Elevation-Dependent Trend in Diurnal Temperature Range in the Northeast China during 1961–2015
Abstract
1. Introduction
2. Method and Data
3. Results
3.1. Temperature Characteristics
3.2. Relationship between Temperature and Elevation
4. Discussion
4.1. Comparison with Previous Studies
4.2. Possible Causes for Elevation-Dependent DTR Trend
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Lin, P.; He, Z.; Du, J.; Chen, L.; Zhu, X.; Li, J. Recent changes in daily climate extremes in an arid mountain region, a case study in northwestern China’s Qilian Mountains. Sci. Rep. 2017, 7, 2245. [Google Scholar] [CrossRef]
- Braganza, K.; Karoly, D.J.; Arblaster, J.M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 2004, 31, L13217. [Google Scholar] [CrossRef]
- Horton, B. Geographical distribution of changes in maximum and minimum temperatures. Atmos. Res. 1995, 37, 101–117. [Google Scholar] [CrossRef]
- Easterling, D.R.; Horton, B.; Jones, P.D.; Peterson, T.C.; Karl, T.R.; Parker, D.E.; Salinger, M.J.; Razuvayev, V.; Plummer, N.; Jamason, P.; et al. Maximum and minimum temperature trends for the globe. Science 1997, 277, 364–367. [Google Scholar] [CrossRef]
- Davis, R.E.; Hondula, D.M.; Sharif, H. Examining the diurnal temperature range enigma: Why is human health related to the daily change in temperature? Int. J. Biometeorol. 2020, 64, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Price, C.; Michaelides, S.; Pashiardis, S.; Alpert, P. Long term changes in diurnal temperature range in Cyprus. Atmos. Res. 1999, 51, 85–98. [Google Scholar] [CrossRef]
- Sang, Y.-F. Spatial and temporal variability of daily temperature in the Yangtze River Delta, China. Atmos. Res. 2012, 112, 12–24. [Google Scholar] [CrossRef]
- Liu, B.; Henderson, M.; Wang, L.; Shen, X.; Zhou, D.; Chen, X. Climatology and trends of air and soil surface temperatures in the temperate steppe region of North China. Int. J. Climatol. 2017, 37, 1199–1209. [Google Scholar] [CrossRef]
- Vose, R.S.; Easterling, D.R.; Gleason, B. Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett. 2005, 277, 364–367. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Jiang, M.; Lu, X. Marshland Loss Warms Local Land Surface Temperature in China. Geophys. Res. Lett. 2020, 47, e2020GL087648. [Google Scholar] [CrossRef]
- Karl, T.R.; Kukla, G.; Razuvayev, V.N.; Changery, M.J.; Ouayle, R.G.; Richard, R.; Helm, J.; Easterling, D.R.; Fu, C.B. Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett. 1991, 18, 2253–2256. [Google Scholar] [CrossRef]
- Shahid, S.; Harun, S.B.; Katimon, A. Changes in Diurnal Temperature Range in Bangladesh during the Time Period 1961–2008. Reg. Environ. Chang. 2012, 12, 595–606. [Google Scholar] [CrossRef]
- Plummer, N.; Lin, Z.; Torok, S. Trends in the diurnal temperature range over Australia since 1951. Atmos. Res. 1995, 37, 79–86. [Google Scholar] [CrossRef]
- Lauritsen, R.G.; Rogers, J.C. U.S. Diurnal Temperature Range Variability and Regional Causal Mechanisms, 1901–2002. J. Clim. 2012, 25, 7216–7231. [Google Scholar] [CrossRef]
- Kumar, K.R.; Kumar, K.K.; Pant, G.B. Diurnal asymmetry of surface temperature trends over India. Geophys. Res. Lett. 1994, 21, 677–680. [Google Scholar] [CrossRef]
- Ren, G.; Ding, Y.; Zhao, Z.; Tang, G.; Xu, Y.; Zheng, J. Recent progress in studies of climate change in China. Adv. Atmos. Sci. 2012, 29, 958–977. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Ren, G.; Zwiers, F.; Hu, T. Contribution of urbanization to warming in China. Nat. Clim. Chang. 2016. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X.; Chen, F.; Wang, E. The effects of past climate change on the northern limits of maize planting in Northeast China. Clim. Chang. 2013, 117, 891–902. [Google Scholar] [CrossRef]
- Mwagona, P.C.; Yao, Y.; Shan, Y.; Yu, H.; Zhang, Y. Trend and abrupt regime shift of temperature extreme in Northeast China, 1957–2015. Adv. Meteorol. 2018. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Li, G.; Wu, Z.; Jin, Y.; Yu, P.; Zhou, D. Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China. J. Geophys. Res. Atmos. 2014, 119, 13163–13179. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, G.; Zeng, G.; Li, Z. Changes in extreme low temperature events over Northern China under 1.5 °C and 2.0 °C warmer future scenarios. Atmosphere 2019. [Google Scholar]
- Sun, X.; Zhang, P.; Ren, G.; Ren, Y.; Fang, Y.; Liu, Y.; Xue, X. A remarkable climate warming hiatus over Northeast China since 1998. Theor. Appl. Climatol. 2018, 133, 579–594. [Google Scholar] [CrossRef]
- Pepin, N.C.; Lundquist, J.D. Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett. 2008, 35, L14701. [Google Scholar] [CrossRef]
- Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, A.; Ciais, P.; Li, Y.; Li, L.Z.X.; Vautard, R.; Zhou, L.; Yang, H.; Huang, M.; Piao, S. Regional air pollution brightening reverses the greenhouse gases induced warming-elevation relationship. Geophys. Res. Lett. 2015, 42, 4563–4572. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Z.; Yan, L.; Yin, Z.-Y. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob. Planet. Chang. 2009, 68, 164–174. [Google Scholar] [CrossRef]
- Thakuri, S.; Dahal, S.; Shrestha, D.; Guyennon, N.; Romano, E.; Colombo, N.; Salerno, F. Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmos. Res. 2019, 228, 261–269. [Google Scholar] [CrossRef]
- Dong, D.; Huang, G.; Qu, X.; Tao, W.; Fan, G. Temperature trend–altitude relationship in China during 1963–2012. Theor. Appl. Climatol. 2015, 122, 285–294. [Google Scholar] [CrossRef]
- Xu, F.; Jia, Y.; Peng, H.; Niu, C.; Liu, J. Temperature and precipitation trends and their links with elevation in the Hengduan Mountain region, China. Clim. Res. 2018, 75, 163–180. [Google Scholar] [CrossRef]
- Dimri, A.P.; Kumar, D.; Choudhary, A.; Maharana, P. Future changes over the Himalayas: Maximum and minimum temperature. Glob. Planet. Chang. 2018, 162, 212–234. [Google Scholar] [CrossRef]
- Shen, D.; Varis, O. Climate Change in China. Ambio 2001, 30, 381–383. [Google Scholar] [CrossRef]
- Liu, B.; Henderson, M.; Xu, M.; Zhang, Y. Observed changes in precipitation on the wettest days of the year in China, 1960–2000. Int. J. Climatol. 2011, 31, 487–503. [Google Scholar] [CrossRef]
- Liu, B.; Henderson, M.; Zhang, Y.; Xu, M. Spatiotemporal change in China’s climatic growing season: 1955–2000. Clim. Chang. 2009, 99, 93–118. [Google Scholar] [CrossRef]
- Sun, L.; Shen, B.; Gao, Z.; Sui, B.; Bai, L.; Wang, S.-H.; An, G.; Li, J. The impacts of moisture transport of East Asian Monsoon on summer precipitation in Northeast China. Adv. Atmos. Sci. 2007, 24, 606–618. [Google Scholar] [CrossRef]
- Wang, J.X.L.; Gaffen, D.J. Late-Twentieth-Century Climatology and Trends of Surface Humidity and Temperature in China. J. Clim. 2001, 14, 2833–2845. [Google Scholar] [CrossRef]
- Nawaz, Z.; Li, X.; Chen, Y.; Guo, Y.; Wang, X.; Nawaz, N. Temporal and spatial characteristics of precipitation and temperature in Punjab, Pakistan. Water 2019, 11, 1916. [Google Scholar] [CrossRef]
- Kattel, D.B.; Yao, T. Recent temperature trends at mountain stations on the southern slope of the central Himalayas. J. Earth Sci. 2013, 122, 215–227. [Google Scholar] [CrossRef]
- Ding, Y.; Ren, G.; Zhao, Z.; Xu, Y.; Luo, Y.; Li, Q.; Zhang, J. Detection, causes and projection of climate change over china: An overview of recent progress. Adv. Atmos. Sci. 2007, 24, 954–971. [Google Scholar] [CrossRef]
- Ye, J.; Li, F.; Sun, G.; Guo, A. Solar dimming and its impact on estimating solar radiation from diurnal temperature range in China, 1961–2007. Theor. Appl. Climatol. 2010, 101, 137–142. [Google Scholar] [CrossRef]
- Chen, J.-L.; Li, G.-S. Evaluation of support vector machine for estimation of solar radiation from measured meteorological variables. Theor. Appl. Climatol. 2014, 115, 627–638. [Google Scholar] [CrossRef]
- Philipona, R.; Behrens, K.; Ruckstuhl, C. How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys. Res. Lett. 2009, 36, L02806. [Google Scholar] [CrossRef]
- Stanhill, G.; Cohen, S. Solar radiation changes in the United States during the twentieth century: Evidence from sunshine duration measurements. J. Clim. 2004, 18, 1503–1512. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E.; Wild, M.; Liang, S. Atmospheric impacts on climatic variability of surface incident solar radiation. Atmos. Chem. Phys. 2012, 12, 9581–9592. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, T.; Zhang, L.; Zou, L. Detecting human influence on the temperature changes in Central Asia. Clim. Dyn. 2019, 53, 4553–4568. [Google Scholar] [CrossRef]
- Luo, B.; Yin, Y.Y.; Huang, G.H.; Huang, Y.F. Uncertainty Analysis for Distribution of Greenhouse Gases Concentration in Atmosphere. J. Environ. Inform. 2004, 3, 89–94. [Google Scholar] [CrossRef]
DTR | Tmax | Tmin | |
---|---|---|---|
Spring | 55 | 19 | 68 |
Summer | 40 | 41 | 67 |
Autumn | 40 | 51 | 67 |
Winter | 57 | 21 | 58 |
Annual | 61 | 64 | 68 |
Tmax | Tmin | DTR | |
---|---|---|---|
Spring | 0.189 | 0.506 ** | −0.317 ** |
Summer | 0.195 ** | 0.368 ** | −0.173 ** |
Autumn | 0.224 * | 0.417 ** | −0.193 ** |
Winter | 0.230 | 0.526 ** | −0.297 ** |
Tmax | Tmin | DTR | ||||
---|---|---|---|---|---|---|
R | Slope (°C/decade/km) | R | Slope (°C/decade/km) | R | Slope (°C/decade/km) | |
Spring | 0.551 ** | 0.205 | −0.209 | −0.142 | 0.438 ** | 0.348 |
Summer | 0.572 ** | 0.254 | 0.042 | 0.028 | 0.389 ** | 0.226 |
Autumn | 0.384 ** | 0.100 | −0.16 | −0.109 | 0.303 * | 0.209 |
Winter | 0.194 | 0.095 | −0.322 ** | −0.299 | 0.425 ** | 0.392 |
Tmax | Tmin | DTR | |
---|---|---|---|
Spring | 0.305 * | 0.234 | 0.148 |
Summer | 0.497 ** | 0.014 | 0.364 ** |
Autumn | 0.24 * | −0.096 | 0.185 |
Winter | 0.081 | −0.311 ** | 0.355 ** |
Annual | 0.398 ** | −0.214 | 0.345 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Shen, X.; Fan, G. Elevation-Dependent Trend in Diurnal Temperature Range in the Northeast China during 1961–2015. Atmosphere 2021, 12, 319. https://doi.org/10.3390/atmos12030319
Zhang Y, Shen X, Fan G. Elevation-Dependent Trend in Diurnal Temperature Range in the Northeast China during 1961–2015. Atmosphere. 2021; 12(3):319. https://doi.org/10.3390/atmos12030319
Chicago/Turabian StyleZhang, Yanyu, Xiangjin Shen, and Gaohua Fan. 2021. "Elevation-Dependent Trend in Diurnal Temperature Range in the Northeast China during 1961–2015" Atmosphere 12, no. 3: 319. https://doi.org/10.3390/atmos12030319
APA StyleZhang, Y., Shen, X., & Fan, G. (2021). Elevation-Dependent Trend in Diurnal Temperature Range in the Northeast China during 1961–2015. Atmosphere, 12(3), 319. https://doi.org/10.3390/atmos12030319