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Abstract: The Indian summer monsoon (ISM), one of the dramatic illustrations of seasonal hydro-
logical variability in the climate system, affects billions of lives. The ISM dominantly controls the
northern Indian Ocean sea-surface salinity, mostly in the Bay of Bengal and the Andaman Sea, by
the Ganga-Brahmaputra-Meghna and Irrawaddy-Salween rivers outflow and direct rainfall. In the
past decade, numerous studies have used radiogenic neodymium (εNd) isotopes of seawater to link
Indian subcontinent erosion and the ensuing increase in discharge that results in changes in the
north Indian Ocean sea surface. Here we synthesized the state of the ISM and ocean circulation
using the neodymium and hafnium isotopes from north Indian Ocean deep-sea sediments. Our
data suggest that the Bay of Bengal and north Indian Ocean sea-surface conditions were most likely
modulated by changes in the ISM strength during the last glacial-interglacial cycle. These findings
contrast to the hypothesis that suggests that the bottom water neodymium isotopes of the northern
Indian Ocean were modulated by switching between two distant sources, namely North Atlantic
Deep Water and Antarctic bottom water. Furthermore, the consistency between the neodymium and
hafnium isotopes during the last glacial maximum and Holocene suggests a weak and dry ISM and
strong and wet conditions, respectively. These data also indicate that the primary source of these
isotopes was the Himalayas. Our results support the previously published paleo-proxy records,
indicating weak and strong monsoons for the same periods. Moreover, our data further support the
hypothesis that the northern Indian Ocean neodymium isotopes were decoupled from the global
ocean neodymium budget due to the greater regional influence by the great Ganga-Brahmaputra-
Meghna and Irrawaddy-Salween discharge draining the Indian subcontinent to the Bay of Bengal
and the Andaman Sea.

Keywords: Indian summer monsoon; last glacial maximum; Holocene; neodymium isotopes;
hafnium isotopes

1. Introduction

Monsoons represent one of the Earth’s most dynamic interactions between the at-
mosphere, ocean, and continent [1–3]. The livelihoods of approximately one-half of the
Earth’s population depend on the monsoon’s predictable annual return, particularly in
West Africa, Central and East Asia, and Australia [4,5]. The Indian summer monsoon
(ISM), part of the broader Asian monsoon system [6,7], is one of the Earth’s most notable
demonstrations of seasonal hydrological variability of the climate system. The asymmetric
heating between the warmer Indian subcontinent and the cooler Indian Ocean during the
summer (May–September) results in a steep pressure gradient, allowing the transfer of a
large amount of moisture and causing severe precipitation [8,9]. In contrast to the ISM, the
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weaker winter monsoon brings little rainfall to the Indian subcontinent. The ISM predomi-
nantly controls the sea-surface salinity, especially in the Bay of Bengal and the Andaman
Sea, by the direct rainfall and Ganga-Brahmaputra-Meghna and Irrawaddy-Salween rivers’
outflow [10]. With the potential impacts of increasing greenhouse gases and the ensuing
global temperature rise of 1.5–5.8 ◦C by 2100, most scientific investigations, including the
2019 Intergovernmental Panel for Climate Change 6th Assessment Report [11], predict that
up to a quarter of the global mountain glacier mass could disappear by 2050 and up to a half
or more could be lost by 2100 [12,13]. Furthermore, the Indian Himalayan glaciers could
suffer similar or worse consequences as a result of the atmospheric warming [14] caused
by increasing greenhouse gases [15], augmented by the absorption of heat by atmospheric
black carbon [16]. If the 2019 Intergovernmental Panel for Climate Change predictions of
global temperature rise are correct, the freshwater availability resulting from the melting
of these glaciers and monsoonal rainfall becomes a significant concern for sustaining the
livelihood of a billion people. In this context, past climate studies that refer to the present
issues of global warming and glacial melt could shed light on the monsoon’s future aspects
for the Indian subcontinent.

Historical records of the ISM that use organic and inorganic proxies diverge in recon-
structing the monsoon’s strength due to complications inherent in paleo-proxies [17]. For
example, Arbuszewski et al. [18] suggested that the seawater oxygen isotopes, used as a
proxy for the past strength of the continental runoff, potentially overestimate surface hydrol-
ogy due to the impact of high salinity on the oxygen isotopes in planktonic foraminifers [19].
In contrast to the inorganic proxies, paleo-proxy records using organic biomarkers may
also suffer from complications arising from lateral transport (i.e., long-distance transport),
bottom current reorganization, influence of mass-transport, etc., especially on the continen-
tal margins like the Bay of Bengal, Andaman Sea or Arabian Sea [20]. Radiogenic isotopes
in marine sediments, particularly the neodymium (Nd), were also used to reconstruct past
ISM strength through assessing erosion of the Indian subcontinent and circulation [21–26].
The isotopic distribution of Nd in the ocean reflects local source provenance (related to the
intensity of continental weathering and orogenic and volcanic processes) and changes in
paleo-circulation due to its short residence time (500–1000 years) [27–31]. The Hafnium
(Hf) radiogenic isotopes behave similarly to the Nd isotopes but have a shorter residence
time [32–34], and the elemental concentration of Hafnium is two to three times lower than
that of the Nd [33]. Application of the εHf to document continental erosion or circulation is
low in the global ocean [35] but even rarer in the Indian Ocean. Moreover, the combined
use of Lu-Hf and Sm-Nd isotope systems, two radiogenic isotopes widely used to trace the
long-term fractionation processes occurring in the Earth system because these isotopes are
robust and little affected by alteration processes, also offer a unique perspective on silicate
weathering when the detrital fraction is analyzed. When marine sediments are plotted on
the “terrestrial array” (representing the correlation between Nd and Hf isotopes; [36]), it
defines a large field in the Nd versus Hf isotopic plot with a wide range of Hf isotopes at
any given Nd isotopic composition, compared to the tight array defined by both oceanic
and continental rocks [37,38]. In short, marine sediments composed of clays and muds
have more variable Nd isotopic values, and their Hf isotopes are systematically lower
than those of the Fe-Mn crusts and nodules. The decoupling between Lu-Hf and Sm-Nd
systems is closely linked to the so-called “zircon-effect”: Hf is sequestered in erosion-
resistant zircons that remain on the continents or are deposited on the continental margin.
Simultaneously, the rare-earth elements (REEs) are entrained in clays and particulates
traveling to the deep ocean [39]. Therefore, the study of the detrital fraction of marine
sediments provides additional information on sources and past silicate weathering in-
tensity on continents. In any case, both Nd and Hf isotopic signatures are expressed in
epsilon (ε) notation, as the deviation from the Chondritic Uniform Reservoir, by εNd or
εHf = (Rsample/RCHUR − 1) × 104, where R represents 143Nd/144Nd and 176Hf/177Hf ratios.
The deviation of Chondritic Uniform Reservoir values for 143Nd/144Nd and 176Hf/177Hf is
0.512638 [40] and 0.282785 [41], respectively.
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We present combined seawater and detrital εNd and εHf data from one of the tropical
northern Indian Ocean sites—758 of the Ocean Drilling Program (ODP)—to reconstruct
the past strength of the ISM. Furthermore, we make an attempt, by integrating published
radiogenic and oxygen isotopes from the northern Indian Ocean, to provide answers to
the outstanding questions for understanding the ISM and ocean circulation. Our current
contribution seeks to (1) provide an insight into the past 145,000 years, i.e., last glacial
cycle (εNd and εHf), and (2) offer perspectives for the last glacial maximum (LGM) to the
present, due to the rapid proliferation of εNd data from this region during the previous
decade. In so doing, we address one fundamental question: whether εNd and εHf isotopes
can concomitantly be used to assess the strength of past erosion of the Indian subcontinent
and, by extension, the strength of the ISM.

2. Modern Oceanographic Setting of the Indian Ocean

The northern Indian Ocean surface circulation seasonally reverses due to the mon-
soon [42]. During the ISM, the East Indian Coastal Current flows northward along the
eastern Indian coast in the Bay of Bengal, whereas the West Indian Coastal Current flows
equatorward (Figure 1), following the west Indian coast in the Arabian Sea [2,43]. How-
ever, both the East and West Indian Coastal currents reverse direction during the winter
monsoon. The other notable surface circulation that changes direction in the southwest and
northeast monsoon currents links the western Java coastal waters to the Arabian Sea [2].
The westward flowing South Equatorial Current between 5◦ and 15◦ S brings western
Pacific waters through the Indonesian throughflow and around 5◦ N of the Somali margin;
these waters turn eastward and thus feed the thermocline [44]. The westward flowing
North Equatorial Current in winter also brings surface waters through the Strait of Malacca,
reaching 7.5◦ N in the Bay of Bengal.

The deep Indian Ocean water masses originate mainly from the south. In the south-
east, deep waters comprise equal amounts of lower Circumpolar Deep Water and Antarc-
tic bottom water [45,46] and enter into the southeast Indian Ocean through the Perth
Basin, providing about one-quarter of the global Antarctic bottom water (Figure 1). This
Antarctic bottom water originates from the Ross Sea and travels along the Wilkes-Adélie
Coast [47–49], where it spills into the central Indian Basin through numerous deep gaps
of the 90◦ E ridge [46,50]. In the southwest, lower Circumpolar Deep Water (>3.8 km)
enters into the Crozet-Madagascar and Mozambique Basins and is overlain by the upper
Circumpolar Deep Water (between 2 and 3.8 km; [48]). These waters flow into the Somali
and Arabian basins as the western boundary current after passing through the Amirante
Passage [46,51]. In the northern Indian Ocean, the nutrient content of the northward-
flowing deep waters progressively ages due to lack of ventilation and is not modified by
mixing with any other deep-water mass [48,51–53]. The only deep-water mass exiting from
the Indian Ocean in the 2–3.5 km depth range is the Indian Deep Water [48,51,54], which is
a mixture of upwelled bottom water and the upper Circumpolar Deep Water; it flows into
the western Indian Ocean as the southward boundary current [55].

The Antarctic bottom water forms mainly at the Weddell Sea and Wilkes-Adélie coast
of the Antarctic margin through a combination of surface water cooling, wind stress, and
salt gain in the course of seasonal sea ice formation [48,54]. This cold and dense water
floods the deepest part of the Antarctic Ocean and moves northward to fill the global ocean.
The sinking of the Antarctic bottom water and Antarctic Intermediate Water balances the
upwelling of Circumpolar Deep Water, which is fed by injection of the North Atlantic Deep
Water between the Antarctic Circumpolar Current and Antarctic Polar Front.
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Figure 1. Circulation and generalized bathymetric features of the Indian Ocean, as well as the location of sediment cores
used in the study. (A) Black and discontinuous white arrows reflect various surface currents that reverse directions between
southwest and northeast monsoons, mostly in the tropical and northern Indian Ocean [2]. Deep blue arrows indicate the
likely pathways of the Antarctic Bottom Water (AABW)/Circumpolar Deep Water (CPDW) [54]. (B) Inset map showing the
enlarged portion of the northern Indian Ocean, including the Andaman Sea (AS), Bay of Bengal (BoB), and the sediment
cores used in the study. (C) Salinity distribution of the Indian Ocean from Antarctica throughout the Indian Ocean, reflecting
the geometry of various water masses [56]. Note: EICC and WICC, East and West Indian Coastal Currents; NMC/SMC,
Northeast/Southwest Monsoon Currents; SEC, South Equatorial Current; LC, Leeuwin Current; EACC, East African
Coastal Current; ITF, Indonesian Throughflow; AP, Amirante Passage; AABW, Antarctic bottom water; AAIW, Antarctic
Intermediate Water; GBM, Ganga-Brahmaputra-Meghna; IS, Irrawaddy and Salween.
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3. Materials and Methods

Marine sediments from the Arabian Sea and Bay of Bengal basin are archives repre-
senting a complete record of the erosional history of the Himalayas over time, allowing
reconstruction of past ISMs. Records are available in these basins; however, most of these
records [57–60] are unavailable, have an insufficient temporal resolution, or have a length
of records inadequate for this study. Consequently, we have focused our study mainly on
cores ODP 758 (this study; [23], RC12-343 [21], and CR2 [22,24] and use other minor data,
such as Hein et al. [59], Liu et al. [61], Naik et al. [25], and Yu et al. [62], for the discussion.

3.1. Samples and Data

The ODP site 758 was drilled on the 90◦ E ridge in 1989 at 2925 m water depth ([63];
Figure 1). Published εNd data of cores RC12-343 (15.2◦ N; 90.6◦ E) and SK129-CR2 (3◦ N;
76◦ E) collected at 2666 and 3800 m water depths, respectively, detailed in Stoll et al. [21],
Piotrowski et al. [22], and Wilson et al. [24], were also used in the study and are introduced
in the respective sections. Data from piston cores RC12-344 [26] and MD77-176 [62],
collected on the northern Andaman Sea shelf and eastern Bay of Bengal (exit pathway of
the Andaman Sea water) at 2100 and 1375 m water depths, respectively, were also taken
into consideration.

3.2. Revision of the Stratigraphy

The SPECtral MAPping Project orbital chronology [64] was used to construct the
stratigraphy of ODP site 758 and core RC12-343 [21]. Piotrowski et al. [22] used the 14C-
AMS dates and the earlier version of the benthic oxygen isotope stack of Lisiecki and
Raymo [65] to build the age model of core SK129-CR2. We revised the age models due to
the availability of the latest version of the radiocarbon calibration program CALIB 8.1 [66]
and Marine20 reservoir ages [67] for the 14C-AMS dates used in cores SK129-CR2 and the
deep Indian Ocean benthic stack of Lisiecki and Stern [68]. A brief description of the age
model in each core is given below.

ODP Site 758: Farell and Janecek [63] reported stratigraphy of the ODP Site 758, mea-
suring oxygen and carbon isotopes in the planktonic foraminifer Globigerinoides sacculifer
and benthic foraminifer Cibicidoides wuellerstorfi, magnetic stratigraphy, and astronomical
tuning. We updated the age model of site 758 using the stratigraphic framework proposed
by Lisiecki and Stern [68], applying the deep-Indian regional stack.

SK129-CR2 (hereafter CR2): Thirteen 14C-AMS dates were converted to calendar years
using the Fairbanks calibration curve 01.07 [69] reported by Piotrowski et al. [22] and
Wilson et al. [24]. Moreover, the authors applied a uniform 350-year reservoir age following
the reports by Butzin et al. [70] and Cao et al. [71] to these 14C-AMS dates. The 14C-AMS
dates were converted to calendar years using the CALIB 8.1 [66] and Marine20 reservoir
ages [67] to maintain consistency and harmonize the age model with other records used in
this study.

RC12-343: Planktonic foraminifera Globigerinoides ruber (white) oxygen isotopes were
used to construct the stratigraphy, which was tuned to the SPECtral MAPping Project
orbital stratigraphy [64] to build the age model of core RC12-343 [21]. The outdated
SPECtral MAPping Project chronology is no longer operational, and hence we updated
the stratigraphy of RC12-343, applying the deep-Indian regional stack of Lisiecki and
Stern [68].

RC12-344: Nine 14C-AMS dates were converted to calendar years using the older
versions of the CALIB program [26,72] to construct the age model. The 14C-AMS dates
were converted to calendar years using the updated CALIB 8.1 [66] and Marine20 reservoir
ages of Heaton et al. [67].
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3.3. Analytical Protocols
3.3.1. ODP Site 758

The analytical protocol for εNd seawater extraction and measurement was detailed in
Gourlan et al. [23] and Rashid et al. [26]. For εNd and εHf of detrital fraction analyzed on
the same sediments, we briefly describe both protocols below. Approximately 300–400 mg
of pulverized sediments were treated by CH3COOH (1N) in excess, which allowed a
total dissolution of the carbonate fraction and leaching of most of the Mn-oxides around
the microfossils in which the seawater εNd was trapped as well as the intratest organic
matter [73]. As the seawater signal was already analyzed, the supernatant fluid carrying the
seawater signal was removed. The solid residue was rinsed twice with water, ultrasonically
agitated in 4 mL of 1N HBr, and centrifuged to remove the remaining oxides to extract
the detrital signal. Then, the residue was digested for one week using a classic mixture
of HF-HNO3-HClO4 (3mL-3mL-15 drops) at 135 ◦C in Parr Bombs. Nd and Hf chemical
separation were based on the method published by Chauvel et al. [74] and performed
at the Université de Savoie Mont-Blanc in Grenoble. Total procedural blanks for Nd
and Hf were 33 pg (n = 11) and 12 pg (n = 6), respectively, accounting for less than
0.5% of the sample in total. The εNd and εHf were measured on a Nu Plasma MC-ICP-
MS in ENS-Lyon and corrected for mass fractionation bias using 146Nd/144Nd = 0.7219
and 179Hf/177Hf = 0.7325, respectively. The Ames-Rennes-Nd and Ames-Grenoble Hf
reference standards were run every two or three samples and yielded an average value
of 143Nd/144Nd = 0.511964 ± 0.000019 (2σ, n = 34) and 176Hf/177Hf = 0.282161 ± 0.000025,
respectively, for all the sessions; they were corrected after every session to the recommended
values for these two standards [74,75]. Several complete duplicate analyses were also
performed. For Nd and Hf isotopic ratios, the measurements were reproduced within
analytical errors (0.25 ≤ εNd or εHf).

3.3.2. Sample Preparation Methods of the Published Records

It would have been ideal to follow a uniform sample preparation protocol to determine
the seawater εNd data of the three major sites (RC12-343, ODP Site 758, and SK129-CR2)
used in this study. However, Stoll et al. [21], Piotrowski et al. [22], and Gourlan et al. [23]
used two different sample preparation methods, which are (i) leaching of authigenic
sedimentary Fe-Mn oxyhydroxides from bulk sediments and (ii) extraction of Nd by
dissolving planktonic foraminifers. It is beyond the scope of this paper to provide a detailed
description of these methods; however, in short, Piotrowski et al. [22] followed a technique
analogous to Gourlan et al. [73] to prepare samples for εNd determination and Stoll et al. [21]
acquired εNd data from planktonic foraminifers, building on the work of Burton and
Vance [57] and following the Cd/Ca cleaning protocol of Boyle and Keigwin [76]. The
method comprises repeated ultrasonication in ultra-pure water and methanol to dislodge
the clay and other fine-grained sediments adhering to the foraminiferal tests subjected to
oxidative and reductive cleaning to remove the Fe-Mn oxide coatings. The cleaned tests
were dissolved using nitric acid to determine the εNd [21].

4. Results and Discussion
4.1. Paleoclimate Records of the Last Glacial Cycle in the Northern Indian Ocean

The composite data of the three records selected (presented in Figure 2) provide
a latitudinal transect that allows us to evaluate changes in the surface and deep-water
circulation in the northern Indian Ocean. As previously described, we revised the age
models by tuning records to the regional deep-Indian benthic δ18O stack [68]. Hence, any
minor leads and lags between the water mass properties were not considered; instead,
we focused our discussion on the broader aspects of these data and their implications for
understanding the surface and deep ocean circulation.

At site 758, cold glacial εNd were more radiogenic (~−7.4 to −8.4), whereas warm
interglacial periods were less radiogenic (~−11 to −9.5). This variability in εNd is in
tandem with the benthic oxygen isotopic (δ18O) stack of the glacial-interglacial cycle [68],
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suggesting an overriding link between the Northern Hemisphere ice-sheet growth and
decay and the tropical hydrological cycle. To explain these fluctuations, Gourlan et al. [23]
considered the primary sources of Nd contributing to εNd values in the northern Indian
Ocean: (i) the Himalayan rivers (less radiogenic input; [59,62,77]), (ii) the Indonesian
Throughflow (where radiogenic input is related to Pacific waters passing through the
complex Indonesian volcanic islands system; [23,53,78–81]), and (iii) the North Atlantic
Deep Water (less radiogenic input, which is transported into the southern Indian Ocean by
the Antarctic Circumpolar Current [79,82,83]. There are other local Nd sources, like the local
wind [84,85], minor inputs from Crozet and Kerguelen plateaus [86], and southern African
terrains [87,88]. However, the impact of these sources on the Nd budget is considered
limited compared to the three primary sources (i–iii) and thus is inadequate to explain
the large glacial-interglacial εNd fluctuations of the northern Indian Ocean. Considering
the small εNd variations recorded at ODP Site 757, located in front of the Indonesian
throughflow, Gourlan et al. [23] considered this primary source negligible to modify the
εNd values in the Indian Ocean. Moreover, previous studies of salinity distributions,
Nd isotopic composition of marine sediments, and δ18O foraminifera from the Bay of
Bengal [58,62,80,89–91] have suggested a mixing between the mean Indian Ocean and
fresh water and sediments derived by the Ganga-Brahmaputra-Meghna outflow. Hence,
we hypothesize that the εNd values at site 758 were modulated mostly by changes in
the Ganga-Brahmaputra-Meghna outflow [23] rather than a deep-water circulation. In
this context, higher radiogenic values resulted from the dramatic reduction of the Ganga-
Brahmaputra-Meghna outflow during the glacial period, while during the interglacial
periods, these outflows were significantly increased, resulting in less radiogenic εNd.

In contrast to site 758, Stoll et al. [21] reported seawater εNd data using surface-living
foraminifers, following an identical method used at site 758 by Burton and Vance [57] for the
last 195 ka from core RC12-343. The glacial-interglacial εNd varies from radiogenic (−6.95)
to less radiogenic (−11.12), consistent with the findings at site 758 [23]. Moreover, using a
suite of cores, Stoll et al. [21] reconstructed the meridional gradients between 20◦ and 5◦ N
for the Holocene and LGM periods (Figure 3). The authors demonstrated that meridional
gradients in Holocene εNd, where the southern sites are more radiogenic compared to those
of the northern sites, are consistent with the findings of modern seawater εNd [53,80,92].
Padmakumari et al. [93] also showed a north-south εNd gradient in the glacial surface
waters of this region. In this regard, less radiogenic εNd was attributed to dilution by the
Ganga-Brahmaputra-Meghna outflow at the northern sites, while higher radiogenic values
in the southern sites were assumed to be associated with less sea-surface dilution.
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Figure 2. Paleoclimate records of the last glacial cycle, reflecting changes in the Asian monsoon. (a) Oxygen isotopes (δ18O)
stack of the deep Indian Ocean [68]; (b) revised age model of cores SK129-CR2 and ODP 758 using the 14C-AMS dates
and the deep Indian Ocean benthic stack of Lisiecki and Stern [68]; (c) carbon isotopes (δ13C) in the epifaunal benthic
foraminifera Cibicidoides wuellerstorfi of cores CR2 and 758; (d) seawater neodymium isotopic ratio (εNd) from cores CR2
(black), ODP-758 (blue) and RC12-343 (green); (e) oxygen isotope ratios (δ18O) of speleothems from northeast China [94].
Note: “Zone-I” indicates the variability of εNd data among three records in which the higher radiogenic εNd values of core
RC12-343 are highlighted. The grey bar denotes the MIS4, in which εNd values of cores 343 and CR2 are identical; such data
are unavailable at site 758.
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These modern fingerprinting data were then used to interpret the LGM εNd, where
the north-south gradients appear to be significantly weakened, suggesting a reduction in
dilution by the Ganga-Brahmaputra-Meghna outflow at the northern sites [21]. By extension,
this suggests that the ISM was weak, and a dry climate prevailed during the LGM. The
findings of Stoll et al. [21] are consistent with other independent paleo-proxy records of the
ISM, such as ancient seawater oxygen isotopic composition (δ18Osw), which also suggests a
dry climate in the Bay of Bengal and the Andaman Sea during the LGM [72,95,96].

Compared to the data of Bay of Bengal sites, Piotrowski et al. [22] reported seawater
εNd for the last 170 ka from the northern tropical Indian Ocean core CR2 (Figure 1). It was
collected at 3800 m water depth located at 12◦ and 2◦ S, i.e., 2094 and 1596 km from the
Bay of Bengal sites RC12-343 and 758, at 2666 km and 2925 km water depths, respectively.
The authors demonstrated that the glacial εNd was more radiogenic and averaged ~−7.5,
whereas interglacial εNd was less radiogenic and varied from −8.4 to −10 (Figure 2). In
a subsequent study using the same core, Wilson et al. [24] extended the εNd record up
to 250 ka, following a method similar to Gourlan et al. [23], and tested various sample
preparation methods (see above). The authors did not find any changes in the εNd values
of the interval between 0 and 145 ka, the interval of interest of Piotrowski et al. [22]. In any
event, there are similarities between the pattern (Figure 2) of ancient seawater εNd and δ13C
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(measured in the epifaunal benthic foraminifera C. wuellerstorfi, believed to faithfully record
the bottom-water dissolved inorganic carbon, if not influenced by the high productivity in
the surface water). However, a divergence between these water mass properties from 90 to
120 ka is prominent. Piotrowski et al. [22] interpreted that the fluctuation of εNd was due to
changes in the proportion between the North Atlantic Deep Water and Circumpolar Deep
Water, i.e., changes due to the bottom water circulation. Using this reasoning, the North
Atlantic Deep Water carries less radiogenic εNd. Simultaneously, the Circumpolar Deep
Water contains more radiogenic εNd, and any changes in the ratio between these water
masses control the bottom water εNd values at site CR2 [22]. Wilson et al. [24] put forward
a new hypothesis to explain the εNd data of Piotrowski et al. [22], suggesting that the εNd
data reflect changes in the global meridional overturning circulation rather than the simple
on and off mechanism of the North Atlantic Deep Water formation.

In summary, the Bay of Bengal and Andaman Sea records [21,23,26] emphasize that
the Indian and East Asian rivers draining the greater Himalayas dominantly influenced
the εNd values in the northern Indian Ocean, whereas the northern tropical Indian Ocean
records [22,24] mostly favor deep ocean circulation, mainly by the Antarctic bottom water
and North Atlantic Deep Water. Therefore, the question is whether the regional sediment
discharge or a distant source modulates the εNd values in the northern Indian Ocean, which
we explore below.

4.2. Factors Controlling the εNd Signals in the Northern Indian Ocean

The question of what controls the northern Indian Ocean εNd values is documented in
many sedimentary records. The two main factors that can provide information about the
εNd values are briefly discussed below.

The first factor could be the differences in the sample preparation techniques. Wilson et al. [24]
tested three methods of Nd extraction [57], Stoll et al. [21], Gourlan et al. [73], and
Piotrowski et al. [22]) using samples from the same tropical northern Indian Ocean core—CR2—
used by Piotrowski et al. [22]. To summarize, (a) bulk sediments were used to extract Nd from
ferromanganese coatings on detrital and biogenic grains, i.e., sediment leaching; (b) Nd
was extracted from the planktonic foraminifers following the reductive-oxidative cleaning
protocol of Boyle and Keigwin [76]; (c) the cleaning protocols of Boyle and Keigwin [76]
were applied to fish teeth and fish debris, omitting the oxidative step to extract Nd [24,97].
Surprisingly, Wilson et al. [24] reported identical εNd values using all three methods. There-
fore, it appears that the heterogeneity in εNd of the northern Indian Ocean is not a result of
the sample preparation techniques. Moreover, the surprisingly similar εNd values during
the late Holocene and MIS4 at three and two sites (Figure 2), respectively, raise questions
about the utility of sophisticated sample preparation techniques and the sea-surface versus
deep ocean circulation hypotheses.

The second factor concerning the Northern Indian Ocean surface circulation could be
an important issue; a debate exists whether the εNd values integrate the upper few hundred
meters of the surface ocean or simply the bottom water signature. Piotrowski et al. [22] hy-
pothesized that the North Atlantic Deep Water, or a modified version of the North Atlantic
Deep Water, dominantly influenced the northern Indian Ocean deep water. However, the
conductivity, temperature, and depth data in the Bay of Bengal [98], modern seawater [80],
the GEOTRACERS program [33,92], and sediment core-top εNd data appear to contradict
such a hypothesis, which was also questioned by Gourlan et al. [23]. It is plausible that
the Ganga-Brahmaputra-Meghna outflow predominantly influenced the surface waters
at site 758 during the summer, with an εNd of −12 to −12.5 [58,62]. However, using the
modern monthly averaged sea-surface salinity, Rashid et al. [72,95] demonstrated that site
758 could also be affected by Irrawaddy and Salween river outflow. These waters might
contain εNd (~11) signatures of eastern and northern Indo-Burman Ranges, as well as the
eastern Himalayas, drained by the Irrawaddy and Salween river [99,100]. Thus, the most
likely explanation for the εNd data at site 758 would be the integrated signature among
the Ganga-Brahmaputra-Meghna and Irrawaddy-Salween river outflows and the bottom
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waters. The annual discharge of the Ganga-Brahmaputra-Meghna, Irrawaddy, and Salween
rivers is 1090 km3 [21], 450 km3, and ~200 km3 [26,101], respectively. Thus, these discharges
provide clues to the relative contribution of εNd from these sources, which requires further
documentation. Dia et al. [86] reported εNd data from 18 cores from various physiographic
provenances (abyssal plains, ridges, aseismic ridges, a fracture zone, and a submarine fan)
of the Indian Ocean. The authors then suggested that the northern and central Indian
Ocean shows two isotopically homogeneous regions. However, an evaluation of these core
tops data reveals no 14C-AMS dates, which raises questions of whether those core tops
represent modern bottom water εNd, given the extremely low sedimentation rates in the
vast tropical Indian Ocean [102]. Further, Stoll et al. [21] suggested a change in the source
input during the glacial period, with a dominance of more radiogenic Nd sources from
Arakan coastal rivers (estimated at −6, but this value is uncertain). The authors evaluated
a contribution of 80–90% for the Burman Arc/Arakan coastal river sources, with 20–10%
for Ganga-Brahmaputra-Meghna sources related to higher precipitation in the Arakan
region. Nevertheless, the drainage area and discharge of Arakan coastal rivers are seven
and five times smaller, respectively, than those of the Ganga-Brahmaputra-Meghna rivers.
This implies that the Arakan coastal rivers’ impact on the Nd isotopic value of the Bay of
Bengal seawater was most likely limited, as was also recently inferred by Naik et al. [25].
Therefore, the εNd seawater value at site 758 is probably a mixture of the Bay of Bengal
seawater and the Himalayan river system, which only includes the Ganga, Brahmaputra,
Meghna, Salween, and Irrawaddy rivers.

The topical Indian Ocean site CR2 is bathed by a combination of lower Circumpolar
Deep Water and Indian Deep Water, with a distinct density, oxygen, silica content, and
εNd signature [46,82]. A complex array of surface currents, with different surface and
thermocline waters depending on the season, exits at site CR2 (Figure 1). During the ISM,
the eastward flowing Southwest Monsoon Current delivers the West Indian thermocline
water (εNd = −7.5) [82]. These waters most likely have a portion from the westward flowing
south equatorial current, between 5◦ and 15◦ S, which brings western Pacific waters through
the Indonesian throughflow with an εNd signature of −3 to −4 [80,103]. Around 5◦ N of
the Somali margin, these waters turn eastward and feed the thermocline [44]. In addition,
the north-flowing East Indian Coastal Current off India reverses during the ISM, carrying
low salinity freshwater with the dissolved Nd (εNd values of these waters are presently
unknown) below the tip of Sri Lanka, near-site CR2 [2,26,72,95]. In contrast, the Northeast
monsoon current in winter also carries dissolved particulates that again exit below the tip
of Sri Lanka [2,44].

The westward flowing north equatorial current in winter also brings less radiogenic
surface water with εNd values of −10.2 to −10.9 [80] (Figure 1) through the Strait of Malacca,
which reaches the Bay of Bengal at 7.5◦ N, close to site CR2. In summary, the εNd data
at site CR2 most likely represent integrated water column values. Therefore, it would be
insightful to differentiate between the various water masses using the εNd when most of
these waters have a near-identical signature. Any effort to fingerprint these waters using
the εNd values would be like trying to find a needle in a haystack. Thus, it appears that
the initial intention of using εNd to trace deep ocean circulation accurately runs against the
grain of not being complicated by various factors, at least in the Indian Ocean, as is the case
for the paired use of Cd/Ca and δ13C in benthic foraminifers in the Southern Ocean [104].

4.3. The Questions Regarding the Northern Indian Ocean εNd Data

The three εNd curves (Figure 2) co-vary with one another despite their variations in
data resolution and the absolute εNd values of the northern Indian Ocean. Our εNd data at
site 758 are consistently less radiogenic throughout the last glacial cycle than εNd values at
site CR2 (Figure 2d). It should be acknowledged that the revised age model for the ODP site
758 indicates a gap in εNd data, not only in the MIS4 but also much wider between 50 and
100 ka (Figure 2). The penultimate glacial and LGM periods show the highest radiogenic
values, regardless of whether the records were generated close to the Ganga-Brahmaputra-
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Meghna outflow or in deeper water such as site CR2. Furthermore, the penultimate glacial,
MIS4 and LGM εNd data are identically more radiogenic at sites RC12-343 and CR2. One of
the most striking features is that the lowest radiogenic εNd values are at the northern site
of RC12-343 for the penultimate interglacial (MIS5e), compared to higher radiogenic values
at sites 758 and CR2. However, there are particularities in the εNd values at site RC12-343,
showing crossovers such that (i) radiogenic εNd values are higher compared to the records
of CR2, from 78 to 116 ka, which we label “Zone-I”; (ii) identical εNd values are found in
cores RC12-343 and CR2 during the MIS4; (iii) intermediate εNd values during the MIS6
and from MIS3 to Holocene are found between cores CR2 and site 758 (Figure 2).

The lowest εNd values during the MIS5e could be explained by the wettest period at
RC12-343, and by extension, the strongest ISM, resulting in the largest Ganga-Brahmaputra-
Meghna outflow and East Asian rivers’ discharge [21,99]. This hypothesis would be
consistent with the large body of geochemistry data from the Bay of Bengal and Andaman
Sea [105,106] and the δ18O records from the greater Asian monsoon system [107–109]. By
extension, the lack of such light εNd values during the MIS5e at CR2 would suggest that
it would be decoupled from the dynamics of the ISM if the site were to be influenced
by the monsoons. Surprisingly, the late Holocene εNd values are statistically identical
for the three sites (Figure 2), consistent with the new northern Bay of Bengal records
from Achyuthan et al. [110] and Naik et al. [25]. The data of Naik et al. [25] indicate a
dominant monsoonal impact in the surface and deep central BoB since 8 ka, increasing
riverine particulates from the Ganga-Brahmaputra-Meghna system with the release of
unradiogenic Nd.

The other striking feature is the more radiogenic εNd in the northern site at RC12-343
than the southern site at CR2 in Zone-I. It would have been easier to explain that the Ganga-
Brahmaputra-Meghna outflow was weaker, and hence the relative flux of εNd compared to
the southern site was smaller for this interval. The other possibility is that the position of
the cores in terms of deep-water settings are such that the site RC12-343 is bathed by the
upper Circumpolar Deep Water, while the southern site is bathed by lower Circumpolar
Deep Water/Antarctic bottom water. Bottom water δ13C data at site RC12-343 are required
but currently unavailable to understand the discrepancy of the εNd values further. The
bottom water δ13C data between 0 and 78 ka at site 758 are almost identical to those of
the CR2, even though the latter is located ~1000 m deeper than the former, which may
suggest that both sites were bathed by the same water mass [111], and similar surface water
productivity prevailed.

4.4. A New Paradigm for the Northern Indian Ocean Neodymium Isotopes during the
Last Deglaciation

To better understand the global marine Nd cycle, Du et al. [31] provide a synthe-
sis of authigenic εNd records using the “bottom-up” concept for Nd budget in the deep
ocean [112,113]. The authors used the modern global seawater ([37,85,114,115]; and refer-
ences therein) and paleo εNd data in a box model to evaluate the sensitivity of εNd as an
ocean circulation tracer. In so doing, Du et al. [31] partitioned the global historical εNd data
into four categories: (i) a deglacial time series, (ii) a Holocene time slice (0–6 ka); (iii) an
LGM time slice (19–23 ka); (iv) a Heinrich Stadial 1 (HS1) time slice (15–18 ka). We used
the deglacial time series to evaluate further our εNd, including the published northern
Indian Ocean εNd data. Incorporating more than 270 seawater εNd records, Du et al. [31]
performed principal component (PC) analysis in which ~86% and ~6% of the total vari-
ance of εNd values correspond to PC1 and PC2, respectively. In this context, PC1 reflects
smooth εNd changes from the LGM to Holocene, with a rapid shift in mid-late Holocene.
Simultaneously, PC2 appears to reveal deglacial anomalies peaking near ~16 ka and ~12 ka,
coinciding with the HS1 and Younger Dryas periods (Figure 8 in [31]), respectively. We plot
the PC1 of Du et al. [31], εNdseawater, εNd detrital, and εHf detrital data of site 758 (data from
Gourlan et al., [23] and new data) and published Andaman Sea εNd of core RC12-344 [26]
in Figure 4. Two highly resolved northern Bay of Bengal εNd data, i.e., MD77-176 [62] and
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SK157-20 [25], are also plotted in Figure 4 to assess the efficacy of εNd and εHf data for
reconstructing the ISM.

A considerable degree of variability appears between the tropical northern Indian
Ocean and Bay of Bengal εNd values (Figure 4). However, a similar overall εNd trend, i.e.,
glacial values are more radiogenic than those of the Holocene, despite these data were
generated using different methods (see Section 3.3) in different carriers of the εNd. Pad-
makumari et al. [93] also reported such a trend (i.e., a significant εNd shift) in the planktonic
foraminifera from the LGM to Holocene from the Bay of Bengal. This lighter εNd trend
from glacial to Holocene most likely suggests a transition from a weaker to stronger ISM,
resulting in more river outflow and sediment discharge, consistent with other paleo-proxy
records of the ISM, namely the seawater oxygen isotopes (δ18Osw) [72,95,116,117]. More-
over, the northern Bay of Bengal and Andaman Sea εNd data differ from those of the tropical
Indian Ocean (CR2). The former reflects millennial-scale variability, including the large
changes in εNd. Using εNd data from the Andaman Sea core RC12-344, Rashid et al. [26]
hypothesized that the contribution from the Irrawaddy-Salween river was due primarily
to the erosion of the Indian subcontinent reflecting an alternation between strengthening
and weakening of the ISM [94,108].

Our new εHf and εNd data at site 758 show that (i) the detrital fraction has a composi-
tion falling in the field of clays and biogenic muds in the Nd-Hf space without significant
influence from sands, (ii) the Nd isotopic values obtained on the detrital fraction at site
758 fall in the range of the Himalayan values and are similar to “Higher Himalayan Crys-
talline” with a contribution of “Tethyan Sedimentary Sequence” [118]; (iii) Hf isotopic
values of the detrital fraction do not correspond to the Himalayan values. This latest
finding can be explained by the more complex behavior of Hf in sediments. In contrast
to Nd, Hf isotopic ratios of sediments vary as a function of both source changes and min-
eralogy of the sediments. Here, the sediments include only fine-grain fraction without
zircon; this fraction is not representative of the source rock for the Lu-Hf system. Part
of the Hf source signal remained close to the continent within zircon-rich sands and is
not sampled in this study. Moreover, a small shift is observed between the LGM and
Holocene period for both systems, from higher to lower radiogenic values, indicating an
increase of the riverine input or/and a change in the detrital source. Using authigenic FeMn
oxy-hydroxides, Gutjahr et al. [35] provide similar reasoning to explain higher to lower
radiogenic εHf values from the northern North Atlantic. This shift independently confirms
the trend of εNd and δ18Osw, thus suggesting a reduction in the sediment discharge during
the last deglacial from the Holocene (Figure 4). Recently, Naik et al. [25] indicated that
the northern Bay of Bengal εNd values during the deglacial period were mostly controlled
by the Antarctic bottom water, whereas the late Holocene values were influenced by the
Ganga-Brahmaputra-Meghna discharge, inconsistent with the findings at sites RC12-344
and 758.
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Figure 4. Deglacial climate sequence of the northern Indian Ocean. (a) Oxygen (diamonds) and
carbon (circles) isotopes of the northern tropical Indian Ocean core SK129-CR2 [22,24]; (b) εNd

seawater data of cores SK129-CR2 [22], ODP 758 [23], and RC12-343 [21], in which various sample
preparation methods were used; (c) εNd data of cores MD77-176 [62], SK157-20 [25], and RC12-
344 [26]; (d) hafnium isotopes εHfdetr (black) and εNdetr (blue) from the detrital fraction of core ODP
758 (this study); (e) principal component 1 (PC1) of the global seawater and paleo-seawater εNd

data [31]; (f) oxygen isotopes of North Greenland Ice Core Project [119].

The PC1 scores of the global εNd data appear to be a mirror image of both Bay of
Bengal and tropical Indian Ocean εNd data (Figure 4). Du et al. [31] estimated a four to five
epsilon unit offset between the north Indian Ocean εNd and the global PC1 scores. This
large deviation cannot be explained by alternating sources between the North Atlantic
Deep Water and Antarctic bottom water, as the modern εNd values of North Atlantic Deep
Water and Antarctic bottom water are ~−13.5 and ~−4, respectively. Furthermore, the
modern Bay of Bengal εNd values vary from −10.5 to −11 [53], in which the particulate
phases of Ganga-Brahmaputra-Meghna rivers mostly impact the dissolved Nd. Hence,
it appears that the Nd isotopes from the Bay of Bengal cannot be used as a tracer for
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the mixing of water masses in the global ocean. This implies that the Nd isotopes can
be used as a robust proxy for reconstructing terrestrial discharge adjacent to continents,
consistent with the Nd isotopes of the modern Amazon discharge [120]. Using a sediment
core from the central Bay of Bengal, Naik et al. [25] completely discredited the role of the
dissolved or particulate Nd from the Ganga-Brahmaputra-Meghna rivers by suggesting
that the effects of surface particles on seawater Nd isotopes are mostly confined to the
surface layers of the oceans, with little to no impact on bottom water [121]. Assuming
that the assumptions of Naik et al. [25] are correct, and if the contributions from the
Ganga-Brahmaputra-Meghna and Irrawaddy-Salween rivers were held constant or no
contribution from these rivers to the northern Indian Ocean was considered, the sole supply
from the North Atlantic Deep Water, modified North Atlantic Deep Water, or Antarctic
bottom water simply fail to explain the observed εNd values. Realizing the shortcomings
of the εNd values, Du et al. [31] hypothesized that the εNd values in the northern Indian
Ocean are decoupled from the global ocean. To explain the εNd values at site RC12-344,
Rashid et al. [26] argued that the Andaman Sea εNd values were mostly modulated by
the Irrawaddy and Salween discharge with stiff (and unprofessional) resistance from Nd
community. However, Du et al. [31] appear to confirm the hypothesis that the discharge
proximal to continental margin must be the dominant factor in determining Nd isotopes.

5. Summary

Nd isotopes have been used in the northern Indian Ocean, Bay of Bengal, and the
Andaman Sea during the last decade to reconstruct the past strength of the ISM and deep
ocean circulation. One of the factors that made the Nd isotopes a good proxy is its apparent
conservative nature, undiluted by the regional influences such as the complications associ-
ated with the Mg/Ca or B/Ca ratios in biogenic calcite. The signature of the Nd isotopes
in the global ocean was believed to be governed by binary sources, i.e., less radiogenic
old continental crust and more radiogenic relatively young volcanic rocks, which were
distributed by the North Atlantic Deep Water and Antarctic bottom water. However, in this
broader understanding, the boundary exchange or regional sources of Nd were considered
insignificant to the global Nd budget. This long-held paradigm appears to be weak [31,113],
which allows our northern Indian Ocean Nd isotopes to offer insight.

By compiling a large set of εNd data from northern Indian Ocean marine sediments,
including our εNd data, this study highlights the significant contribution to the northern
Indian Ocean Nd budget of the Himalayan sources drained by the Ganga-Brahmaputra-
Meghna and Irrawaddy-Salween rivers and suggests that the ISM was the strongest and
wettest during the last interglacial and Holocene periods, as inferred from less radiogenic
εNd values. In contrast to the interglacial periods, glacial εNd and εHf values are more
radiogenic, which suggests a reduction in the Ganga-Brahmaputra-Meghna and Irrawaddy-
Salween discharge and implies less erosion of the Indian subcontinent, which could be
tied to the weaker ISM. Our hypothesis is consistent with the global analysis of the mod-
ern seawater Nd budget and modeling results of the past seawater εNd data (e.g., [31]).
However, high-resolution seawater and detrital εNd and εHf data from the locus of the
Ganga-Brahmaputra-Meghna outflow are needed to test the veracity of the hypothesis.
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