Impact of Climate Change on Past Indian Monsoon and Circulation: A Perspective Based on Radiogenic and Trace Metal Geochemistry
Abstract
:1. Introduction
2. Modern Oceanographic Setting of the Indian Ocean
3. Materials and Methods
3.1. Samples and Data
3.2. Revision of the Stratigraphy
3.3. Analytical Protocols
3.3.1. ODP Site 758
3.3.2. Sample Preparation Methods of the Published Records
4. Results and Discussion
4.1. Paleoclimate Records of the Last Glacial Cycle in the Northern Indian Ocean
4.2. Factors Controlling the εNd Signals in the Northern Indian Ocean
4.3. The Questions Regarding the Northern Indian Ocean εNd Data
4.4. A New Paradigm for the Northern Indian Ocean Neodymium Isotopes during the Last Deglaciation
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gadgil, S. The Indian Monsoon and its variability. Ann. Rev. Earth Planet. Sci. 2003, 31, 429–467. [Google Scholar] [CrossRef] [Green Version]
- Schott, F.A.; McCreary, J.P. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 2001, 51, 1–123. [Google Scholar] [CrossRef]
- Battisti, D.S.; Vimont, D.J.; Kirtman, B.P. 100 Years of Progress in Understanding the Dynamics of Coupled Atmosphere–Ocean Variability. Meteorol. Monogr. 2019, 59, 8.1–8.57. [Google Scholar] [CrossRef]
- Rashid, H.; Best, K.; Otieno, F.O.; Shum, C.K. Analysis of paleoclimatic records for understanding the tropical hydrologic cycle in abrupt climate change. Clim. Vulnerability 2013, 5, 127–139. [Google Scholar]
- An, Z.; Guoxiong, W.; Jianping, L.; Youbin, S.; Yimin, L.; Weijian, Z.; Juan, F. Global Monsoon Dynamics and Climate Change. Annu. Rev. Earth Planet. Sci. 2015, 43, 29–77. [Google Scholar] [CrossRef]
- Webster, P.J.; Magaña, V.O.; Palmer, T.N.; Shukla, J.; Tomas, R.A.; Yanai, M.; Yasunari, T. Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Space Phys. 1998, 103, 14451–14510. [Google Scholar] [CrossRef]
- Geen, R.; Bordoni, S.; Battisti, D.S.; Hui, K. Monsoons, ITCZs, and the Concept of the Global Monsoon. Rev. Geophys. 2020, 58, 58. [Google Scholar] [CrossRef]
- Webster, P.J. The Variable and Interactive Monsoon, in Monsoons; Fein, J.S., Stephens, P.L., Eds.; John Wiley: New York, NY, USA, 1987; pp. 269–330. [Google Scholar]
- Ratna, S.B.; Sikka, D.R.; Dalvi, M.; Ratnam, J.V. Dynamical simulation of Indian summer monsoon circulation, rainfall and its interannual variability using a high resolution atmospheric general circulation model. Int. J. Clim. 2011, 31, 1927–1942. [Google Scholar] [CrossRef]
- Delaygue, G.; Bard, E.; Rollion, C.; Jouzel, J.; Stiévenard, M.; Duplessy, J.-C.; Ganssen, G. Oxygen isotope/salinity relationship in the northern Indian Ocean. J. Geophys. Res. Space Phys. 2001, 106, 4565–4574. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M. (Eds.) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019. [Google Scholar]
- Matthews, H.D.; Weaver, A.J. Committed climate warming. Nat. Geosci. 2010, 3, 142–143. [Google Scholar] [CrossRef]
- Easterling, D.R.; Wehner, M.F. Is the climate warming or cooling? Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Lean, J.L.; Rind, D.H. How will Earth’s surface temperature change in future decades? Geophys. Res. Lett. 2009, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Sato, M.; Kharecha, P.; Russell, G.; Lea, D.W.; Siddall, M. Climate change and trace gases. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 1925–1954. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, V.; Ramana, M.V.; Roberts, G.; Kim, D.; Corrigan, C.; Chung, C.; Winker, D.M. Warming trends in Asia amplified by brown cloud solar absorption. Nat. Cell Biol. 2007, 448, 575–578. [Google Scholar] [CrossRef]
- Katz, M.E.; Cramer, B.S.; Franzese, A.; Hönisch, B.; Miller, K.G.; Rosenthal, Y.; Wright, J.D. Traditional and emerging geochemical proxies in foraminifera. J. Foraminifer. Res. 2010, 40, 165–192. [Google Scholar] [CrossRef]
- Arbuszewski, J.; deMenocal, P.; Kaplan, A.; Farmer, A.C. On the fidelity of shell-derived estimates. Earth Planet. Sci. Lett. 2010, 300, 185–196. [Google Scholar] [CrossRef]
- Dai, Y.; Yu, J.; Demenocal, P.; Hyams-Kaphzan, O. Influences of Temperature and Secondary Environmental Parameters on Planktonic Foraminiferal Mg/Ca: A New Core-Top Calibration. Geochem. Geophys. Geosyst. 2019, 20, 4370–4381. [Google Scholar] [CrossRef]
- Ponton, C.; Giosan, L.; Eglinton, T.I.; Fuller, D.Q.; Johnson, J.E.; Kumar, P.; Collett, T.S. Holocene aridification of India. Geophys. Res. Lett. 2012, 39, 39. [Google Scholar] [CrossRef] [Green Version]
- Stoll, H.M.; Vance, D.; Arevalos, A. Records of the Nd isotope composition of seawater from the Bay of Bengal: Implications for the impact of Northern Hemisphere cooling on ITCZ movement. Earth Planet. Sci. Lett. 2007, 255, 213–228. [Google Scholar] [CrossRef]
- Piotrowski, A.M.; Banakar, V.K.; Scrivner, A.E.; Elderfield, H.; Galy, A.; Dennis, A. Indian Ocean circulation and productivity during the last glacial cycle. Earth Planet. Sci. Lett. 2009, 285, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Gourlan, A.T.; Meynadier, L.; Allègre, C.J.; Tapponnier, P.; Birck, J.-L.; Joron, J.-L. Northern Hemisphere climate control of the Bengali rivers discharge during the past 4 Ma. Quat. Sci. Rev. 2010, 29, 2484–2498. [Google Scholar] [CrossRef]
- Wilson, D.J.; Piotrowski, A.M.; Galy, A.; Banakar, V.K. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles. Paleoceanogrofy 2015, 30, 621–641. [Google Scholar] [CrossRef] [Green Version]
- Naik, S.S.; Basak, C.; Goldstein, S.L.; Naidu, P.D.; Naik, S.N. A 16-kyr Record of Ocean Circulation and Monsoon Intensification From the Central Bay of Bengal. Geochem. Geophys. Geosyst. 2019, 20, 872–882. [Google Scholar] [CrossRef]
- Rashid, H.; Gourlan, A.T.; Marche, B.; Sheppard, K.; Khélifi, N. Changes in Indian Summer Monsoon Using Neodymium (Nd) Isotopes in the Andaman Sea During the Last 24,000 years. Earth Syst. Environ. 2019, 3, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Albarède, F.; Goldstein, S.L.; Dautel, D. The neodymium isotopic composition of manganese nodules from the Southern and Indian oceans, the global oceanic neodymium budget, and their bearing on deep ocean circulation. Geochim. Cosmochim. Acta 1997, 61, 1277–1291. [Google Scholar] [CrossRef]
- O’Nions, R.; Frank, M.; Von Blanckenburg, F.; Ling, H.-F. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans. Earth Planet. Sci. Lett. 1998, 155, 15–28. [Google Scholar] [CrossRef]
- Frank, M. Radiogenic isotopes: Tracers of past ocean circulation and erosional input. Rev. Geophys. 2002, 40, 1-1–1-38. [Google Scholar] [CrossRef] [Green Version]
- Tachikawa, K.; Piotrowski, A.M.; Bayon, G. Neodymium associated with foraminiferal carbonate as a recorder of seawater isotopic signatures. Quat. Sci. Rev. 2014, 88, 1–13. [Google Scholar] [CrossRef]
- Du, J.; Haley, B.A.; Mix, A.C. Evolution of the Global Overturning Circulation since the Last Glacial Maximum based on marine authigenic neodymium isotopes. Quat. Sci. Rev. 2020, 241, 106396. [Google Scholar] [CrossRef]
- Godfrey, L.; White, W.; Salters, V. Dissolved zirconium and hafnium distributions across a shelf break in the northeastern Atlantic Ocean. Geochim. Cosmochim. Acta 1996, 60, 3995–4006. [Google Scholar] [CrossRef]
- Firdaus, M.L.; Mashio, A.S.; Obata, H.; McAlister, J.A.; Orians, K.J.; Suzuki, A. Distribution of zirconium, hafnium, niobium and tantalum in the North Atlantic Ocean, northeastern Indian Ocean and its adjacent seas. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 140, 128–135. [Google Scholar] [CrossRef]
- Rahlf, P.; Laukert, G.; Hathorne, E.C.; Vieira, L.H.; Frank, M. Dissolved neodymium and hafnium isotopes and rare earth elements in the Congo River Plume: Tracing and quantifying continental inputs into the southeast Atlantic. Geochim. Cosmochim. Acta 2021, 294, 192–214. [Google Scholar] [CrossRef]
- Gutjahr, M.; Frank, M.; Lippold, J.; Halliday, A.N. Peak Last Glacial weathering intensity on the North American continent recorded by the authigenic Hf isotope composition of North Atlantic deep-sea sediments. Quat. Sci. Rev. 2014, 99, 97–111. [Google Scholar] [CrossRef]
- Vervoort, J.D.; Patchett, P.; Blichert-Toft, J.; Albarède, F. Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 1999, 168, 79–99. [Google Scholar] [CrossRef]
- van de Flierdt, T.; Goldstein, S.L.; Hemming, S.R.; Roy, M.; Frank, M.; Halliday, A.N. Global neodymium-hafnium isotope systematics—Revisited. Earth Planet. Sci. Lett. 2007, 259, 432. [Google Scholar] [CrossRef]
- Chauvel, C.; Lewin, E.; Carpentier, M.; Arndt, N.T.; Marini, J.-C. Role of recycled oceanic sediments in generating the Hf-Nd mantle array. Nat. Geosci. 2008, 1, 64–67. [Google Scholar] [CrossRef]
- Patchett, P.J.; White, W.M.; Feldmann, H.; Kielinczuck, S.; Hofmann, A.W. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth’s mantle. Earth Planet. Sci. Lett. 1984, 69, 365–378. [Google Scholar] [CrossRef]
- Jacobsen, S.B.; Wasserburg, G. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 1980, 50, 139–155. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Shankar, D.; Vinayachandran, P.; Unnikrishnan, A. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 2002, 52, 63–120. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Shankar, D.; Aparna, S.G.; Amol, P.; Fernando, V.; Kankonkar, A.; Michael, G.S.; Satelkar, N.P.; Khalap, S.T.; Tari, A.P.; et al. Observed variability of the West India Coastal Current on the continental slope from 2009–2018. J. Earth Syst. Sci. 2020, 129, 57. [Google Scholar] [CrossRef]
- Jensen, T.G. Cross-equatorial pathways of salt and tracers from the northern Indian Ocean: Modelling results. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 2111–2127. [Google Scholar] [CrossRef]
- You, Y. Implications of the deep circulation and ventilation of the Indian Ocean on the renewal mechanism of North Atlantic Deep Water. J. Geophys. Res. Space Phys. 2000, 105, 23895–23926. [Google Scholar] [CrossRef]
- Srinivasan, A.; Garraffo, Z.; Iskandarani, M. Abyssal circulation in the Indian Ocean from a 1/12o resolution global hindcast. Deep Sea Res. Part I 2009, 56, 1907–1926. [Google Scholar] [CrossRef]
- Warren, B.A. Deep Circulation of the World Ocean Evolution of Physical Oceanography; MIT Press: Boston, MA, USA, 1981. [Google Scholar]
- Mantyla, A.W.; Reid, J.L. On the origins of deep and bottom waters of the Indian Ocean. J. Geophys. Res. Space Phys. 1995, 100, 2417–2439. [Google Scholar] [CrossRef]
- Fukamachi, Y.; Rintoul, S.R.; Church, J.A.; Aoki, S.; Sokolov, S.; Rosenberg, M.A.; Wakatsuchi, M. Strong export of Antarctic Bottom Water east of the Kerguelen plateau. Nat. Geosci. 2010, 3, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Warren, B.A.; Johnson, G.C. The overflows across the Ninety east Ridge. Deep-Sea Res. 2002, 49, 1423–1439. [Google Scholar]
- Johnson, G.C.; Musgrave, D.L.; Ffield, A.; Olson, D.B.; Warren, B.A. Flow of bottom and deep water in the Amirante Passage and Mascarene Basin. J. Geophys. Res. Space Phys. 1998, 103, 30973–30984. [Google Scholar] [CrossRef]
- Orsi, A.H.; Jacobs, S.S.; Gordon, A.L.; Visbeck, M. Cooling and ventilating the Abyssal Ocean. Geophys. Res. Lett. 2001, 28, 2923–2926. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Singh, S.K.; Goswami, V.; Bhushan, R.; Rai, V.K. Spatial distribution of dissolved neodymium and εNd in the Bay of Bengal: Role of particulate matter and mixing of water masses. Geochim. Cosmochim. Acta 2012, 94, 38–56. [Google Scholar] [CrossRef]
- Talley, L. Closure of the Global Overturning Circulation Through the Indian, Pacific, and Southern Oceans: Schematics and Transports. Oceanography 2013, 26, 80–97. [Google Scholar] [CrossRef]
- Reid, J.L. On the total geostrophic circulation of the Indian Ocean: Flow patterns, tracers, and transports. Prog. Oceanogr. 2003, 56, 137–186. [Google Scholar] [CrossRef]
- Schlitzer, R. Data analysis and visualization with ocean data view. CMOS Bull. SCMO 2015, 43, 9–13. [Google Scholar] [CrossRef]
- Burton, K. Glacial–interglacial variations in the neodymium isotope composition of seawater in the Bay of Bengal recorded by planktonic foraminifera. Earth Planet. Sci. Lett. 2000, 176, 425–441. [Google Scholar] [CrossRef]
- Colin, C.; Turpin, L.; Bertaux, J.; Desprairies, A.; Kissel, C. Erosional history of the Himalayan and Burman ranges during the last two glacial–interglacial cycles. Earth Planet. Sci. Lett. 1999, 171, 647–660. [Google Scholar] [CrossRef]
- Hein, C.J.; Galy, V.; Galy, A.; France-Lanord, C.; Kudrass, H.; Schwenk, T. Post-glacial climate forcing of surface processes in the Ganges–Brahmaputra river basin and implications for carbon sequestration. Earth Planet. Sci. Lett. 2017, 478, 89–101. [Google Scholar] [CrossRef]
- Joussain, R.; Liu, Z.; Colin, C.; Duchamp-Alphonse, S.; Yu, Z.; Moréno, E.; Fournier, L.; Zaragosi, S.; Dapoigny, A.; Meynadier, L.; et al. Link between Indian monsoon rainfall and physical erosion in the Himalayan system during the Holocene. Geochem. Geophys. Geosyst. 2017, 18, 3452–3469. [Google Scholar] [CrossRef]
- Liu, J.; He, W.; Cao, L.; Zhu, Z.; Xiang, R.; Li, T.; Shi, X.; Liu, S. Staged fine-grained sediment supply from the Himalayas to the Bengal Fan in response to climate change over the past 50,000 years. Quat. Sci. Rev. 2019, 212, 164–177. [Google Scholar] [CrossRef]
- Yu, Z.; Colin, C.; Ma, R.; Meynadier, L.; Wan, S.; Wu, Q.; Kallel, N.; Sepulcre, S.; Dapoigny, A.; Bassinot, F. Antarctic Intermediate Water penetration into the Northern Indian Ocean during the last deglaciation. Earth Planet. Sci. Lett. 2018, 500, 67–75. [Google Scholar] [CrossRef]
- Farell, J.W.; Janecek, T.R. Late Neogene paleoceanography and paleoclimate of the northeast Indian Ocean (site 758). Proc. Ocean Drill. Program Sci. Results 1991, 121, 297–355. [Google Scholar]
- Martinson, D.G.; Pisias, N.G.; Hays, J.D.; Imbrie, J.D.; Moore, T.C.; Shackleton, N.J. Age Dating and the Orbital Theory of the Ice Ages: Development of a High-Resolution 0 to 300,000-Year Chronostratigraphy. Quat. Res. 1987, 27, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, 20. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The INTCAL20 Northern Hemisphere radiocarbon age calibration curve (0–55 Cal kBP). Radiocarbon 2020, 62, 1–33. [Google Scholar] [CrossRef]
- Heaton, T.J.; Köhler, P.; Butzin, M.; Bard, E.; Reimer, R.W.; Austin, W.E.N.; Bronk Ramsey, C.; Grootes, P.M.; Hughen, K.A.; Kromer, B.; et al. Marine20-The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP). Radiocarbon 2020, 62, 779–820. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Stern, J.V. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography 2016, 31, 1368–1394. [Google Scholar] [CrossRef] [Green Version]
- Fairbanks, R.G.; Mortlock, R.A.; Chiu, T.-C.; Cao, L.; Kaplan, A.; Guilderson, T.P.; Fairbanks, T.W.; Bloom, A.L.; Grootes, P.M.; Nadeau, M.-J. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat. Sci. Rev. 2005, 24, 1781–1796. [Google Scholar] [CrossRef] [Green Version]
- Butzin, M.; Prange, M.; Lohmann, G. Radiocarbon simulations for the glacial ocean: The effects of wind stress, Southern Ocean sea ice and Heinrich events. Earth Planet. Sci. Lett. 2005, 235, 45–61. [Google Scholar] [CrossRef]
- Cao, L.; Fairbanks, R.; Mortlock, R.; Risk, M. Radiocarbon reservoir age of high latitude North Atlantic surface water during the last deglacial. Quat. Sci. Rev. 2007, 26, 732–742. [Google Scholar] [CrossRef]
- Rashid, H.; Flower, B.; Poore, R.Z.; Quinn, T.M. A ∼25ka Indian Ocean monsoon variability record from the Andaman Sea. Quat. Sci. Rev. 2007, 26, 2586–2597. [Google Scholar] [CrossRef]
- Gourlan, A.T.; Meynadier, L.M.; Allègre, C.J. Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: Neodymium isotope evidence. Earth Planet. Sci. Lett. 2008, 267, 353–364. [Google Scholar] [CrossRef]
- Chauvel, C.; Bureau, S.; Poggi, C. Comprehensive Chemical and Isotopic Analyses of Basalt and Sediment Reference Materials. Geostand. Geoanal. Res. 2011, 35, 125–143. [Google Scholar] [CrossRef]
- Chauvel, C.; Blichert-Toft, J. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet. Sci. Lett. 2001, 190, 137–151. [Google Scholar] [CrossRef]
- Boyle, E.A.; Keigwin, L.D. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: Changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 1985, 76, 135–150. [Google Scholar] [CrossRef]
- Goldstein, S.J.; Jacobsen, S.B. The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater. Chem. Geol. Isot. Geosci. Sect. 1987, 66, 245–272. [Google Scholar] [CrossRef]
- Whitford, D.J.; White, W.M.; Jezek, P.A. Neodymium isotopic composition of Quaternary island arc lavas from Indonesia. Geochim. Cosmochim. Acta 1981, 45, 989–995. [Google Scholar] [CrossRef]
- Jeandel, C.; Thouron, D.; Fieux, M. Concentrations and isotopic compositions of neodymium in the eastern Indian Ocean and Indonesian straits. Geochim. Cosmochim. Acta 1998, 62, 2597–2607. [Google Scholar] [CrossRef]
- Amakawa, H.; Alibo, D.S.; Nozaki, Y. Nd isotopic composition and REE pattern in the surface waters of the eastern Indian Ocean and its adjacent seas. Geochim. Cosmochim. Acta 2000, 64, 1715–1727. [Google Scholar] [CrossRef]
- Lacan, F.; Jeandel, C. Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and Rare Earth Element patterns. Earth Planet. Sci. Lett. 2001, 186, 497–512. [Google Scholar] [CrossRef]
- Bertram, C.; Elderfield, H. The geochemical balance of the rare earth elements and neodymium isotopes in the oceans. Geochim. Cosmochim. Acta 1993, 57, 1957–1986. [Google Scholar] [CrossRef]
- Van De Flierdt, T.; Griffiths, A.M.; Lambelet, M.; Little, S.H.; Stichel, T.; Wilson, D.J. Neodymium in the oceans: A global database, a regional comparison and implications for palaeoceanographic research. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prospero, J.M. Arid regions as source of mineral aerosols in the marine atmosphere. Geol. Soc. Am. Spec. Pap. 1981, 186, 71–86. [Google Scholar]
- Amakawa, H.; Yu, T.-L.; Tazoe, H.; Obata, H.; Gamo, T.; Sano, Y.; Shen, C.-C.; Suzuki, K. Neodymium concentration and isotopic composition distributions in the southwestern Indian Ocean and the Indian sector of the Southern Ocean. Chem. Geol. 2019, 511, 190–203. [Google Scholar] [CrossRef]
- Dia, A.; Dupré, B.; Allègre, C.J. Nd isotopes in Indian Ocean sediments used as a tracer of supply to the ocean and circulation paths. Mar. Geol. 1992, 103, 349–359. [Google Scholar] [CrossRef]
- Harris, N.; Hawkesworth, C.; Van Calsteren, P.; McDermott, F. Evolution of continental crust in southern Africa. Earth Planet. Sci. Lett. 1987, 83, 85–93. [Google Scholar] [CrossRef]
- van der Lubbe, H.J.L.; Frank, M.; Tjallingii, R.; Schneider, R.R. Neodymium isotope constraints on provenance, dispersal, and climate-driven supply of Zambezi sediments along the Mozambique Margin during the past ∼45,000 years. Geochem. Geophys. Geosyst. 2016, 17, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Colin, C.; Turpin, L.; Blamart, D.; Frank, N.; Kissel, C.; Duchamp, S. Evolution of weathering patterns in the Indo-Burman Ranges over the last 280 kyr: Effects of sediment provenance on 87Sr/86Sr ratios tracer. Geochem. Geophys. Geosyst. 2006, 7, 7. [Google Scholar] [CrossRef]
- Duplessy, J.-C. Glacial to interglacial contrasts in the northern Indian Ocean. Nature 1982, 295, 494–498. [Google Scholar] [CrossRef]
- Davies, T.A.; Millard, F.C.; Sherwood, W.W., Jr. Introduction. Sediment. Geol. 1995, 9, 1–5. [Google Scholar] [CrossRef]
- Yu, Z.; Colin, C.; Meynadier, L.; Douville, E.; Dapoigny, A.; Reverdin, G.; Wu, Q.; Wan, S.; Song, L.; Xu, Z.; et al. Seasonal variations in dissolved neodymium isotope composition in the Bay of Bengal. Earth Planet. Sci. Lett. 2017, 479, 310–321. [Google Scholar] [CrossRef]
- Padmakumari, V.M.; Ahmad, S.M.; Dayal, A.M.; Soundar Rajan, R.; Gopalan, K. Seawater neodymium isotopic composition in the northeast Indian Ocean during LGM to Holocene: Response to glacial and monsoonal weathering in Himalaya-Tibet. J. Geol. Soc. India 2006, 65, 425–432. [Google Scholar]
- Wang, Y.; Cheng, H.; Edwards, R.L.; Kong, X.; Shao, X.; Chen, S.; Wu, J.; Jiang, X.; Wang, X.; An, Z. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nat. Cell Biol. 2008, 451, 1090–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashid, H.; England, E.; Thompson, L.; Polyak, L. Late Glacial to Holocene Indian Summer Monsoon Variability Based upon Sediment Records Taken from the Bay of Bengal. Terr. Atmos. Ocean. Sci. 2011, 22, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Ye, W.; Chen, M.-T.; Pan, H.-J.; Cao, P.; Zhang, H.; Khokiattiwong, S.; Kornkanitnan, N.; Shi, X. Millennial-scale variability of Indian summer monsoon during the last 42 kyr: Evidence based on foraminiferal Mg/Ca and oxygen isotope records from the central Bay of Bengal. Palaeogeogr. Palaeoclim. Palaeoecol. 2021, 562, 110112. [Google Scholar] [CrossRef]
- Martin, E.E.; Blair, S.W.; Kamenov, G.D.; Scher, H.D.; Bourbon, E.; Basak, C.; Newkirk, D.N. Extraction of Nd isotopes from bulk deep sea sediments for paleoceanographic studies on Cenozoic time scales. Chem. Geol. 2010, 269, 414–431. [Google Scholar] [CrossRef]
- Tomczak, M.; Godfrey, J.S. Regional Oceanography: An Introduction, 2nd ed.; Daya Publishing House: Delhi, India, 2003; p. 390. [Google Scholar]
- Chapman, H.; Bickle, M.; Thaw, S.H.; Thiam, H.N. Chemical fluxes from time series sampling of the Irrawaddy and Salween Rivers, Myanmar. Chem. Geol. 2015, 401, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Bickle, M.J.; Chapman, H.J.; Tipper, E.; Galy, A.; De La Rocha, C.L.; Ahmad, T. Chemical weathering outputs from the flood plain of the Ganga. Geochim. Cosmochim. Acta 2018, 225, 146–175. [Google Scholar] [CrossRef]
- Robinson, R.A.J.; Brezina, C.A.; Parrish, R.R.; Horstwood, M.S.; Oo, N.W.; Bird, M.I.; Thein, M.; Walters, A.S.; Oliver, G.J.H.; Zaw, K. Large rivers and orogens: The evolution of the Yarlung Tsangpo–Irrawaddy system and the eastern Himalayan syntaxis. Gondwana Res. 2014, 26, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Peterson, L.; Prell, W. Carbonate dissolution in Recent sediments of the eastern equatorial Indian Ocean: Preservation patterns and carbonate loss above the lysocline. Mar. Geol. 1985, 64, 259–290. [Google Scholar] [CrossRef]
- Jeandel, C.; Bishop, J.; Zindler, A. Exchange of neodymium and its isotopes between seawater and small and large particles in the Sargasso Sea. Geochim. Cosmochim. Acta 1995, 59, 535–547. [Google Scholar] [CrossRef]
- Boyle, E.A. Cadmium and δ13C paleochemical ocean distributions during the Stage 2 glacial maximum. Annu. Rev. Earth Planet. Sci. 1992, 20, 245–287. [Google Scholar] [CrossRef]
- Tripathy, G.R.; Singh, S.K.; Bhushan, R.; Ramaswamy, V. Sr-Nd isotope composition of the Bay of Bengal sediments: Impact of climate on erosion in the Himalaya. Geochem. J. 2011, 45, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Lupker, M.; France-Lanord, C.; Galy, V.; Lavé, J.; Kudrass, H. Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth Planet. Sci. Lett. 2013, 365, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.G.; Yao, T.D.; Davis, M.E.; Henderson, K.A.; Mosley-Thompson, E.; Lin, P.N.; Beer, J.; Synal, H.A.; Cole-Dai, J.; Bolzan, J.F. Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core. Science 1997, 276, 1821–1825. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Fung, I.Y.; Edwards, R.L.; An, Z.; Cheng, H.; Lee, J.-E.; Tan, L.; Shen, C.-C.; Wang, X.; Day, J.A.; et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc. Natl. Acad. Sci. USA 2015, 112, 2954–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutt, S.; Gupta, A.K.; Clemens, S.C.; Cheng, H.; Singh, R.K.; Kathayat, G.; Edwards, R.L. Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years B.P. Geophys. Res. Lett. 2015, 42, 5526–5532. [Google Scholar] [CrossRef]
- Achyuthan, H.; Nagasundaram, M.; Gourlan, A.T.; Eastoe, C.; Ahmad, S.M.; Padmakumari, V.M. Mid-Holocene Indian Summer Monsoon variability off the Andaman Islands, Bay of Bengal. Quat. Int. 2014, 349, 232–244. [Google Scholar] [CrossRef]
- Devendra, D.; Zhang, L.-L.; Su, X.; Bandulage, A.H.; Thilakanayaka, V.; Zhong, F.-C.; Yang, Y.-P.; Xiang, R. Late Quaternary deep and surface water mass evolution in the northeastern Indian Ocean inferred from carbon and oxygen isotopes of benthic and planktonic foraminifera. Palaeoworld 2020, 29, 807–818. [Google Scholar] [CrossRef]
- Abbott, A.N.; Haley, B.A.; McManus, J. Bottoms up: Sedimentary control of the deep North Pacific Ocean’s εNd signature. Geology 2015, 43, 1035. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Haley, B.A.; Mix, A.C.; Walczak, M.H.; Praetorius, S.K. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations. Nat. Geosci. 2018, 11, 749–755. [Google Scholar] [CrossRef]
- Garcia-Solsona, E.; Jeandel, C. Balancing Rare Earth Element distributions in the Northwestern Mediterranean Sea. Chem. Geol. 2020, 532, 119372. [Google Scholar] [CrossRef]
- Tachikawa, K.; Arsouze, T.; Bayon, G.; Bory, A.; Colin, C.; Dutay, J.-C.; Frank, N.; Giraud, X.; Gourlan, A.T.; Jeandel, C.; et al. The large-scale evolution of neodymium isotopic composition in the global modern and Holocene ocean revealed from seawater and archive data. Chem. Geol. 2017, 457, 131–148. [Google Scholar] [CrossRef] [Green Version]
- Marzin, C.; Kallel, N.; Kageyama, M.; Duplessy, J.-C.; Braconnot, P. Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: New data and modelling experiments. Clim. Past 2013, 9, 2135–2151. [Google Scholar] [CrossRef] [Green Version]
- Lauterbach, S.; Andersen, N.; Wang, Y.V.; Blanz, T.; Larsen, T.; Schneider, R.R. An ~130 kyr Record of Surface Water Temperature and δ18O From the Northern Bay of Bengal: Investigating the Linkage Between Heinrich Events and Weak Monsoon Intervals in Asia. Paleoceanogr. Paleoclimatol. 2020, 35, 35. [Google Scholar] [CrossRef] [Green Version]
- France-Lanord, C.; Derry, L.; Michard, A. Evolution of the Himalaya since Miocene time: Isotopic and sedimentological evidence from the Bengal Fan. Geol. Soc. Lond. Spec. Publ. 1993, 74, 603–621. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.J.; Fischer, H.; et al. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Rousseau, T.C.C.; Sonke, J.E.; Chmeleff, J.; Van Beek, P.; Souhaut, M.; Boaventura, G.; Seyler, P.; Jeandel, C. Rapid neodymium release to marine waters from lithogenic sediments in the Amazon estuary. Nat. Commun. 2015, 6, 7592. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.; Hemming, S. Long-lived Isotopic Tracers in Oceanography, Paleoceanography, and Ice-sheet Dynamics. Treatise Geochem. 2003, 6, 453–489. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, H.; Wang, Y.; Gourlan, A.T. Impact of Climate Change on Past Indian Monsoon and Circulation: A Perspective Based on Radiogenic and Trace Metal Geochemistry. Atmosphere 2021, 12, 330. https://doi.org/10.3390/atmos12030330
Rashid H, Wang Y, Gourlan AT. Impact of Climate Change on Past Indian Monsoon and Circulation: A Perspective Based on Radiogenic and Trace Metal Geochemistry. Atmosphere. 2021; 12(3):330. https://doi.org/10.3390/atmos12030330
Chicago/Turabian StyleRashid, Harunur, Yang Wang, and Alexandra T. Gourlan. 2021. "Impact of Climate Change on Past Indian Monsoon and Circulation: A Perspective Based on Radiogenic and Trace Metal Geochemistry" Atmosphere 12, no. 3: 330. https://doi.org/10.3390/atmos12030330
APA StyleRashid, H., Wang, Y., & Gourlan, A. T. (2021). Impact of Climate Change on Past Indian Monsoon and Circulation: A Perspective Based on Radiogenic and Trace Metal Geochemistry. Atmosphere, 12(3), 330. https://doi.org/10.3390/atmos12030330