Breus, T.; Binhi, V.N.; Petrukovich, A.A. Magnetic factor in solar-terrestrial relations and its impact on the human body: Physical problems and prospects for research. Physics-Uspekhi 2016, 59, 502–510. [Google Scholar] [CrossRef]
- Dorman, L. Solar Neutrons and Related Phenomena; Springer International Publishing: Berlin/Heidelberg, Germany, 2010; Volume 365. [Google Scholar]
- Dorman, L.I. Cosmic Rays in the Earth’s Atmosphere and Underground; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Binhi, V.N. Magnetobiology: Underlying Physical Problems; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Norval, M. Effects of solar radiation on the human immune system. J. Photochem. Photobiol. B Biol. 2001, 63, 28–40. [Google Scholar] [CrossRef]
- Dimitrov, B.D.; Babayev, E.S. Cyclic variations in the dynamics of flu incidence in Azerbaijan, 1976–2000. Epidemiol. Infect. 2014, 143, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.E.; Lowell, W.E. Solar cycles and their relationship to human disease and adaptability. Med. Hypotheses 2006, 67, 447–461. [Google Scholar] [CrossRef]
- Villoresi, G.; Breus, T.K.; Iucci, N.; Dorman, L.I.; Rapoport, S.I. The influence of geophysical and social effects on the incidences of clinically important pathologies (Moscow, 1979–1981). Phys. Medica. 1994, 10, 79–91. [Google Scholar]
- Gray, L.J.; Beer, J.; Geller, M.; Haigh, J.D.; Lockwood, M.; Matthes, K.; Cubasch, U.; Fleitmann, D.; Harrison, G.; Hood, L.; et al. Solar influences on climate. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Kleczek, J. Solar Flare Index.; Publ. Inst. Centr. Astron.: Prague, Czech Republic, 1952. [Google Scholar]
- Ataç, T.; Özgüç, A. Flare Index of Solar Cycle 22. Sol. Phys. 1998, 180, 397–407. [Google Scholar] [CrossRef]
- Ataç, T.; Özgüç, A. Flare Index during the Rising Phase of Solar Cycle 23. Sol. Phys. 2001, 198, 399–407. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Yermolaev, M.Y. Solar and interplanetary sources of geomagnetic storms: Space weather aspects. Izv. Atmos. Ocean. Phys. 2010, 46, 799–819. [Google Scholar] [CrossRef]
- De, S.; De, B.; Bandyopadhyay, B.; Paul, S.; Haldar, D.; Barui, S. Studies on the shift in the frequency of the first Schumann resonance mode during a solar proton event. J. Atmos. Sol. Terr. Phys. 2010, 72, 829–836. [Google Scholar] [CrossRef]
- Singh, B.; Tyagi, R.; Hobara, Y.; Hayakawa, M. X-rays and solar proton event induced changes in the first mode Schumann resonance frequency observed at a low latitude station Agra, India. J. Atmos. Sol. Terr. Phys. 2014, 113, 1–9. [Google Scholar] [CrossRef]
- Sátori, G.; Williams, E.; Price, C.; Boldi, R.; Koloskov, A.; Yampolski, Y.; Guha, A.; Barta, V. Effects of Energetic Solar Emissions on the Earth–Ionosphere Cavity of Schumann Resonances. Surv. Geophys. 2016, 37, 757–789. [Google Scholar] [CrossRef] [Green Version]
- Miroshnichenko, L.I. Retrospective analysis of GLEs and estimates of radiation risks. J. Space Weather. Space Clim. 2018, 8, A52. [Google Scholar] [CrossRef] [Green Version]
- Tsurutani, B.T.; Gonzalez, W.D.; Gonzalez, A.L.C.; Guarnieri, F.L.; Gopalswamy, N.; Grande, M.; Kamide, Y.; Kasahara, Y.; Lu, G.; Mann, I.; et al. Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Borovsky, J.E.; Denton, M.H. Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Yermolaev, Y.I.; Lodkina, I.G.; Nikolaeva, N.S.; Yermolaev, M.Y. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta. Sol. Phys. 2017, 292, 193. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.G. Solar wind stream interaction regions throughout the heliosphere. Living Rev. Sol. Phys. 2018, 15, 1–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breus, T.K.; Baevskii, R.M.; Nikulina, G.A.; Chibisov, S.M.; Chernikova, A.G.; Pukhlianko, M.; Oraevskii, V.N.; Halberg, F.; Cornelissen, G.; Petrov, V.M. Effect of geomagnetic activity on the human body in extreme conditions and correlation with data from laboratory observations. Biofizika 1998, 43, 811–818. [Google Scholar] [PubMed]
- Villoresi, G.; Ptitsyna, N.G.; Tiasto, M.I.; Iucci, N. Myocardial infarct and geomagnetic disturbances: Analysis of data on morbidity and mortality. Biofizika 1998, 43, 623–631. [Google Scholar]
- Dimitrova, S.; Stoilova, I.; Georgieva, K.; Taseva, T.; Jordanova, M.; Maslarov, D. Solar and geomagnetic activity and acute myocardial infarction morbidity and mortality. Fundam. Space Res. Supl. Compt. Rend. Acad. Bulg. Sci. 2009, 3, 161–165. [Google Scholar]
- Kornilov, I.A.; Kornilov, O.I. Specific Behavior of VLF Emissions and the First Schumann Resonance Related to SC. Geomagn. Aeron. 2005, 45, 627–632. [Google Scholar]
- Matveyeva, E.; Shchepetnov, R. Temporal characteristics and medical aspects of Pc1 geomagnetic pulsations. J. Atmos. Sol. Terr. Phys. 2007, 69, 1747–1752. [Google Scholar] [CrossRef]
- Rycroft, M.; Israelsson, S.; Price, C. The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Sol. Terr. Phys. 2000, 62, 1563–1576. [Google Scholar] [CrossRef] [Green Version]
- Rycroft, M.J.; Nicoll, K.A.; Aplin, K.L.; Harrison, R.G. Recent advances in global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol. Terr. Phys. 2012, 90-91, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Loewe, C.A.; Prölss, G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. Space Phys. 1997, 102, 14209–14213. [Google Scholar] [CrossRef]
- Bianchi, C.; Meloni, A. Natural and man-made terrestrial electromagnetic noise: An outlook. Ann. Geophys. 2007, 50, 435–446. [Google Scholar]
- Pilipenko, V.A.; Kleimenova, N.G.; Kozyreva, O.V.; Yumoto, K.; Bitterly, J. Longitudinal features of PC5 pulsations in the morning and evening sectors. Geomagn. Aeron. 1997, 37, 64–74. [Google Scholar]
- Kozyreva, O.V.; Kleimenova, N.G.; Schott, J.-J. Geomagnetic pulsations at the initial phase of a magnetic storm. Geomagn. Aeron. 2004, 44, 33–41. [Google Scholar]
- Kozyreva, O.V.; Kleimenova, N.G. Variations in the ULF index of geomagnetic pulsations during strong magnetic storms. Geomagn. Aeron. 2009, 49, 425–437. [Google Scholar] [CrossRef]
- Kvandal, P.; Landsverk, S.A.; Bernjak, A.; Stefanovska, A.; Kvernmo, H.D.; Kirkebøen, K.A. Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc. Res. 2006, 72, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Cherry, N. Schumann Resonances, a plausible biophysical mechanism for the human health effects of Solar. Nat. Hazards 2002, 26, 279–331. [Google Scholar] [CrossRef]
- Price, C. ELF Electromagnetic Waves from Lightning: The Schumann Resonances. Atmosphere 2016, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Nickolaenko, A.P.; Koloskov, A.V.; Hayakawa, M.; Yampolski, Y.M.; Budanov, O.V.; Korepanov, V.E. 11-year solar cycle in Schumann resonance data as observed in Antarctica. Sun Geosph. 2015, 10, 39–49. [Google Scholar]
- Shvets, A.V.; Nickolaenko, A.P.; Chebrov, V.N. Effect of Solar Flares on the Schumann-Resonance Frequences. Radiophys. Quantum Electron. 2017, 60, 186–199. [Google Scholar] [CrossRef]
- Hayes, D.P. Influenza pandemics, solar activity cycles, and vitamin D. Med. Hypotheses 2010, 74, 831–834. [Google Scholar] [CrossRef]
- Gumarova, L.; Cornélissen, G.; Hillman, D.; Halberg, F. Geographically selective assortment of cycles in pandemics: Meta-analysis of data collected by Chizhevsky. Epidemiol. Infect. 2012, 141, 2173–2184. [Google Scholar] [CrossRef] [Green Version]
- Qu, J. Is sunspot activity a factor in influenza pandemics? Rev. Med. Virol. 2016, 26, 309–313. [Google Scholar] [CrossRef]
- Wickramasinghe, N.C. Is the 2019 novel coronavirus related to a spike of cosmic rays? Adv. Genet. 2020, 106, 119–122. [Google Scholar] [CrossRef]
- Vieira, C.L.Z.; Janot-Pacheco, E.; Lage, C.; Pacini, A.; Koutrakis, P.; Cury, P.R.; Shaodan, H.; Pereira, L.A.; Saldiva, P.H.N. Long-term association between the intensity of cosmic rays and mortality rates in the city of Sao Paulo. Environ. Res. Lett. 2018, 13, 24009. [Google Scholar] [CrossRef]
- Halberg, F.; Cornelissen, G.; Otsuka, K.; Watanabe, Y.; Katinas, G.S.; Burioka, N.; Delyukov, A.; Gorgo, Y.; Zhao, Z.; Weydahl, A.; et al. Cross-spectrally coherent ~10,5- and 21-year biological and physical cycles, magnetic storms and myocardial infarctions. Neuroendocrinol. Lett. 2000, 21, 233–258. [Google Scholar]
- Cornelissen, G.; Halberg, F.; Breus, T.K.; Syutkina, E.V.; Baevskii, R.M.; Weydahl, A.; Watanabe, Y.; Otsuka, K.; Siegelova, J.; Fiser, B.; et al. Non-photic solar associations of heart rate variability and myocardial infarction. J. Atmos. Sol. Terr. Phys. 2002, 64, 707–728. [Google Scholar] [CrossRef]
- Fdez-Arroyabe, P.; Fornieles-Callejón, J.; Santurtún, A.; Szangolies, L.; Donner, R.V. Schumann resonance and cardiovascular hospital admission in the area of Granada, Spain: An event coincidence analysis approach. Sci. Total. Environ. 2020, 705, 135813. [Google Scholar] [CrossRef]
- Vaičiulis, V.; Radišauskas, R.; Ustinavičienė, R.; Kalinienė, G.; Tamošiūnas, A. Associations of morbidity and mortality from coronary heart disease with heliogeophysical factors. Environ. Sci. Pollut. Res. 2016, 23, 18630–18638. [Google Scholar] [CrossRef]
- Vencloviene, J.; Grazuleviciene, R.; Babarskiene, R.; Dėdelė, A.; Grazulevicius, T. Short-term nitrogen dioxide exposure and geomagnetic activity interaction: Contribution to emergency hospitalization for acute coronary syndrome. Int. J. Environ. Health Res. 2011, 21, 149–160. [Google Scholar] [CrossRef]
- Vencloviene, J.; Babarskiene, R.; Slapikas, R.; Sakalyte, G. The association between phenomena on the Sun, geomagnetic activity, meteorological variables, and cardiovascular characteristic of patients with myocardial infraction. Int. J. Biometeorol. 2013, 57, 797–804. [Google Scholar] [CrossRef]
- Vencloviene, J.; Babarskiene, R.; Slapikas, R. The association between solar particle events, geomagnetic storms, and hospital admissions for myocardial infarction. Nat. Hazards 2012, 65, 1–12. [Google Scholar] [CrossRef]
- Vencloviene, J.; Babarskiene, R.M.; Dobozinskas, P.; Sakalyte, G.; Lopatienė, K.; Mikelionis, N. Effects of Weather and Heliophysical Conditions on Emergency Ambulance Calls for Elevated Arterial Blood Pressure. Int. J. Environ. Res. Public Health 2015, 12, 2622–2638. [Google Scholar] [CrossRef] [Green Version]
- Vencloviene, J.; Antanaitiene, J.; Babarskiene, R. The association between space weather conditions and emergency hospital admissions for myocardial infarction during different stages of solar activity. J. Atmos. Sol. Terr. Phys. 2016, 149, 52–58. [Google Scholar] [CrossRef]
- Vencloviene, J.; Babarskiene, R.M.; Kiznys, D. A possible association between space weather conditions and the risk of acute coronary syndrome in patients with diabetes and the metabolic syndrome. Int. J. Biometeorol. 2016, 61, 159–167. [Google Scholar] [CrossRef]
- Vencloviene, J.; Braziene, A.; Dobozinskas, P. Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure. Atmosphere 2018, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Vencloviene, J.; Radisauskas, R.; Vaiciulis, V.; Kiznys, D.; Bernotiene, G.; Kranciukaite-Butylkiniene, D.; Tamosiunas, A. Associations between Quasi-biennial Oscillation phase, solar wind, geomagnetic activity, and the incidence of acute myocardial infarction. Int. J. Biometeorol. 2020, 64, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Ziubryte, G.; Siauciunaite, V.; Jarusevicius, G.; McCraty, R. Local earth magnetic field and ischemic heart disease: Peculiarities of interconnection. Cardiovasc. Disord. Med. 2018, 3, 1–3. [Google Scholar] [CrossRef]
- Stoupel, E.; Tamoshiunas, A.; Radishauskas, R.; Bernotiene, G.; Abramson, E.; Israelevich, P. Acute myocardial infarction (AMI)(n-11026) on days of zero geomagnetic activity (GMA) and the following week: Differences at months of maximal and minimal solar activity (SA) in solar cycles 23 and 24. J. Basic Clin. Physiol. Pharmacol. 2012, 23, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Stoupel, E.; Richardas, R.; Vidmantas, V.; Gailute, B.; Abdonas, T.; Evgeny, A. Data about Natural History of Some Acute Coronary Events at Days of High Cosmic Ray (CRA)-Neutron Activity and Following 48 Hours (2000–2012). Health 2016, 8, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Kiznys, D.; Vencloviene, J.; Milvidaitė, I. The associations of geomagnetic storms, fast solar wind, and stream interaction regions with cardiovascular characteristic in patients with acute coronary syndrome. Life Sci. Space Res. 2020, 25, 1–8. [Google Scholar] [CrossRef]
- Oraevskiĭ, V.N.; Kuleshova, V.P.; Gurfinkel’, I.F.; Guseva, A.V.; Rapoport, S.I. [Medico-biological effect of natural electromagnetic variations]. Biofizika 1999, 43, 844–848. [Google Scholar]
- Gurfinkel’, I.; Kuleshova, V.P.; Oraevskiĭ, V.N. Assessment of the effect of a geomagnetic storm on the frequency of appearance of acute cardiovascular pathology. Biofizika 1998, 43, 654–658. (In Russian) [Google Scholar]
- Kleimenova, N.; Kozyreva, O.; Breus, T.; Rapoport, S. Pc1 geomagnetic pulsations as a potential hazard of the myocardial infarction. J. Atmos. Sol. Terr. Phys. 2007, 69, 1759–1764. [Google Scholar] [CrossRef]
- Ozheredov, V.A.; Breus, T.K.; Gurfinkel, Y.I.; Revich, B.A.; Mitrofanova, T.A. Influence of some weather factors and geomagnetic activity on the development of severe cardiological pathologies. Biophysics 2010, 55, 110–119. [Google Scholar] [CrossRef]
- Shaposhnikov, D.; Revich, B.; Gurfinkel, Y.; Naumova, E. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia. Int. J. Biometeorol. 2013, 58, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, B.; De La Peña, S.S. Solar activity and human health at middle and low geomagnetic latitudes in Central America. Adv. Space Res. 2010, 46, 449–459. [Google Scholar] [CrossRef]
- Rodriquez-Taboada, E.R.; Sierra-Figueredo, P.; Figueredo, S.S. Geomagnetic activity related to acute myocardial infarctions: Relationship in a reduced population and time interval. Geofis. Int. 2004, 43, 265–269. [Google Scholar]
- Mendoza, B.; Diaz-Sandoval, R. Effects of solar activity on myocardial infarction deaths in low geomagnetic latitud regions. Nat. Hazards 2004, 32, 25–36. [Google Scholar] [CrossRef]
- Katsavrias, C.; Preka-Papadema, P.; Moussas, X.; Apostolou, T.; Theodoropoulou, A.; Papadima, T. Helio-geomagnetic influence in cardiological cases. Adv. Space Res. 2013, 51, 96–106. [Google Scholar] [CrossRef]
- Giannaropoulou, E.; Papailiou, M.; Mavromichalaki, H.; Gigolashvili, M.; Tvildiani, L.; Janashia, K.; Preka-Papadema, P.; Papadima, T. A study on the various types of arrhythmias in relation to the polarity reversal of the solar magnetic field. Nat. Hazards 2014, 70, 1575–1587. [Google Scholar] [CrossRef]
- Stoupel, E.; Babayev, E.S.; Abramson, E.; Sulkes, J. Days of “Zero” level geomagnetic activity accompanied by the high neutron activity and dynamics of some medical events—Antipodes to geomagnetic storms. Health 2013, 5, 855–861. [Google Scholar] [CrossRef] [Green Version]
- Messner, T.; Häggström, I.; Sandahl, I.; Lundberg, V. No covariation between the geomagnetic activity and the incidence of acute myocardial infarction in the polar area of northern Sweden. Int. J. Biometeorol. 2002, 46, 90–94. [Google Scholar] [CrossRef]
- Feigin, V.L.; Parmar, P.G.; Barker-Collo, S.; Bennett, D.A.; Anderson, C.S.; Thrift, A.G.; Stegmayr, B.; Rothwell, P.M.; Giroud, M.; Bejot, Y.; et al. Geomagnetic Storms Can Trigger Stroke. Stroke 2014, 45, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Vieira, C.L.Z.; Alvares, D.; Blomberg, A.; Schwartz, J.; Coull, B.; Huang, S.; Koutrakis, P. Geomagnetic disturbances driven by solar activity enhance total and cardiovascular mortality risk in 263 U.S. cities. Environ. Health 2019, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zenchenko, T.A.; Breus, T.K. Influence of climate and weather on health and well-being of people. Modern concepts. Geosph. Res. 2020, 3, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Mavromichalaki, H.; Papailiou, M.; Dimitrova, S.; Babayev, E.S.; Loucas, P. Space weather hazards and their impact on human cardio-health state parameters on Earth. Nat. Hazards 2012, 64, 1447–1459. [Google Scholar] [CrossRef]
- Papailiou, M.; Kudela, K.; Stetiarova, J.; Giannaropoulou, E.; Mavromichalaki, H.; Dimitrova, S. The effect of cosmic ray intensity variations and geomagnetic disturbances on the physiological state of aviators. Astrophys. Space Sci. Trans. 2011, 7, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Ozheredov, V.A.; Chibisov, S.M.; Blagonravov, M.L.; Khodorovich, N.A.; Demurov, E.A.; Goryachev, V.A.; Kharlitskaya, E.V.; Eremina, I.S.; Meladze, Z.A. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population. Int. J. Biometeorol. 2016, 61, 921–929. [Google Scholar] [CrossRef]
- Breus, T.; Boiko, E.; Zenchenko, T. Magnetic storms and variations in hormone levels among residents of North Polar area—Svalbard. Life Sci. Space Res. 2015, 4, 17–21. [Google Scholar] [CrossRef]
- Assman, D. Human Sensitivity to Weather; Hydrometeoizdat: Saint Petersburg, Russia, 1966; p. 247. (In Russian) [Google Scholar]
- Ghione, S.; Mezzasalma, L.; Del Seppia, C.; Papi, F. Do geomagnetic disturbances of solar origin affect arterial blood pressure? J. Hum. Hypertens. 1998, 12, 749–754. [Google Scholar] [CrossRef] [Green Version]
- Azcárate, T.; Mendoza, B. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults. Int. J. Biometeorol. 2017, 339, 1364–1592. [Google Scholar] [CrossRef]
- Dimitrova, S.; Stoilova, I.; Cholakov, I. Influence of local geomagnetic storms on arterial blood pressure. Bioelectromagnetics 2004, 25, 408–414. [Google Scholar] [CrossRef]
- Azcárate, T.; Mendoza, B.; De La Peña, S.S.; Martínez, J. Temporal variation of the arterial pressure in healthy young people and its relation to geomagnetic activity in Mexico. Adv. Space Res. 2012, 50, 1310–1315. [Google Scholar] [CrossRef]
- Mitsutake, G.; Otsuka, K.; Hayakawa, M.; Sekiguchi, M.; Cornelissen, G.; Halberg, F. Does Schumann resonance affect our blood pressure? Biomed. Pharmacother. 2005, 59, S10–S14. [Google Scholar] [CrossRef] [Green Version]
- Shepoval’nikov, V.N.; Soroko, S.I. Meteochuvstvitel’nost’ cheloveka/otv. red. V. A.Yakovlev; AN Respubliki Kyrgyzstan. In Fiziologii i Eksperimental’noi Patologii Vysokogor’ya; Ilim: Bishkek, Kyrgyzstan, 1992; p. 247. (In Russian) [Google Scholar]
- Zenchenko, T.A.; Tsagareishvili, E.V.; Oshchepkova, E.V.; Rogoza, A.N.; Breus, T.K. To the questions of the influence of geomagnetic and meteorological activity on patients with arterial hypertension. Clin. Med. 2007, 85, 31–35. (In Russian) [Google Scholar]
- Chernouss, S.; Vinogradov, A.; Vlassova, E. Geophysical Hazard for Human Health in the Circumpolar Auroral Belt: Evidence of a Relationship between Heart Rate Variation and Electromagnetic Disturbances. Nat. Hazards 2001, 23, 121–135. [Google Scholar] [CrossRef]
- Belisheva, N.K.; Konradov, A.A. The value of variations in the geomagnetic field for the functional state of the human body in high latitudes. Geophys. Process. Biosph. 2005, 4, 44–52. [Google Scholar]
- Zenchenko, T.A.; Varlamova, N.G. Hemodynamic response characteristics of healthy people to changes in meteorological and geomagnetic factors in the north. Izv. Atmos. Ocean. Phys. 2015, 51, 858–870. [Google Scholar] [CrossRef]
- Zenchenko, T.A.; Tsandekov, P.A.; Grigoriev, P.E.; Merzlyi, A.M.; Zenchenko, K.I.; Khorseva, N.I.; Grigal, P.P. Pattern of relations between physiological and psychophysiological parameters of human organism and geomagnetic and meteorological factors. Geophys. Process. Biosph. 2008, 7, 25–36. (In Russian) [Google Scholar]
- Zenchenko, T.A.; Dimitrova, S.; Stoilova, I.; Breus, T.K. Individual types of blood pressure reactions of practically healthy people to the effect of geomagnetic activity. Clin. Med. 2009, 4, 18–23. (In Russian) [Google Scholar]
- Poskotinova, L.V.; Grigoriev, P.E. The Dependence of Typological Autonomic Features Reactions of Healthy Persons on Background Helio-Meteofactors. Hum. Ecol. 2008, 5, 3–8. (In Russian) [Google Scholar]
- Wanliss, J.; Cornélissen, G.; Halberg, F.; Brown, D.; Washington, B. Superposed epoch analysis of physiological fluctuations: Possible space weather connections. Int. J. Biometeorol. 2017, 62, 449–457. [Google Scholar] [CrossRef]
- Watanabe, Y.; Cornélissen, G.; Halberg, F.; Otsuka, K.; Ohkawa, S.-I. Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity. Biomed. Pharmacother. 2000, 55, s76–s83. [Google Scholar] [CrossRef]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [Green Version]
- Breus, T.K.; Baevskii, R.M.; Chernikova, A.G. Effects of geomagnetic disturbances on humans functional state in space flight. J. Biomed. Sci. Eng. 2012, 5, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Baevsky, R.M.; Petrov, V.M.; Cornelissen, G.; Halberg, F.; Orth-Gomer, K.; Akerstedt, T.; Otsuka, K.; Breus, T.; Siegelova, J.; Dusek, J.; et al. Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease. Scr. Med. 1997, 70, 11543511. [Google Scholar]
- Otsuka, K.; Cornélissen, G.; Weydahl, A.; Holmeslet, B.; Hansen, T.; Shinagawa, M.; Kubo, Y.; Nishimura, Y.; Omori, K.; Yano, S.; et al. Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed. Pharmacother. 2000, 55, s51–s56. [Google Scholar] [CrossRef]
- Oinuma, S.; Kubo, Y.; Otsuka, K.; Yamanaka, T.; Murakami, S.; Matsuoka, O.; Ohkawa, S.; Cornélissen, G.; Weydahl, A.; Holmeslet, B.; et al. Graded response of heart rate variability, associated with an alteration of geomagnetic activity in a subarctic area. Biomed. Pharmacother. 2002, 56, 284–288. [Google Scholar] [CrossRef]
- Otsuka, K.; Cornelissen, G.; Halberg, F. Heart Rate Variability Reflecting the Dynamics of Solar Activity. In Chronomics and Continuous Ambulatory Blood Pressure Monitoring; Springer: Berlin/Heidelberg, Germany, 2016; Available online: https://link.springer.com/chapter/10.1007/978-4-431-54631-3_14#citeas (accessed on 6 March 2021).
- Dimitrova, S.; Angelov, I.; Petrova, E. Solar and geomagnetic activity effects on heart rate variability. Nat. Hazards 2013, 69, 25–37. [Google Scholar] [CrossRef]
- Gurfinkel, Y.; Breus, T.; Zenchenko, T.; Ozheredov, V. Investigation of the Effect of Ambient Temperature and Geomagnetic Activity on the Vascular Parameters of Healthy Volunteers. Open J. Biophys. 2012, 2, 46–55. Available online: https://www.researchgate.net/publication/267845138_Investigation_of_the_Effect_of_Ambient_Temperature_and_Geomagnetic_Activity_on_the_Vascular_Parameters_of_Healthy_Volunteers (accessed on 6 March 2021). [CrossRef] [Green Version]
- Zenchenko, T.A. Method of successive approximations in the task of studying the mechanism of individual heliometeotropic reactions. In Proceedings of the International Conference “The influence of Space Weather on Human Health in Space and on Earth”, Moscow, Russia, 4–7 June 2012; pp. 633–648. Available online: http://www.iki.rssi.ru/books/2013breus2.pdf (accessed on 6 March 2021). (In Russian).
- Breus, T.K.; Gurfinkel, Y.I.; Zenchenko, T.A.; Ozheredov, V.A. Comparative analysis of different vascular tone sensitivity parameters to meteorological and geomagnetic factors. Izv. Atmos. Ocean. Phys. 2010, 46, 965–972. [Google Scholar] [CrossRef]
- Gurfinkel, Y.I.; Ozheredov, V.A.; Breus, T.K.; Sasonko, M.L. The effects of space and terrestrial weather factors on arterial stiffness and endothelial function in humans. Biophysics 2018, 63, 299–306. [Google Scholar] [CrossRef]
- Sasonko, M.L.; Ozheredov, V.A.; Breus, T.K.; Ishkov, V.N.; Klochikhina, O.A.; Gurfinkel, Y.I. Combined influence of the local atmosphere conditions and space weather on three parameters of 24-h electrocardiogram monitoring. Int. J. Biometeorol. 2018, 63, 93–105. [Google Scholar] [CrossRef]
- Zenchenko, T.A.; Poskotinova, L.V.; Rekhtina, A.G.; Zaslavskaya, R.M. Relation between Microcirculation Parameters and Pc3 Geomagnetic Pulsations. Biophysics 2010, 55, 646–651. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, A.; Abreu-Gonzalez, P.; Sanchez-Sanchez, J.J.; Kaski, J.C.; Reiter, R.J. Melatonin and circadian biology in human cardiovascular disease. J. Pineal Res. 2010, 49, 14–22. [Google Scholar] [CrossRef]
- Rapoport, S.I.; Breus, T.K. Melatonin as a most important factor in the action of weak natural magnetic fields on patients with hypertensive disease and coronary heart disease. Part 1. Klin. Med. 2011, 89, 9–14. [Google Scholar]
- Rapoport, S.I.; Breus, T.K. Melatonin as a most important factor in the action of weak natural magnetic fields on patients with hypertensive disease and coronary heart disease. Part 2. Klin. Med. 2011, 89, 4–7. [Google Scholar]
- Rapoport, S.I.; Malinovskaia, N.K.; Oraevskií, V.N.; Komarov, F.I.; Nosovskií, A.M.; Vetterberg, L. Effects of disturbances of natural magnetic field of the Earth on melatonin production in patients with coronary heart disease. Klin Med. 1997, 75, 24–26. Available online: https://pubmed.ncbi.nlm.nih.gov/9273394/ (accessed on 6 March 2021).
- Rapoport, S.I.; Boldypakova, T.D.; Malinovskaia, N.K.; Oraevskiĭ, V.N.; Meshcheriakova, S.A.; Breus, T.K.; Sosnovskiĭ, A.M. Magnetic storms as a stress factor. Biofizika 1998, 43, 632–639. [Google Scholar]
- Rapoport, S.I.; Shatalova, A.M.; Oraevskiĭ, V.N.; Malinovskaia, N.K.; Vetterberg, L. Produktsiia melatonina u bol’nykh gipertonicheskoĭ bolezn’iu vo vremia magnitnykh bur’ [Melatonin production in hypertonic patients during magnetic storms]. Ter Arkh. 2001, 73, 29–33. (In Russian) [Google Scholar]
- Burch, J.B.; Reif, J.S.; Yost, M.G. Geomagnetic activity and human melatonin metabolite excretion. Neurosci. Lett. 2008, 438, 76–79. [Google Scholar] [CrossRef]
- Weydahl, A.; Sothern, R.B.; Cornelissen, G.; Wetterberg, L. Geomagnetic activity influences the melatonin secretion at latitude 70 degrees N. Biomed. Pharmacother. 2001, 55, 57s–62s. [Google Scholar] [CrossRef]
- Agadzhanyan, N.A.; Makarova, I.I.; Golovko, M.Y.; Dyachkova, L.Y.; Kanonidi, H.D. Electrophysiological and neuro-chemical analysis of biological effects of disturbances in the earth’s magnetic field. Aerosp. Environ. Med. 2002, 36, 26–32. (In Russian) [Google Scholar]
- Kanunikov, I.E.; Kiselev, B.V. Influence of the geomagnetic field on the recurrent characteristics of the electroencephalogram. Hum. Ecol. 2014, 12, 47–54. (In Russian) [Google Scholar]
- Rozhkov, V.P.; Trifonov, M.I.; Bekshaev, S.S.; Belisheva, N.K.; Pryanichnikov, S.V.; Soroko, S.I. Evaluation of the influence of geomagnetic and solar activity on the bioelectric processes of the human brain with the help of a structural function. Sechenov Russ. J. Physiol. 2016, 102, 1479–1494. (In Russian) [Google Scholar]
- Pavlov, K.I.; Syrtsev, A.V.; Mukhin, V.N.; Archimuk, A.N.; Mikheeva, E.A.; Nikolaeva, S.V.; Andieva, N.M.; Kamenskaya, V.G.; Petrenko, M.I. The Effect of Environmental Factors on the Cognitive Functions of Cadets at a Military Institute. Izv. Atmos. Ocean. Phys. 2019, 55, 1465–1487. [Google Scholar] [CrossRef]
- Allakhverdiev, A.R.; Babayev, E.S. Functional State of the Brain of Elderly Women at Rest and in Mental Stress under Varying Geomagnetic Conditions. Hum. Physiol. 2020, 46, 408–416. [Google Scholar] [CrossRef]
- Carrubba, S.; Frilot, C.; Chesson, A.; Marino, A. Evidence of a nonlinear human magnetic sense. Neuroscience 2007, 144, 356–367. [Google Scholar] [CrossRef]
- Pobachenko, S.V.; Kolesnik, A.G.; Borodin, A.S.; Kalyuzhin, V.V. The contingency of parameters of human encephalograms and Schumann resonance electromagnetic fields revealed in monitoring studies. Biophysics 2006, 51, 480–483. [Google Scholar] [CrossRef]
- Saroka, K.S.; Vares, D.E.; Persinger, M.A. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko. PLoS ONE 2016, 11, e0146595. [Google Scholar] [CrossRef] [Green Version]
- Poskotinova, L.V.; Zenchenko, T.A.; Krivonogova, E.V.; Demin, D.B. Methodological aspects of monitoring individual reactions of the bioelectrical activity of the brain under conditions of variations in the geomagnetic field in the Arctic. Bull. Ural Med. Acad. Sci. 2018, 15, 316–323. [Google Scholar] [CrossRef]
- Alabdulgade, A.; Maccraty, R.; Atkinson, M.; Vainoras, A.; Berškienė, K.; Mauricienė, V.; Navickas, Z.; Šmidtaitė, R.; Landauskas, M.; Daunoravičienė, A. Human heart rhythm sensitivity to earth local magnetic field fluctuations. J. Vibroeng. 2015, 17, 3271–3278. [Google Scholar]
- McCraty, R.; Atkinson, M.; Stolc, V.; Alabdulgader, A.A.; Vainoras, A.; Ragulskis, M. Synchronization of Human Autonomic Nervous System Rhythms with Geomagnetic Activity in Human Subjects. Int. J. Environ. Res. Public Health 2017, 14, 770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timofejeva, I.; McCraty, R.; Atkinson, M.; Joffe, R.; Vainoras, A.; Alabdulgader, A.; Ragulskis, M. Identification of a Group’s Physiological Synchronization with Earth’s Magnetic Field. Int. J. Environ. Res. Public Health. 2017, 14, 998. [Google Scholar] [CrossRef] [Green Version]
- Alabdulgader, A.; McCraty, R.; Atkinson, M.; Dobyns, Y.; Vainoras, A.; Ragulskis, M.; Stolc, V. Long-Term Study of Heart Rate Variability Responses to Changes in the Solar and Geomagnetic Environment. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mattoni, M.; Ahn, S.; Fröhlich, C.; Fröhlich, F. Exploring the relationship between geomagnetic activity and human heart rate variability. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 120, 1371–1381. [Google Scholar] [CrossRef]
- Zenchenko, T.A.; Jordanova, M.; Poskotinova, L.V.; Medvedeva, A.A.; Alenikova, A.E.; Khorseva, N.I. Synchronization between human heart rate dynamics and Pc5 geomagnetic pulsations at different latitudes. Biophysics 2014, 59, 965–972. [Google Scholar] [CrossRef]
- Zenchenko, T.A.; Medvedeva, A.A.; Khorseva, N.I.; Breus, T.K. Synchronization of human heart-rate indicators and geomagnetic field variations in the frequency range of 0.5–3.0 mHz. Izv. Atmos. Ocean. Phys. 2014, 50, 736–744. [Google Scholar] [CrossRef]
- Zenchenko, T.A.; Medvedeva, A.A.; Potolitsyna, N.N.; Parshukova, O.I.; Boiko, E.R. Correlation of the dynamics of minute-scale heart rate oscillations and biochemical parameters of the blood in healthy subjects to Pc5–6 geomagnetic pulsations. Biophysics 2015, 60, 309–316. [Google Scholar] [CrossRef]
- Gmitrov, J. Baroreceptor stimulation enhanced nitric oxide vasodilator responsiveness, a new aspect of baroreflex physiology. Microvasc. Res. 2015, 98, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Lednev, V.V.; Belova, N.A.; Rozhdestvenskaya, Z.E.; Tiras, K.P. Biological effects of weak alternating magnetic fields and biological precursors of earthquakes. Geophys. Processes Biosph. 2003, 2, 7–18. [Google Scholar]
- Lednev, V.V.; Belova, N.A.; Ermakov, A.M.; Akimov, E.B.; Tonevitsky, A.G. Modulation of cardiac rhythm in the humans exposed to extremely weak alternating magnetic fields. Biophysics 2008, 53, 648–654. [Google Scholar] [CrossRef]
- Martynyuk, V.S.; Temur’Yants, N.A.; Temuryants, N. Extremely low magnetic fields as a factor of modulation and synchronization of infradian biorhythms in animals. Izv. Atmospheric Ocean. Phys. 2010, 46, 820–829. [Google Scholar] [CrossRef]
- Belova, N.A.; Ermakov, A.M.; Znobishcheva, A.V.; Skrebnitskaia, L.K.; Lednev, V.V. [Effect of the extremely weak alternating magnetic fields on the regeneration of planarians and the gravitropic response of plants]. Biofizika 2010, 55, 704–709. [Google Scholar]
- Krylov, V.V. Biological effects related to geomagnetic activity and possible mechanisms. Bioelectromagnetics 2017, 38, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Kleimenova, N.G.; Troitskaya, V.A. Geomagnetic pulsations as one of the environmental factors of the environment. Biophysics 1992, 37, 429–438. [Google Scholar]
- Biasutti, M.A. Comparative Analysis of Forms and Wikis as Tools for Online Collaborative Learning. Comput. Educ. 2017, 107, 158–171. [Google Scholar] [CrossRef]
- Krylov, V.V.; Kantserova, N.P.; Lysenko, L.A.; Osipova, E.A. A simulated geomagnetic storm unsynchronizes with diurnal geomagnetic variation affecting calpain activity in roach and great pond snail. Int. J. Biometeorol. 2019, 63, 241–246. [Google Scholar] [CrossRef]
- Gurfinkel, Y.I.; Vasin, A.L.; Pishchalnikov, R.Y.; Sarimov, R.M.; Sasonko, M.L.; Matveeva, T.A. Geomagnetic storm under laboratory conditions: Randomized experiment. Int. J. Biometeorol. 2017, 62, 501–512. [Google Scholar] [CrossRef]
- Elhalel, G.; Price, C.; Fixler, D.; Shainberg, A. Cardioprotection from stress conditions by weak magnetic fields in the Schumann Resonance band. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Caswell, J.M.; Singh, M.; Persinger, M.A. Simulated sudden increase in geomagnetic activity and its effect on heart rate variability: Experimental verification of correlation studies. Life Sci. Space Res. 2016, 10, 47–52. [Google Scholar] [CrossRef]
- Volkov, A.I.; Savintseva, A.A.; Shabanov, G.A.; Lebedev, Y.A.; Rybchenko, A.A.; Maximov, A.L. About resonance interaction of schumann’s biospherical frequencies and human brain rhythms Weak and superweak fields and radiation in biology and medicine: Abstracts. In Proceedings of the VI International Congress, St. Petersburg, Russia, 2–6 July 2012; Available online: www.biophys.ru/archive/congress2012/proc-p168.htm (accessed on 6 March 2021).
- Mulligan, B.P.; Persinger, M.A. Experimental simulation of the effects of sudden increases in geomagnetic activity upon quantitative measures of human brain activity: Validation of correlational studies. Neurosci. Lett. 2012, 516, 54–56. [Google Scholar] [CrossRef]
- Binhi, V.N.; Prato, F.S. A physical mechanism of magnetoreception: Extension and analysis. Bioelectromagnetics 2017, 38, 41–52. [Google Scholar] [CrossRef]
- Binhi, V.N.; Prato, F.S. Rotations of macromolecules affect nonspecific biological responses to magnetic fields. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Zaporozhan, V.; Ponomarenko, A. Mechanisms of Geomagnetic Field Influence on Gene Expression Using Influenza as a Model System: Basics of Physical Epidemiology. Int. J. Environ. Res. Public Health 2010, 7, 938–965. [Google Scholar] [CrossRef] [Green Version]
- Close, J. Are stress responses to geomagnetic storms mediated by the cryptochrome compass system? Proc. R. Soc. B Boil. Sci. 2012, 279, 2081–2090. [Google Scholar] [CrossRef] [Green Version]
- Panagopoulos, D.J.; Balmori, A. On the biophysical mechanism of sensing atmospheric discharges by living organisms. Sci. Total. Environ. 2017, 599–600, 2026–2034. [Google Scholar] [CrossRef]
- Cifra, M.; Apollonio, F.; Liberti, M.; García-Sánchez, T.; Mir, L.M. Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects. Int. J. Biometeorol. 2021, 65, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Hunting, E.R.; Matthews, J.; Hernáez, P.F.D.A.; England, S.J.; Kourtidis, K.; Koh, K.; Nicoll, K.; Harrison, R.G.; Manser, K.; Price, C.; et al. Challenges in coupling atmospheric electricity with biological systems. Int. J. Biometeorol. 2021, 65, 45–58. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.; Spyroglou, I.; Rigas, A.; Preka-Papadema, P.; Mavromichalaki, H.; Kiosses, I. The sun as a significant agent provoking earthquakes. Eur. Phys. J. Spéc. Top. 2021, 230, 287–333. [Google Scholar] [CrossRef]
- Hayakawa, M.; Hattori, K.; Ando, Y. Natural Electromagnetic Phenomena and Electromagnetic Theory: A Review. IEEJ Trans. Fundam. Mater. 2004, 124, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Lu, J.; Zhang, X.; Shen, X. Indications of Ground-based Electromagnetic Observations to A Possible Lithosphere–Atmosphere–Ionosphere Electromagnetic Coupling before the 12 May 2008 Wenchuan MS 8.0 Earthquake. Atmosphere 2019, 10, 355. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.N.; Kadirkamanathan, V.; Pokhotelov, O.A. Changes in the ultra-low frequency wave field during the precursor phase to the Sichuan earthquake: DEMETER observations. Ann. Geophys. 2013, 31, 1597–1603. [Google Scholar] [CrossRef] [Green Version]
- Athanasiou, Μ.A.; Machairidis, G.G.; David, C.N.; Anagnostopoulos, G.C. Enhanced ULF electromagnetic Activity Detected by DEMETER above Seismogenic Regions. arXiv 2013, arXiv:1302.6680. Available online: https://arxiv.org/ftp/arxiv/papers/1302/1302.6680.pdf (accessed on 6 March 2021).
- Price, C.; Williams, E.; Elhalel, G.; Sentman, D. Natural ELF fields in the atmosphere and in living organisms. Int. J. Biometeorol. 2021, 65, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, Y.; Wang, X. Electromagnetic activity: A possible player in epilepsy. Acta Epileptol. 2020, 2, 1–6. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.; Basta, M.; Stefanakis, Z.; Vassiliadis, V.; Vgontzas, A.; Rigas, A.; Koutsomitros, S.; Baloyannis, S.; Papadopoulos, G. A study of correlation between seismicity and mental health: Crete, 2008–2010. Geomatics Nat. Hazards Risk 2013, 6, 45–75. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, G.; Basta, M.; Vgontzas, A.; Rigas, A.; Vassiliadis, V.; Baloyannis, S.; Koutsomitros, T. Differential effects of earthquakes on patients with bipolar disorder versus schizophrenia: Findings from Crete, Greece, 2008–2010. Psychiatriki 2019, 30, 193–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Arakaki, X.; Lee, R.; King, K.S.; Fonteh, A.N.; Harrington, M.G. Alpha desynchronization during simple working memory unmasks pathological aging in cognitively healthy individuals. PLoS ONE 2019, 14, e0208517. [Google Scholar] [CrossRef] [Green Version]
- Sajadieh, A.; Nielsen, O.W.; Rasmussen, V.; Hein, H.O.; Abedini, S.; Hansen, J.F. Increased heart rate and reduced heart-rate variability are associated with subclinical inflammation in middle-aged and elderly subjects with no apparent heart disease. Eur. Hear. J. 2004, 25, 363–370. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zenchenko, T.A.; Breus, T.K. The Possible Effect of Space Weather Factors on Various Physiological Systems of the Human Organism. Atmosphere 2021, 12, 346. https://doi.org/10.3390/atmos12030346
Zenchenko TA, Breus TK. The Possible Effect of Space Weather Factors on Various Physiological Systems of the Human Organism. Atmosphere. 2021; 12(3):346. https://doi.org/10.3390/atmos12030346
Chicago/Turabian StyleZenchenko, Tatiana Alexandrovna, and Tamara Konstantinovna Breus. 2021. "The Possible Effect of Space Weather Factors on Various Physiological Systems of the Human Organism" Atmosphere 12, no. 3: 346. https://doi.org/10.3390/atmos12030346
APA StyleZenchenko, T. A., & Breus, T. K. (2021). The Possible Effect of Space Weather Factors on Various Physiological Systems of the Human Organism. Atmosphere, 12(3), 346. https://doi.org/10.3390/atmos12030346