Prolonged Exposure to Air Pollution Increases Periodontal Disease Risk: A Nationwide, Population-Based, Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Participants
2.3. Exposure Collection and Outcome Measurement
2.4. Confounding Factors
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics and Air Pollutants of Study Population
3.2. Population Density among the Daily Average Concentration of Air Pollutants
3.3. Risk of Periodontitis Based on the Quartiles of Daily Average Air Pollutant Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Pollutants | cHR | (95% CI) | aHR † | (95% CI) |
---|---|---|---|---|
SO2 | 1.42 | (1.41, 1.43) *** | 1.42 | (1.41, 1.42) *** |
CO | 2.66 | (2.59, 2.73) *** | 2.73 | (2.66, 2.80) *** |
NO | 1.013 | (1.012, 1.014) *** | 1.01 | (1.013, 1.014) *** |
NOx | 1.013 | (1.013,1.014) *** | 1.01 | (1.013, 1.014) *** |
NO2 | 1.045 | (1.044, 1.046) *** | 1.05 | (1.045, 1.048) *** |
PM2.5 | 1.141 | (1.14, 1.142) *** | 1.14 | (1.13, 1.14) *** |
PM10 | 1.038 | (1.038, 1.039) *** | 1.04 | (1.038, 1.04) *** |
Appendix B
Pollutant | Levels | Event | IR | cHR | (95% CI) | aHR † | (95% CI) |
---|---|---|---|---|---|---|---|
SO2 | Q1 | 11,335 | 12.8 | Reference group | Reference group | ||
Q2 | 12,828 | 15.5 | 1.26 | (1.23,1.30) | 1.27 | (1.24, 1.30) | |
Q3 | 12,699 | 13.5 | 1.06 | (1.03, 1.09) | 1.07 | (1.04, 1.09) | |
Q4 | 20,300 | 30.2 | 3.32 | (3.24, 3.40) | 3.33 | (3.25, 3.41) | |
CO | Q1 | 9828 | 10.6 | Reference group | Reference group | ||
Q2 | 14,183 | 16.6 | 1.68 | (1.63, 1.72) | 1.67 | (1.63, 1.72) | |
Q3 | 14,170 | 17.7 | 1.83 | (1.78, 1.88) | 1.84 | (1.79, 1.88) | |
Q4 | 18,957 | 25.5 | 2.96 | (2.89, 3.03) | 2.97 | (2.90, 3.04) | |
NO | Q1 | 10,999 | 11.9 | Reference group | Reference group | ||
Q2 | 13,384 | 16.1 | 1.42 | (1.39, 1.46) | 1.43 | (1.39, 1.46) | |
Q3 | 13,986 | 17.2 | 1.54 | (1.50, 1.57) | 1.55 | (1.51, 1.58) | |
Q4 | 18,793 | 24.7 | 2.46 | (2.41, 2.52) | 2.48 | (2.42, 2.54) | |
NO2 | Q1 | 9794 | 10.7 | Reference group | Reference group | ||
Q2 | 15,188 | 17.0 | 1.71 | (1.66, 1.75) | 1.73 | (1.68, 1.77) | |
Q3 | 14,041 | 16.5 | 1.63 | (1.59, 1.67) | 1.45 | (1.41, 1.49) | |
Q4 | 18,139 | 27.2 | 3.25 | (3.17, 3.33) | 2.96 | (2.89, 3.03) | |
NOX | Q1 | 10,050 | 11.1 | Reference group | Reference group | ||
Q2 | 14,395 | 17.6 | 1.72 | (1.68, 1.77) | 1.71 | (1.67, 1.75) | |
Q3 | 13,393 | 15.4 | 1.44 | (1.40, 1.48) | 1.64 | (1.60, 1.68) | |
Q4 | 19,324 | 26.3 | 2.94 | (2.87, 3.02) | 3.27 | (3.19, 3.35) | |
PM2.5 | Q1 | 8956 | 10.0 | Reference group | Reference group | ||
Q2 | 11,486 | 12.0 | 1.25 | (1.22, 1.29) | 1.25 | (1.22, 1.29) | |
Q3 | 18,081 | 22.5 | 2.90 | (2.83, 2.98) | 2.91 | (2.84, 2.98) | |
Q4 | 18,493 | 27.6 | 3.97 | (3.87, 4.08) | 3.98 | (3.88, 4.08) | |
PM10 | Q1 | 9294 | 10.4 | Reference group | Reference group | ||
Q2 | 14,349 | 15.6 | 1.65 | (1.61, 1.69) | 1.65 | (1.61, 1.70) | |
Q3 | 14,576 | 20.2 | 2.34 | (2.28, 2.40) | 2.34 | (2.28, 2.40) | |
Q4 | 18,943 | 24.0 | 3.01 | (2.94, 3.09) | 3.00 | (2.93, 3.08) |
References
- Davis, M.E.; Laden, F.; Hart, J.E.; Garshick, E.; Smith, T.J. Economic activity and trends in ambient air pollution. Environ. Health Perspect. 2010, 118, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Panasevich, S.; Leander, K.; Rosenlund, M.; Ljungman, P.; Bellander, T.; de Faire, U.; Pershagen, G.; Nyberg, F. Associations of long- and short-term air pollution exposure with markers of inflammation and coagulation in a population sample. Occup. Environ. Med. 2009, 66, 747–753. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, X.; Ku, T.; Sang, N. Inflammatory response and endothelial dysfunction in the hearts of mice co-exposed to SO(2), NO(2), and PM(2.5). Environ. Toxicol. 2016, 31, 1996–2005. [Google Scholar] [CrossRef]
- Fashi, M.; Agha Alinejad, H.; Asilian Mahabadi, H. The Effect of Aerobic Exercise in Ambient Particulate Matter on Lung Tissue Inflammation and Lung Cancer. Iran. J. Cancer Prev. 2015, 8, e2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Block, M.L.; Calderon-Garciduenas, L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009, 32, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Kunzli, N.; Jerrett, M.; Garcia-Esteban, R.; Basagana, X.; Beckermann, B.; Gilliland, F.; Medina, M.; Peters, J.; Hodis, H.N.; Mack, W.J. Ambient air pollution and the progression of atherosclerosis in adults. PLoS ONE 2010, 5, e9096. [Google Scholar] [CrossRef]
- Zhang, R.; Dai, Y.; Zhang, X.; Niu, Y.; Meng, T.; Li, Y.; Duan, H.; Bin, P.; Ye, M.; Jia, X.; et al. Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers. Part. Fibre Toxicol. 2014, 11, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Chen, R.; Zhao, Z.; Cai, J.; Lu, J.; Ha, S.; Xu, X.; Chen, X.; Kan, H. Particulate air pollution and circulating biomarkers among type 2 diabetic mellitus patients: The roles of particle size and time windows of exposure. Environ. Res. 2015, 140, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Risom, L.; Møller, P.; Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res. 2005, 592, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Deo, V.; Bhongade, M.L. Pathogenesis of periodontitis: Role of cytokines in host response. Dent. Today 2010, 29, 60–62. [Google Scholar]
- Yucel-Lindberg, T.; Bage, T. Inflammatory mediators in the pathogenesis of periodontitis. Expert Rev. Mol. Med. 2013, 15, e7. [Google Scholar] [CrossRef] [Green Version]
- Kampfrath, T.; Maiseyeu, A.; Ying, Z.; Shah, Z.; Deiuliis, J.A.; Xu, X.; Kherada, N.; Brook, R.D.; Reddy, K.M.; Padture, N.P.; et al. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ. Res. 2011, 108, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Rao, X.; Zhong, J.; Maiseyeu, A.; Gopalakrishnan, B.; Villamena, F.A.; Chen, L.C.; Harkema, J.R.; Sun, Q.; Rajagopalan, S. CD36-dependent 7-ketocholesterol accumulation in macrophages mediates progression of atherosclerosis in response to chronic air pollution exposure. Circ. Res. 2014, 115, 770–780. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Yavar, Z.; Verdin, M.; Ying, Z.; Mihai, G.; Kampfrath, T.; Wang, A.; Zhong, M.; Lippmann, M.; Chen, L.C.; et al. Effect of early particulate air pollution exposure on obesity in mice: Role of p47phox. Arter. Thromb. Vasc. Biol. 2010, 30, 2518–2527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, K.; Lee, H.H.; Gong, D.S.; Park, S.H.; Yi, E.; Schini-Kerth, V.; Oak, M.H. Fine air pollution particles induce endothelial senescence via redox-sensitive activation of local angiotensin system. Environ. Pollut. 2019, 252, 317–329. [Google Scholar] [CrossRef]
- Forstermann, U. Nitric oxide and oxidative stress in vascular disease. Pflügers Arch. Eur. J. Physiol. 2010, 459, 923–939. [Google Scholar] [CrossRef] [PubMed]
- Munzel, T.; Sorensen, M.; Gori, T.; Schmidt, F.P.; Rao, X.; Brook, F.R.; Chen, L.C.; Brook, R.D.; Rajagopalan, S. Environmental stressors and cardio-metabolic disease: Part II-mechanistic insights. Eur. Heart J. 2017, 38, 557–564. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- Tiotiu, A.I.; Novakova, P.; Nedeva, D.; Chong-Neto, H.J.; Novakova, S.; Steiropoulos, P.; Kowal, K. Impact of Air Pollution on Asthma Outcomes. Int. J. Environ. Res. Public Health 2020, 17, 6212. [Google Scholar] [CrossRef] [PubMed]
- Gehring, U.; Heinrich, J.; Kramer, U.; Grote, V.; Hochadel, M.; Sugiri, D.; Kraft, M.; Rauchfuss, K.; Eberwein, H.G.; Wichmann, H.E. Long-term exposure to ambient air pollution and cardiopulmonary mortality in women. Epidemiology 2006, 17, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.W.; Carey, I.M.; Kent, A.J.; van Staa, T.P.; Anderson, H.R.; Cook, D.G. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology 2013, 24, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.A.; Siscovick, D.S.; Sheppard, L.; Shepherd, K.; Sullivan, J.H.; Anderson, G.L.; Kaufman, J.D. Long-term exposure to air pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 2007, 356, 447–458. [Google Scholar] [CrossRef]
- Chang, K.H.; Hsu, P.Y.; Lin, C.J.; Lin, C.L.; Juo, S.H.; Liang, C.L. Traffic-related air pollutants increase the risk for age-related macular degeneration. J. Investig. Med. 2019, 67, 1076–1081. [Google Scholar] [CrossRef]
- Fan, H.C.; Chen, C.Y.; Hsu, Y.C.; Chou, R.H.; Teng, C.J.; Chiu, C.H.; Hsu, C.Y.; Muo, C.H.; Chang, M.Y.; Chang, K.H. Increased risk of incident nasopharyngeal carcinoma with exposure to air pollution. PLoS ONE 2018, 13, e0204568. [Google Scholar] [CrossRef]
- Wong, I.C.; Ng, Y.K.; Lui, V.W. Cancers of the lung, head and neck on the rise: Perspectives on the genotoxicity of air pollution. Chin. J. Cancer 2014, 33, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.; Ee, N.; Peters, J.; Booth, A.; Mudway, I.; Anstey, K.J. Air Pollution and Dementia: A Systematic Review. J. Alzheimers Dis. 2019, 70, S145–S163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.H.; Hsu, C.C.; Muo, C.H.; Hsu, C.Y.; Liu, H.C.; Kao, C.H.; Chen, C.Y.; Chang, M.Y.; Hsu, Y.C. Air pollution exposure increases the risk of rheumatoid arthritis: A longitudinal and nationwide study. Environ. Int. 2016, 94, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Kinane, D.F. Causation and pathogenesis of periodontal disease. Periodontology 2000 2001, 25, 8–20. [Google Scholar] [CrossRef]
- Carcuac, O.; Berglundh, T. Composition of human peri-implantitis and periodontitis lesions. J. Dent. Res. 2014, 93, 1083–1088. [Google Scholar] [CrossRef] [Green Version]
- Linden, G.J.; Lyons, A.; Scannapieco, F.A. Periodontal systemic associations: Review of the evidence. J. Clin. Periodontol. 2013, 40, S8–S19. [Google Scholar] [CrossRef]
- Burt, B.; Research, S. Therapy Committee of the American Academy of P: Position paper: Epidemiology of periodontal diseases. J. Periodontol. 2005, 76, 1406–1419. [Google Scholar] [PubMed]
- Gilmore, N.; Sheiham, A. Overhanging dental restorations and periodontal disease. J. Periodontol. 1971, 42, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Heitz-Mayfield, L.J.A.; Salvi, G.E. Peri-implant mucositis. J. Periodontol. 2018, 89, S257–S266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buczko, P.; Zalewska, A.; Szarmach, I. Saliva and oxidative stress in oral cavity and in some systemic disorders. J. Physiol. Pharmacol. 2015, 66, 3–9. [Google Scholar]
- Wang, G.P. Defining functional signatures of dysbiosis in periodontitis progression. Genome Med. 2015, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Almerich-Silla, J.M.; Montiel-Company, J.M.; Pastor, S.; Serrano, F.; Puig-Silla, M.; Dasí, F. Oxidative Stress Parameters in Saliva and Its Association with Periodontal Disease and Types of Bacteria. Dis. Markers 2015, 2015, 653537. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, A.M.; Koh, A.; Goldberg, M.B.; Glogauer, M. A hyperactive neutrophil phenotype in patients with refractory periodontitis. J. Periodontol. 2007, 78, 1788–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghio, A.J.; Soukup, J.M.; Madden, M.C. The toxicology of air pollution predicts its epidemiology. Inhal. Toxicol. 2018, 30, 327–334. [Google Scholar] [CrossRef]
- Olczak, T.; Simpson, W.; Liu, X.; Genco, C.A. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol. Rev. 2005, 29, 119–144. [Google Scholar] [CrossRef] [Green Version]
- Andrian, E.; Mostefaoui, Y.; Rouabhia, M.; Grenier, D. Regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by Porphyromonas gingivalis in an engineered human oral mucosa model. J. Cell Physiol. 2007, 211, 56–62. [Google Scholar] [CrossRef]
- Ko, Y.C. Air pollution and its health effects on residents in Taiwanese communities. Kaohsiung J. Med. Sci 1996, 12, 657–669. [Google Scholar]
- Strosnider, H.; Kennedy, C.; Monti, M.; Yip, F. Rural and Urban Differences in Air Quality, 2008–2012, and Community Drinking Water Quality, 2010–2015—United States. MMWR Surveill. Summ. 2017, 66, 1–10. [Google Scholar] [CrossRef]
- Franchini, M.; Mannucci, P.M. Thrombogenicity and cardiovascular effects of ambient air pollution. Blood 2011, 118, 2405–2412. [Google Scholar] [CrossRef]
- Kilinc, E.; Schulz, H.; Kuiper, G.J.; Spronk, H.M.; Ten Cate, H.; Upadhyay, S.; Ganguly, K.; Stoeger, T.; Semmler-Bhenke, M.; Takenaka, S.; et al. The procoagulant effects of fine particulate matter in vivo. Part. Fibre Toxicol. 2011, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Bo, L.; Gong, C.; Du, X.; Kan, H.; Xie, Y.; Song, W.; Zhao, J. Traffic-related air pollution is associated with cardio-metabolic biomarkers in general residents. Int. Arch. Occup. Environ. Health 2016, 89, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Bard, R.L.; Morishita, M.; Dvonch, J.T.; Wang, L.; Yang, H.Y.; Spino, C.; Mukherjee, B.; Kaplan, M.J.; Yalavarthi, S.; et al. Hemodynamic, autonomic, and vascular effects of exposure to coarse particulate matter air pollution from a rural location. Environ. Health Perspect. 2014, 122, 624–630. [Google Scholar] [CrossRef] [Green Version]
- Aragon, M.J.; Topper, L.; Tyler, C.R.; Sanchez, B.; Zychowski, K.; Young, T.; Herbert, G.; Hall, P.; Erdely, A.; Eye, T.; et al. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc. Natl. Acad. Sci. USA 2017, 114, E1968–E1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brook, R.D.; Sun, Z.; Brook, J.R.; Zhao, X.; Ruan, Y.; Yan, J.; Mukherjee, B.; Rao, X.; Duan, F.; Sun, L.; et al. Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study. Hypertension 2016, 67, 77–85. [Google Scholar] [CrossRef]
- Rao, X.; Montresor-Lopez, J.; Puett, R.; Rajagopalan, S.; Brook, R.D. Ambient air pollution: An emerging risk factor for diabetes mellitus. Curr. Diab. Rep. 2015, 15, 603. [Google Scholar] [CrossRef] [PubMed]
- Haberzettl, P.; Conklin, D.J.; Abplanalp, W.T.; Bhatnagar, A.; O’Toole, T.E. Inhalation of Fine Particulate Matter Impairs Endothelial Progenitor Cell Function Via Pulmonary Oxidative Stress. Arter. Thromb. Vasc. Biol. 2018, 38, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.H.; Masumi, S.; Weng, S.P.; Chen, H.W.; Chuang, H.C.; Chuang, K.J. Personal exposure to particulate matter and inflammation among patients with periodontal disease. Sci. Total Environ. 2015, 502, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Ghio, A.J.; Stonehuerner, J.; Quigley, D.R. Humic-like substances in cigarette smoke condensate and lung tissue of smokers. Am. J. Physiol. 1994, 266, L382–L388. [Google Scholar] [CrossRef] [PubMed]
- Stedman, R.L.; Chamberlain, W.J.; Miller, R.L. High molecular weight pigment in cigarette smoke. Chem. Ind. 1966, 37, 1560–1562. [Google Scholar]
- Liu, Y.; Cui, Y.; Shi, M.; Zhang, Q.; Wang, Q.; Chen, X. Deferoxamine promotes MDA-MB-231 cell migration and invasion through increased ROS-dependent HIF-1α accumulation. Cell Physiol. Biochem. 2014, 33, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, Y.; Yan, Q.; Ma, F.; Shi, X.; Zhao, Y.; Peng, Y.; Wang, J.; Jiang, B. Deferoxamine enhances cell migration and invasion through promotion of HIF-1α expression and epithelial-mesenchymal transition in colorectal cancer. Oncol. Rep. 2014, 31, 111–116. [Google Scholar] [CrossRef]
- Ghio, A.J.; Soukup, J.M.; Dailey, L.A. Air pollution particles and iron homeostasis. Biochim. Biophys. Acta 2016, 1860, 2816–2825. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, I.; Sheng, E.; Bradley, R.; Freakley, P. Effects of ozone oxidation on carbon black surfaces. J. Mater. Sci. 1996, 31, 5651–5655. [Google Scholar] [CrossRef]
- Ciobanu, M.; Lepadatu, A.-M.; Asaftei, S. Chemical and Electrochemical Studies of Carbon Black Surface by Treatment with Ozone and Nitrogen Oxide. Mater. Today Proc. 2016, 3, S252–S257. [Google Scholar] [CrossRef]
- Andrian, E.; Grenier, D.; Rouabhia, M. Porphyromonas gingivalis-epithelial cell interactions in periodontitis. J. Dent. Res. 2006, 85, 392–403. [Google Scholar] [CrossRef]
- Nakamura, S.; Shioya, K.; Hiraoka, B.Y.; Suzuki, N.; Hoshino, T.; Fujiwara, T.; Yoshinari, N.; Ansai, T.; Yoshida, A. Porphyromonas gingivalis hydrogen sulfide enhances methyl mercaptan-induced pathogenicity in mouse abscess formation. Microbiology 2018, 164, 529–539. [Google Scholar] [CrossRef]
- Zhang, W.; Song, F.; Windsor, L.J. Effects of tobacco and P. gingivalis on gingival fibroblasts. J. Dent. Res. 2010, 89, 527–531. [Google Scholar] [CrossRef]
- Graves, D. Cytokines that promote periodontal tissue destruction. J. Periodontol. 2008, 79, 1585–1591. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.K.; Choi, Y.G.; Baik, J.Y.; Han, S.Y.; Jeong, D.W.; Bae, Y.S.; Kim, N.; Lee, S.Y. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 2005, 106, 852–859. [Google Scholar] [CrossRef] [Green Version]
- Hienz, S.A.; Paliwal, S.; Ivanovski, S. Mechanisms of Bone Resorption in Periodontitis. J. Immunol. Res. 2015, 2015, 615486. [Google Scholar] [CrossRef] [Green Version]
- Hatanaka, E.; Monteagudo, P.T.; Marrocos, M.S.; Campa, A. Neutrophils and monocytes as potentially important sources of proinflammatory cytokines in diabetes. Clin. Exp. Immunol. 2006, 146, 443–447. [Google Scholar] [CrossRef]
- Bullon, P.; Morillo, J.M.; Ramirez-Tortosa, M.C.; Quiles, J.L.; Newman, H.N.; Battino, M. Metabolic syndrome and periodontitis: Is oxidative stress a common link? J. Dent. Res. 2009, 88, 503–518. [Google Scholar] [CrossRef] [Green Version]
- de Pablo, P.; Chapple, I.L.; Buckley, C.D.; Dietrich, T. Periodontitis in systemic rheumatic diseases. Nat. Rev. Rheumatol. 2009, 5, 218–224. [Google Scholar] [CrossRef]
- Sfyroeras, G.S.; Roussas, N.; Saleptsis, V.G.; Argyriou, C.; Giannoukas, A.D. Association between periodontal disease and stroke. J. Vasc. Surg. 2012, 55, 1178–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bright, R.; Proudman, S.M.; Rosenstein, E.D.; Bartold, P.M. Is there a link between carbamylation and citrullination in periodontal disease and rheumatoid arthritis? Med. Hypotheses 2015, 84, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.Y.; Su, C.C.; Shao, S.C.; Sung, S.F.; Lin, S.J.; Kao Yang, Y.H.; Lai, E.C. Taiwan’s National Health Insurance Research Database: Past and future. Clin. Epidemiol. 2019, 11, 349–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondeau, P.; Iordache, V.; Poupard, O.; Genin, D.; Allard, F. Relationship between outdoor and indoor air quality in eight French schools. Indoor Air 2005, 15, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.D.; Loo, W.J.; Tasker, A.D.; Screaton, N.J.; Burrows, N.P.; Silverman, E.K.; Lomas, D.A. Smoking related COPD and facial wrinkling: Is there a common susceptibility? Thorax 2006, 61, 568–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauwels, R.A.; Rabe, K.F. Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet 2004, 364, 613–620. [Google Scholar] [CrossRef]
- Harju, M.; Keski-Nisula, L.; Georgiadis, L.; Heinonen, S. Parental smoking and cessation during pregnancy and the risk of childhood asthma. BMC Public Health 2016, 16, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N = 292,263 | n | % | |
---|---|---|---|
Gender | Female | 160,985 | 55.1 |
Male | 131,278 | 44.9 | |
Age, years | mean, SD | 41.1 | 16.2 |
Population density † | 1 (highest) | 174,977 | 59.9 |
2 | 95,730 | 32.8 | |
3 | 18,721 | 6.41 | |
4 (lowest) | 2835 | 0.97 | |
Monthly income(NTD) | |||
<20,000 | 54,397 | 18.6 | |
20,000–40,000 | 148,121 | 50.7 | |
≥40,000 | 89,745 | 30.7 | |
Comorbidity | |||
Alcohol abuse/dependence | 4512 | 1.54 | |
Tobacco abuse/dependence | 11,474 | 3.93 | |
Chronic obstructive pulmonary disease | 47,458 | 16.2 | |
Asthma | 43,818 | 15.0 | |
Diabetes | 52,884 | 18.1 | |
Obesity | 5262 | 1.80 | |
Rheumatoid arthritis | 858 | 0.29 | |
Exposure of air pollutants | |||
SO2 level (two-year average, ppb) | 4.42 | 1.68 | |
CO level (two-year average, ppm) | mean, SD | 0.60 | 0.23 |
NO level (two-year average, ppm) | mean, SD | 8.69 | 8.77 |
NO2 level (two-year average, ppm) | mean, SD | 17.3 | 5.74 |
NOX level (two-year average, ppm) | mean, SD | 28.6 | 14.0 |
PM2.5(two-year average, μg/m3) | mean, SD | 30.2 | 7.88 |
PM10(two-year average, μg/m3) | mean, SD | 54.3 | 12.8 |
Outcome | |||
Periodontitis | Yes | 126,167 | 56.8 |
Follow-up time, years | mean, SD | 11.4 | 2.80 |
Follow-up time, years | Median, IQR | 13.0 | (10.9–13.0) |
Air Pollutant Concentration | Q1 (Lowest) | Q2 | Q3 | Q4 (Highest) | p-Value * | ||||
---|---|---|---|---|---|---|---|---|---|
N = 292,263 | n | (%) | n | (%) | n | (%) | n | (%) | |
SO2 | <0.001 | ||||||||
Population density level | |||||||||
1 | 39,998 | 22.9 | 43,645 | 24.9 | 49,253 | 28.2 | 42,081 | 24.1 | |
2 | 29,281 | 30.6 | 19,745 | 20.6 | 20,922 | 21.9 | 25,782 | 26.9 | |
3 | 2554 | 13.6 | 5611 | 30.0 | 6808 | 36.4 | 3748 | 20.0 | |
4 | 1244 | 43.9 | 496 | 17.5 | 574 | 20.3 | 521 | 18.4 | |
CO (missing = 288) | <0.001 | ||||||||
Population density level | |||||||||
1 | 38,272 | 21.9 | 39,671 | 22.7 | 45,926 | 26.3 | 51,048 | 29.2 | |
2 | 32,180 | 33.7 | 28,937 | 30.3 | 17,163 | 18.0 | 17,227 | 18.0 | |
3 | 4742 | 25.3 | 3171 | 16.9 | 6618 | 35.4 | 4186 | 22.4 | |
4 | 1082 | 38.2 | 528 | 18.6 | 651 | 23.0 | 573 | 20.2 | |
NO | |||||||||
Population density level | |||||||||
1 | 41,331 | 23.6 | 38,245 | 21.9 | 42,926 | 24.5 | 52,475 | 30.0 | |
2 | 28,985 | 30.3 | 28,564 | 29.8 | 20,592 | 21.5 | 17,589 | 18.4 | |
3 | 4671 | 25.0 | 3298 | 17.6 | 6623 | 35.4 | 4129 | 22.1 | |
4 | 1032 | 36.4 | 568 | 20.0 | 647 | 22.9 | 588 | 20.7 | |
NO2 | <0.001 | ||||||||
Population density level | |||||||||
1 | 39,621 | 22.6 | 41,999 | 24.0 | 47,193 | 27.0 | 46,164 | 26.4 | |
2 | 30,102 | 31.4 | 29,494 | 30.8 | 19,328 | 20.2 | 16,806 | 17.6 | |
3 | 4679 | 25.0 | 4755 | 25.4 | 5775 | 30.9 | 3512 | 18.8 | |
4 | 1108 | 39.1 | 583 | 20.6 | 624 | 22.0 | 520 | 18.3 | |
NOX | <0.001 | ||||||||
Population density level | |||||||||
1 | 40,795 | 23.3 | 37,624 | 21.5 | 45,971 | 26.3 | 50,587 | 28.9 | |
2 | 28,008 | 29.3 | 29,461 | 30.8 | 20,342 | 21.3 | 17,919 | 18.7 | |
3 | 4685 | 25.0 | 3298 | 17.6 | 6827 | 36.5 | 3911 | 20.9 | |
4 | 1049 | 37.0 | 549 | 19.4 | 665 | 23.5 | 572 | 20.2 | |
PM2.5 | <0.001 | ||||||||
Population density level | |||||||||
1 | 43,382 | 24.8 | 49,195 | 28.2 | 42,824 | 24.5 | 39,211 | 22.5 | |
2 | 21,414 | 22.4 | 21,115 | 22.1 | 24,360 | 25.5 | 28,618 | 30.0 | |
3 | 4963 | 26.6 | 4597 | 24.6 | 4476 | 24.0 | 4646 | 24.9 | |
4 | 1095 | 38.7 | 708 | 25.0 | 536 | 18.9 | 492 | 17.4 | |
PM10 | <0.001 | ||||||||
Population density level | |||||||||
1 | 40,974 | 23.4 | 50,695 | 29.0 | 42,270 | 24.2 | 41,038 | 23.5 | |
2 | 24,707 | 25.8 | 19,129 | 20.0 | 18,542 | 19.4 | 33,352 | 34.8 | |
3 | 4712 | 25.2 | 5539 | 29.6 | 4100 | 21.9 | 4370 | 23.3 | |
4 | 809 | 28.5 | 921 | 32.5 | 602 | 21.2 | 503 | 17.7 |
Pollutant | Levels | Event | IR | cHR | (95% CI) | aHR † | (95% CI) |
---|---|---|---|---|---|---|---|
SO2 | Q1 | 24,645 | 27.9 | Reference group | Reference group | ||
Q2 | 28,002 | 33.7 | 1.27 | (1.25, 1.29) | 1.28 | (1.26, 1.30) | |
Q3 | 28,342 | 30.2 | 1.09 | (1.07, 1.11) | 1.11 | (1.09, 1.13) | |
Q4 | 45,178 | 67.2 | 3.37 | (3.32, 3.42) | 3.39 | (3.34, 3.44) | |
CO | Q1 | 22,740 | 24.6 | Reference group | Reference group | ||
Q2 | 30,904 | 36.3 | 1.58 | (1.55, 1.60) | 1.58 | (1.55, 1.61) | |
Q3 | 31,484 | 39.4 | 1.75 | (1.72, 1.78) | 1.78 | (1.75, 1.81) | |
Q4 | 40,976 | 55.1 | 2.75 | (2.71, 2.80) | 2.77 | (2.73, 2.82) | |
NO | Q1 | 25,583 | 27.8 | Reference group | Reference group | ||
Q2 | 29,243 | 35.3 | 1.34 | (1.31, 1.36) | 1.34 | (1.32, 1.36) | |
Q3 | 30,915 | 38.1 | 1.46 | (1.43, 1.48) | 1.48 | (1.46, 1.51) | |
Q4 | 40,426 | 53.0 | 2.27 | (2.23, 2.31) | 2.30 | (2.26, 2.33) | |
NO2 | Q1 | 22,852 | 25.1 | Reference group | Reference group | ||
Q2 | 33,267 | 37.2 | 1.60 | (1.57, 1.63) | 1.63 | (1.60, 1.65) | |
Q3 | 30,972 | 36.3 | 1.54 | (1.51, 1.56) | 1.40 | (1.37, 1.42) | |
Q4 | 39,076 | 58.6 | 2.98 | (2.93, 3.03) | 2.73 | (2.69, 2.78) | |
NOX | Q1 | 23,392 | 25.9 | Reference group | Reference group | ||
Q2 | 31,500 | 38.5 | 1.62 | (1.59, 1.64) | 1.61 | (1.59, 1.64) | |
Q3 | 29,754 | 34.3 | 1.37 | (1.35, 1.40) | 1.56 | (1.53, 1.59) | |
Q4 | 41,521 | 56.4 | 2.70 | (2.66, 2.75) | 3.02 | (2.97, 3.07) | |
PM2.5 | Q1 | 18,741 | 20.9 | Reference group | Reference group | ||
Q2 | 25,088 | 26.3 | 1.30 | (1.28, 1.33) | 1.31 | (1.28, 1.33) | |
Q3 | 40,025 | 49.7 | 3.05 | (3.00, 3.11) | 3.04 | (2.99, 3.09) | |
Q4 | 41,955 | 62.6 | 4.28 | (4.21, 4.35) | 4.25 | (4.18, 4.32) | |
PM10 | Q1 | 19,758 | 22.1 | Reference group | Reference group | ||
Q2 | 31,155 | 33.8 | 1.68 | (1.65, 1.71) | 1.69 | (1.66, 1.72) | |
Q3 | 32,243 | 44.7 | 2.42 | (2.38, 2.46) | 2.42 | (2.38, 2.47) | |
Q4 | 43,011 | 54.5 | 3.20 | (3.14, 3.25) | 3.17 | (3.12, 3.22) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.-J.; Tsai, S.C.-S.; Lin, F.C.-F.; Hsu, Y.-C.; Chen, S.-W.; Chou, R.-H.; Lin, C.-L.; Hsu, C.Y.; Chang, K.-H. Prolonged Exposure to Air Pollution Increases Periodontal Disease Risk: A Nationwide, Population-Based, Cohort Study. Atmosphere 2021, 12, 1668. https://doi.org/10.3390/atmos12121668
Lin H-J, Tsai SC-S, Lin FC-F, Hsu Y-C, Chen S-W, Chou R-H, Lin C-L, Hsu CY, Chang K-H. Prolonged Exposure to Air Pollution Increases Periodontal Disease Risk: A Nationwide, Population-Based, Cohort Study. Atmosphere. 2021; 12(12):1668. https://doi.org/10.3390/atmos12121668
Chicago/Turabian StyleLin, Han-Jie, Stella Chin-Shaw Tsai, Frank Cheau-Feng Lin, Yi-Chao Hsu, Shih-Wei Chen, Ruey-Hwang Chou, Cheng-Li Lin, Chung Y. Hsu, and Kuang-Hsi Chang. 2021. "Prolonged Exposure to Air Pollution Increases Periodontal Disease Risk: A Nationwide, Population-Based, Cohort Study" Atmosphere 12, no. 12: 1668. https://doi.org/10.3390/atmos12121668
APA StyleLin, H.-J., Tsai, S. C.-S., Lin, F. C.-F., Hsu, Y.-C., Chen, S.-W., Chou, R.-H., Lin, C.-L., Hsu, C. Y., & Chang, K.-H. (2021). Prolonged Exposure to Air Pollution Increases Periodontal Disease Risk: A Nationwide, Population-Based, Cohort Study. Atmosphere, 12(12), 1668. https://doi.org/10.3390/atmos12121668