Long-Term Variability of Relationships between Potential Large-Scale Drivers and Summer Precipitation in North China in the CERA-20C Reanalysis
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Moisture Budget Equation
2.3. Climate Indices
- (1)
- The PDO index is defined as the leading empirical orthogonal function (EOF) of monthly SST anomalies over the North Pacific Ocean poleward of 20 N after removing both the climatological annual cycle and global mean SST anomaly [42].
- (2)
- The Niño 3.4 index is calculated as the average SST anomaly within the region 5 N–5 S, 120 W–170 W.
- (3)
- The PJ pattern is defined as the leading EOF of relative vorticity at 850 hPa within the domain 0 N–45 N, 100 E–160 E [43].
- (4)
- The CGT pattern is defined as the leading EOF of meridional wind at 200 hPa within the domain 20 N–60 N, 0 E–150 E [31].
- (5)
- The EU pattern index is defined as the linear combination of area mean geopotential heights in three anomaly centers at 500 hPa (: 60 N–70 N, 55 E–85 E; : 40 N–55 N, 90 E–110 E; : 30 N–40 N, 110 E–130 E; ) [33].
- (6)
- The meridional displacement of the EAWJ is defined as the difference in area-mean zonal wind at 200-hPa between 45 N–55 N, 100 E–140 E and 32.5 N–42.5 N, 100 E–140 E [23].
- (7)
- The EASM index is defined as the area mean horizontal wind velocity at 850 hPa within the domain 30 N–40 N, 115 E–125 E [5].
- (8)
- The WPSH is defined as the area mean geopotential height at 850 hPa over the domain 15 N–30 N, 120 E–150 E [44].
- (9)
- The upper-tropospheric temperature (UTT) is represented by the difference of area mean geopotential height between 200 hPa and 500 hPa over North China domain (32 N–42 N, 105 E–120 E) [45].
3. Results
3.1. Long-Term Climatology and Interannual Variability of Summer Precipitation
3.2. Long-Term Variations in Moisture and Energy Budgets
3.2.1. Atmospheric Moisture Budget
3.2.2. Surface Energy Budget
3.3. Long-Term Relationships between Potential Drivers and Summer Precipitation
3.3.1. Regional Circulation Patterns
3.3.2. Teleconnection Patterns
3.3.3. Oceanic Forcing
3.3.4. Synthesis Evaluation of Large-Scale Drivers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.; Wang, Z.; Sun, Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol. 2008, 28, 1139–1161. [Google Scholar] [CrossRef]
- Ding, Y.; Chan, J. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Hua, T.; Zorita, E.; Wang, X.; Wang, N.; Zhang, C. Precipitation variability in the north fringe of East Asian Summer Monsoon during the past millennium and its possible driving factors. Clim. Dyn. 2019, 53, 2587–2602. [Google Scholar]
- Tong, X.; Yan, Z.; Xia, J.; Lou, X. Decisive Atmospheric Circulation Indices for July–August Precipitation in North China Based on Tree Models. J. Hydrometeorol. 2019, 20, 1707–1720. [Google Scholar]
- Wang, H.; He, S. The North China/Northeastern Asia severe summer drought in 2014. J. Clim. 2015, 28, 6667–6681. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, X.; Li, Y. Does a strong El Niño imply a higher predictability of extreme drought? Sci. Rep. 2017, 7, 40741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Huang, X.; Chen, H.; Huang, G.; Ni, S.; Wright, J.S.; Hall, J.; Ciais, P.; Zhang, J.; Xiao, Y.; et al. Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes. Earth Future 2018, 6, 689–703. [Google Scholar]
- Zhao, Y.; Chen, D.; Li, J.; Chen, D.; Chang, Y.; Li, J.; Qin, R. Enhancement of the summer extreme precipitation over North China by interactions between moisture convergence and topographic settings. Clim. Dyn. 2020, 54, 2713–2730. [Google Scholar]
- Ali, R.; Kuriqi, A.; Kisi, O. Human–Environment Natural Disasters Interconnection in China: A Review. Climate 2020, 8, 48. [Google Scholar]
- Lu, R. Interannual variation of North China rainfall in rainy season and SSTs in the equatorial eastern Pacific. Chin. Sci. Bull. 2005, 50, 2069–2073. [Google Scholar] [CrossRef]
- Wang, H. The Weakening of the Asian Monsoon Circulation after the End of 1970’s. Adv. Atmos. Sci. 2001, 18, 376–386. [Google Scholar]
- Zhou, B.; Zhai, P.; Chen, Y. Contribution of changes in synoptic-scale circulation patterns to the past summer precipitation regime shift in eastern China. Geophys. Res. Lett. 2020, 47, e2020GL087728. [Google Scholar] [CrossRef]
- Qian, C.; Zhou, T. Multidecadal Variability of North China Aridity and Its Relationship to PDO during 1900–2010. J. Clim. 2014, 27, 1210–1222. [Google Scholar] [CrossRef] [Green Version]
- Dong, X. Influences of the Pacific Decadal Oscillation on the East Asian Summer Monsoon in non-ENSO years. Atmos. Sci. Let. 2016, 17, 115–120. [Google Scholar]
- Yu, R.; Wang, B.; Zhou, T. Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys. Res. Lett. 2004, 31, L22212. [Google Scholar]
- Zhang, L.; Zhou, T. The interannual variability of summer upper-tropospheric temperature over East Asia. J. Clim. 2012, 25, 6539–6553. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, B.; Qian, W.; Zhang, B. Recent weakening of northern East Asian summer monsoon: A possible response to global warming. Geophys. Res. Lett. 2012, 39, L09701. [Google Scholar]
- Wang, Z.; Lin, L.; Yang, M.; Guo, Z. The role of anthropogenic aerosol forcing in interdecadal variations of summer time upper-tropospheric temperature over East Asia. Earth Future 2019, 7, 136–150. [Google Scholar] [CrossRef]
- Mu, J.; Wang, Z. Responses of the East Asian summer monsoon to aerosol forcing in CMIP5 models: The role of upper-tropospheric temperature change. Int. J. Climatol. 2020. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Y.; Huang, R. The interannual variability of summer rainfall in the arid and semiarid regions of Northern China and its association with the northern hemisphere circumglobal teleconnection. Adv. Atmos. Sci. 2011, 28, 257–268. [Google Scholar]
- Sampe, T.; Xie, S. Large-Scale Dynamics of the Meiyu-Baiu Rainband: Environmental Forcing by the Westerly Jet. J. Clim. 2010, 21, 113–134. [Google Scholar] [CrossRef] [Green Version]
- Chiang, J.; Swenson, L.; Kong, W. Role of seasonal transitions and the westerlies in the interannual variability of the East Asian summer monsoon precipitation. Geophys. Res. Lett. 2017, 44, 3788–3795. [Google Scholar] [CrossRef]
- Wang, S.; Zuo, H.; Yin, Y.; Wang, J.; Ma, X. Asymmetric impact of East Asian jet’s variation on midsummer rainfall in North China and Yangtze River Valley. Clim. Dyn. 2019, 53, 6199–6213. [Google Scholar] [CrossRef]
- Feng, S.; Hu, Q. Variations in the Teleconnection of ENSO and Summer Rainfall in Northern China: A Role of the Indian Summer Monsoon. J. Clim. 2004, 17, 4871–4881. [Google Scholar] [CrossRef]
- Wang, H. The instability of the East Asian summer monsoon-ENSO relations. Adv. Atmos. Sci. 2002, 19, 1–11. [Google Scholar]
- Gao, H.; Wang, Y.; He, J. Weakening significance of ENSO as a predictor of summer precipitation in China. Geophys. Res. Lett. 2006, 33, L09807. [Google Scholar]
- Nitta, T. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteorol. Soc. Jpn. 1987, 65, 373–390. [Google Scholar] [CrossRef] [Green Version]
- Huang, R. The East Asia/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia. J. Meteorol. Res. 1992, 6, 25–37. [Google Scholar]
- Kosaka, Y.; Nakamura, H. Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific-Japan pattern. J. Clim. 2010, 23, 5085–5108. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Hong, X.; Lu, R. The meridional displacement of the summer Asian jet, Silk Road pattern, and tropical SST anomalies. J. Clim. 2016, 29, 3753–3766. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, P.; Zhou, T.; Xiao, C. ENSO transition from La Niña to El Niño drives prolonged spring-summer drought over North China. J. Clim. 2018, 31, 3509–3523. [Google Scholar] [CrossRef]
- Dai, L.; Wright, J.S.; Fu, R. Moisture and energy budget perspectives on summer drought in North China. J. Clim. 2020, 33, 10149–10167. [Google Scholar] [CrossRef]
- Peng, Y. Simulated interannual teleconnection between the summer North Atlantic Oscillation and summer precipitation in eastern China during the last millennium. Geophys. Res. Lett. 2018, 45, 7741–7747. [Google Scholar] [CrossRef] [Green Version]
- Kolstad, E.W.; Screen, J.A. Nonstationary Relationship Between Autumn Arctic Sea Ice and the Winter North Atlantic Oscillation. Geophys. Res. Lett. 2019, 46, 7583–7591. [Google Scholar] [CrossRef] [Green Version]
- Böhm, C.; Reyers, M.; Schween, J.H.; Crewell, S. Water vapor variability in the Atacama Desert during the 20th century. Glob. Planet. Chang. 2020, 190, 103192. [Google Scholar] [CrossRef]
- Laloyaux, P.; de Boisseson, E.; Balmaseda, M.; Bidlot, J.R.; Broennimann, S.; Buizza, R.; Dalhgren, P.; Dee, D.; Haimberger, L.; Hersbach, H.; et al. CERA-20C: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst. 2018, 10, 1172–1195. [Google Scholar] [CrossRef]
- Harris, T.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- University of East Anglia Climatic Research Unit; Harris, I.C.; Osborn, T.J.; Jones, P.; Lister, D. CRU TS4.03: Climatic Research Unit (CRU) Time-Series (TS) version 4.03 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2018). Cent. Environ. Data Anal. 2020. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999). 2001. Available online: http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html (accessed on 5 September 2020).
- Peng, D.; Zhou, T. Why was the arid and semiarid northwest China getting wetter in the recent decades? J. Geophys. Res. Atmos. 2017, 122, 9060–9075. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production*. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1080. [Google Scholar]
- Kosaka, Y.; Xie, S.P.; Lau, N.C.; Vecchi, G.A. Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc. Natl. Acad. Sci. USA 2013, 110, 7574–7579. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wang, H.; Fan, K.; Gao, Y. The western Pacific subtropical high after the 1970s: Westward or eastward shift? Clim. Dyn. 2015, 44, 2035–2047. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, T.; Wu, P.; Chen, X. Potential Predictability of North China Summer Drought. J. Clim. 2019, 32, 7247–7264. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M.; Rong, X.; Li, T. Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China. Clim. Dyn. 2014, 43, 1257–1269. [Google Scholar]
- Wei, W.; Zhang, R.; Wen, M.; Yang, S. Relationship between the Asian westerly jet stream and summer rainfall over Central Asia and North China: Roles of the Indian Monsoon and the South Asian High. J. Clim. 2017, 30, 537–552. [Google Scholar]
- Zhang, P.; Liu, Y.; He, B. Interannual variation of the South Asian High and its relation with Indian and East Asian summer monsoon rainfall. J. Clim. 2016, 28, 2623–2634. [Google Scholar]
- Tao, L.; Li, T.; Ke, Y.-H.; Zhao, J.-W. Causes of interannual and interdecadal variations of the summertime Pacific–Japan-like pattern over East Asia. J. Clim. 2017, 30, 8845–8864. [Google Scholar] [CrossRef]
- Cram, T.A.; Compo, G.P.; Yin, X.; Allan, R.J.; McColl, C.; Vose, R.S.; Whitaker, J.S.; Matsui, N.; Ashcroft, L.; Auchmann, R.; et al. The international surface pressure databank version 2. Geosci. Data J. 2015, 2, 31–46. [Google Scholar] [CrossRef] [Green Version]
- NOAA Physical Sciences Laboratory, ISPD Databank, Locations of Stations in International Surface Pressure Databank Version 3.7. Available online: https://psl.noaa.gov/data/ISPD (accessed on 8 December 2020).
Indices | 1901–1944 | 1945–1979 | 1980–2010 |
---|---|---|---|
UTT | () | () | () |
EAWJ | () | () | () |
EASM | () | () | () |
WPSH | () | () | () |
PJ | () | () | () |
CGT | () | () | () |
EU | () | () | () |
Niño 3.4 | () | () | () |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.; Wright, J.S. Long-Term Variability of Relationships between Potential Large-Scale Drivers and Summer Precipitation in North China in the CERA-20C Reanalysis. Atmosphere 2021, 12, 81. https://doi.org/10.3390/atmos12010081
Dai L, Wright JS. Long-Term Variability of Relationships between Potential Large-Scale Drivers and Summer Precipitation in North China in the CERA-20C Reanalysis. Atmosphere. 2021; 12(1):81. https://doi.org/10.3390/atmos12010081
Chicago/Turabian StyleDai, Lan, and Jonathon S. Wright. 2021. "Long-Term Variability of Relationships between Potential Large-Scale Drivers and Summer Precipitation in North China in the CERA-20C Reanalysis" Atmosphere 12, no. 1: 81. https://doi.org/10.3390/atmos12010081
APA StyleDai, L., & Wright, J. S. (2021). Long-Term Variability of Relationships between Potential Large-Scale Drivers and Summer Precipitation in North China in the CERA-20C Reanalysis. Atmosphere, 12(1), 81. https://doi.org/10.3390/atmos12010081