A Survey of Structure of Atmospheric Turbulence in Atmosphere and Related Turbulent Effects
Abstract
:1. Introduction
2. Structure of Atmospheric Turbulence in Earth’s Atmosphere
2.1. Theoretical Studies on Atmospheric Turbulence
2.2. Experimental Studies on Atmospheric Turbulence
3. Theoretical Studies of Turbulent Effect
3.1. Theoretical Studies of Kolmogorov Turbulent Effect
3.2. Theoretical Studies of Non-Kolmogorov Turbulent Effect
4. Theoretical Studies of Combined Influence of Kolmogorov and Non-Kolmogorov Turbulence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, L.C.; Philips, R.L. Laser Beam Propagation through Random Media; SPIE-The International Society for Optical Engineering Press: Bellingham, WA, USA, 2005; pp. 11–366. [Google Scholar]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics; MIT Press: Cambridge, MA, USA, 1975; pp. 166–186. [Google Scholar]
- Batchelor, G.K. Small-scale Variation of Convected Quantities like Temperature in Turbulent Fluid. Part I. General Discussion and the Case of Small Conductivity. J. Fluid Mech. 1959, 5, 113–139. [Google Scholar] [CrossRef]
- Golbraikh, E.; Kopeika, N.S. Behavior of Structure Function of Refraction Coefficient in Different Turbulent Fields. Appl. Opt. 2004, 43, 6151–6156. [Google Scholar] [CrossRef] [PubMed]
- Moiseev, S.S.; Chkhetiani, I.G. Helical Scaling in Turbulence. JETP 1996, 83, 192–198. [Google Scholar]
- Elperin, T.; Kleeorin, N.; Rogachevskii, I. Isotropic and Anisotropic Spectra of Passive Scalar Fluctuations in Turbulent Fluid Flow. Phys. Rev. E 1996, 53, 3431–3441. [Google Scholar] [CrossRef] [Green Version]
- Brissaud, A.; Frisch, U.; Leorat, J.; Lesieur, M.; Mazure, A. Helicity Cascades in Fully Developed Isotropic Turbulence. Phys. Fluids 1973, 16, 1366–1367. [Google Scholar] [CrossRef] [Green Version]
- Gibson, C.H.; Ashurst, W.T.; Kerstein, A.R. Mixing of Strongly Diffusive Passive Scalars like Temperature by Turbulence. J. Fluid Mech. 1988, 194, 261–293. [Google Scholar] [CrossRef]
- Smith, S.A.; Fritts, D.C.; Van Zandt, T.E. Evidence for a Saturated Spectrum of Atmospheric Gravity Waves. J. Atmos. Sci. 1987, 44, 1404–1410. [Google Scholar] [CrossRef]
- Beland, R.R. Some Aspects of Propagation through Weak Isotropic Non-Kolmogorov Turbulence. Proc. SPIE 1995, 2375, 6–16. [Google Scholar]
- Balin, S.; Yu, M.; Belen’kiy, S.; Samokhvalov, I.V.; Razenkov, I.A. Lidar Investigations of the Aerosol Inhomogeneities in the Atmosphere. Atm. Ocean Opt. 1986, 22, 1060–1064. [Google Scholar]
- Dalaudier, F.; Crochet, M.; Sidi, C. Direct Comparison between In situ and Radar Measurements of Temperature Fluctuation Spectra: A Puzzling Result. Radio Sci. 1989, 24, 311–324. [Google Scholar] [CrossRef]
- Aleksandrov, A.P.; Grechko, G.M.; Gurvich, A.S.; Kan, V. Spectra of Temperature Variations in the Stratosphere as Indicated by Satellite-borne Observation of the Twinkling of Stars. Izv. Atmos. Ocean Phys. 1990, 26, 1–7. [Google Scholar]
- Dewan, E.M. Simulated Modelling of Internal Gravity Wave Spectra. Geophys. Res. Lett. 1991, 18, 1473–1476. [Google Scholar] [CrossRef]
- Salathe, E.P.; Smith, R.B. In situ Observation of Temperature Microstructure above and below the Tropopause. J. Atmos. Sci. 1992, 49, 2032–2036. [Google Scholar] [CrossRef] [Green Version]
- Kyrazis, D.T.; Wissler, J.; Keating, D.B.; Preble, A.J.; Bishop, K.P. Measurement of Optical Turbulence in the Upper Troposphere and Lower Stratosphere. Proc. SPIE 1994, 2110, 43–55. [Google Scholar]
- Gurvich, A.S.; Kon, A.I. Aspect Sensitivity of Radar Returns from Anisotropic Turbulent Irregularities. J. Electromag. Waves Appl. 1993, 7, 1343–1353. [Google Scholar] [CrossRef]
- Hostetler, C.A.; Gardner, C.S. Observations of Horizontal and Vertical Wave Number Spectra of Gravity Wave Motions in the Stratosphere and Mesosphere over the Mid-Pacific. J. Geophys. Res. 1994, 99, 1283–1302. [Google Scholar] [CrossRef]
- Gurvich, A.S. Model of Three-dimensional Spectrum of Local Axisymmetric Temperature Inhomogeneities in Stable Stratified Atmosphere. Atmos. Ocean. Phys. 1995, 31, 344–349. [Google Scholar]
- Belen’kii, M.S.; Karis, S.J.; Brown, J.M.; Fugate, R.Q. Experimental Study of the Effect of Non-Kolmogorov Stratospheric Turbulence on Star Image Motion. Proc. SPIE 1997, 3126, 113–123. [Google Scholar]
- Belen’kii, M.S.; Cuellar, E.; Hughes, K.A.; Rye, V.A. Experimental Study of Spatial Structure of Turbulence at Maui Space Surceillance Site (MSSS). Proc. SPIE 2006, 6304, 63040U. [Google Scholar]
- Zilberman, A.; Golbraikh, E.; Kopeika, N.S. Lidar Studies of Aerosols and Non-Kolmogorov Turbulence in the Mediterranean Troposphere. Proc. IEEE 2005, 5987, 598702. [Google Scholar]
- Nosov, V.V.; Grigoriev, V.M.; Kovadlo, P.G.; Lukin, V.P.; Nosov, E.V.; Torgaev, A.V. Astoclimate of Specialized Rooms at the Large Solar Vacuum Telescope. Part 2. Atmos. Ocean. Opt. 2008, 21, 180–190. [Google Scholar]
- Nosov, V.V.; Grigoriev, V.M.; Kovadlo, P.G.; Lukin, V.P.; Nosov, E.V.; Torgaev, A.V. Coherent Structures in Turbulent Atmosphere. Proc. SPIE 2009, 7296, 729609. [Google Scholar]
- Nosov, V.V.; Kovadlo, P.G.; Lukin, V.P.; Torgaev, A.V. Atmospheric Coherent Turbulence. Atmos. Ocean. Opt. 2013, 26, 201–206. [Google Scholar] [CrossRef]
- Gurvich, A.S.; Belen’kii, M.S. Influence of Stratospheric Turbulence on Infrared Imaging. Proc. SPIE 1995, 12, 2517–2522. [Google Scholar] [CrossRef]
- Fu, S.; Tan, L.; Ma, J.; Zhou, Y. Effect of Non-Kolmogorov Turbulence on the Fluctuations in the Angle-of-arrival of Starlight. J. Russ. Laser Res. 2010, 31, 332–337. [Google Scholar] [CrossRef]
- Lutomirski, R.; Yura, H.T. Propagation of A Finite Optical Beam in A Turbulent Inhomogeneous Medium. Appl. Opt. 1971, 10, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- Feizulin, Z.I.; Kravtsov, Y.A. Expansion of A Laser in A Turbulent Medium. Izv. Vyssh Uchebn. Zaved. Radiofz 1967, 24, 1351–1355. [Google Scholar]
- Baskov, R.A.; Chumak, O.O. Laser-beam Scintillations for Weak and Moderate Turbulence. Phys. Rev. A 2018, 97, 043817. [Google Scholar] [CrossRef] [Green Version]
- Filimonov, G.A.; Aksenova, V.P.; Kolosova, V.V.; Pogutsa, C.E.; Zuev, V.E. Fluctuations of the Orbital Angular Momentum of Vortex Laser Beam in Turbulent Atmosphere: Dependence on Turbulence Strength and Beam Parameters. Proc. SPIE 2016, 10035, 100352f. [Google Scholar]
- Hricha, Z.; Lazrek, M.; Yaalou, M.; Belafhal, A. Propagation of Vortex Cosine-hyperbolic-Gaussian Beams in Atmospheric Turbulence. Opt. Quantum Electron. 2021, 53, 1–15. [Google Scholar] [CrossRef]
- Bayraktar, M. Performance of Airyprime Beam in Turbulent Atmosphere. Photonic Netw. Commun. 2021, 41, 274–279. [Google Scholar] [CrossRef]
- Yue, X.; Ge, X.; Lyu, Y.; Zhao, R.; Fu, S. Mean Intensity of Lowest Order Bessel-Gaussian Beams with Phase Singularities in Turbulent Atmosphere. Optik 2020, 219, 165215. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, H.; Ji, X.; Li, X.; Chen, L. Characteristics of High-power Partially Coherent Laser Beams Propagating Upwards in the Turbulent Atmosphere. Opt. Express 2020, 28, 27927–27939. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, A. Incoherent Beam Combination of Low Order Laguerre-Gaussian Beams Propagating in Turbulent Atmosphere. Optics 2020, 1, 100030. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, X.; Yuan, X.; Tian, P. Research on Characteristics of Bessel-Gaussian Schell-model Beam in Weak Turbulence. Opt. Commun. 2020, 474, 126074–126088. [Google Scholar] [CrossRef]
- Lukin, I.P. Coherence of Vortex Bessel-like Beams in a Turbulent Atmosphere. Appl. Opt. 2020, 53, 3833–3841. [Google Scholar] [CrossRef]
- Song, Z.; Zhao, D.; Han, Z.; Ye, J.; Liu, B. Multi-hyperbolic Sine-correlated Beams and Their Statistical Properties in Turbulent Atmosphere. J. Opt. Soc. Am. A 2020, 37, 1595–1602. [Google Scholar] [CrossRef] [PubMed]
- Bayraktar, M.; Eyyuboglu, H.T. Propagation Properties of Optical Bottle Beam in Turbulence. Opt. Eng. 2019, 58, 036104. [Google Scholar] [CrossRef]
- Lochab, P.; Senthilkumaran, P.; Khare, K. Propagation of Converging Polarization Singular Beams through Atmospheric Turbulence. Appl. Opt. 2019, 58, 6335–6345. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Sun, C.; Lv, X.; Zhang, J.; Deng, D. Effect of Turbulent Atmosphere on the Propagation of a Radial Phased locked Rotating Elliptical Gaussian Beam Array. J. Opt. Soc. Am. A 2020, 36, 1690–1698. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.; Hu, J.; Yi, X.; Xu, D.; Liu, Y. Effect of Airy Gaussian Vortex Beam Array on Reducing Intermode Crosstalk Induced by Atmospheric Turbulence. Opt. Express 2019, 27, 37986–37998. [Google Scholar] [CrossRef]
- Elmabruk, K.; Eyyubolu, H.T. Analysis of Flat-topped Gaussian Vortex Beam Scintillation Properties in Atmospheric Turbulence. Opt. Eng. 2019, 58, 066115. [Google Scholar] [CrossRef]
- Boufalah, F.; Dalil-Essakali, L.; Ez-zariy, L.; Belafhal, A. Introduction of Generalized Bessel Laguerre Gaussian Beams and its Central Intensity Travelling a Turbulent Atmosphere. Opt. Quantum Electron. 2018, 50, 305. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Tang, H.; Zhu, K. Propagation of Multi-cosine-Laguerre-Gaussian Correlated Schell-model Beams in Free Space and Atmospheric Turbulence. Opt. Express 2017, 25, 20071–20086. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Z.; Zhu, Z.; Wang, X.; Zhao, H. Propagation Properties of Partially Coherent High-order Cylindrical Vector Beams through a Turbulent Atmosphere. Optik 2017, 132, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Stribling, B.E.; Welsh, B.M.; Roggemann, M.C. Optical Propagation in Non-Kolmogorov Atmospheric Turbulence. Proc. SPIE 1994, 2471, 181–196. [Google Scholar]
- Boreman, G.D.; Dainty, C. Zernike Expansion for Non-Kolmogorov Turbulence. J. Opt. Soc. Am. A 1996, 13, 517–522. [Google Scholar] [CrossRef]
- Rao, C.; Jiang, W.; Ling, N. Spatial and Temporal Characterization of Phase Fluctuations in Non-Kolmogorov Atmospheric Turbulence. J. Mod. Opt. 2000, 47, 1111–1126. [Google Scholar] [CrossRef]
- Rao, C.; Jiang, W.; Ning, L. Adaptive-optics Compensation by Distributed Beacons for Non-Kolmogorov Turbulence. Appl. Opt. 2001, 40, 3441–3449. [Google Scholar] [CrossRef]
- Zunino, L.; Perez, D.G.; Garavaglia, M. A Fractional Brownian Motion Approach to Turbulent Wave-front Phase Modeling. Proc. SPIE 2004, 5743, 175–177. [Google Scholar]
- Wang, G. A New Random-phase-screen Time Series Simulation Algorithm for Dynamically Atmospheric Turbulence Wave-front Generator. Proc. SPIE 2006, 6027, 602716. [Google Scholar]
- Toselli, I.; Andrews, L.C.; Phillips, R.L.; Ferreroa, V. Angle-of-Arrival Fluctuations for Free Space Laser Beam Propagation through Non-Kolmogorov Turbulence. Proc. SPIE 2007, 6551, 65510E. [Google Scholar]
- Cui, L.; Xue, D.; Cao, G.; Dong, K.; Wang, J. Generalized Atmospheric Turbulence MTF for Wave Propagating through Non-Kolmogorov Turbulence. Opt. Express 2010, 18, 21269–21283. [Google Scholar]
- Wu, G.; Guo, H.; Yu, S.; Luo, B. Spreading and Direction of Gaussian–Schell Model Beam through a Non-Kolmogorov Turbulence. Opt. Lett. 2010, 35, 751–757. [Google Scholar] [CrossRef]
- Zhou, P.; Ma, Y.; Wang, X.; Zhao, H.; Liu, Z. Average Spreading of a Gaussian Beam Array in Non-Kolmogorov Turbulence. Opt. Lett. 2010, 35, 1043–1045. [Google Scholar] [CrossRef]
- Shchepakina, E.; Korotkova, O. Second-order Statistics of Stochastic Electromagnetic Beams Propagating through Non-Kolmogorov Turbulence. Opt. Express 2010, 18, 10650–10658. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Ou, B.; Luo, B.; Guo, H.; Dang, A. Average Spreading of A Radial Gaussian Beam Array in Non-Kolmogorov Turbulence. J. Opt. Soc. Am. A 2011, 28, 1016–1021. [Google Scholar] [CrossRef]
- Cui, L.; Xue, B.; Cao, L.; Zheng, S.; Xue, W.; Bai, X.; Cao, X.; Zhou, F. Irradiance Scintillation for Gaussian-beam Wave Propagating through Weak Non-Kolmogorov Turbulence. Opt. Express 2011, 19, 16872–16884. [Google Scholar] [CrossRef]
- Xu, H.; Cui, Z.; Qu, J. Propagation of Elegant Laguerre–Gaussian Beam in Non-Kolmogorov Turbulence. Opt. Express 2011, 19, 21163–21173. [Google Scholar] [CrossRef]
- He, X.; Lü, B. Propagation of Partially Coherent Flat-topped Vortex Beams through Non-Kolmogorov Atmospheric Turbulence. J. Opt. Soc. Am. A 2011, 28, 1941–1948. [Google Scholar] [CrossRef]
- Cang, J.; Liu, X. Scintillation Index and Performance Analysis of Wireless Optical Links over Non-Kolmogorov Weak Turbulence Based on Generalized Atmospheric Spectral Model. Opt. Express 2011, 19, 19067–19077. [Google Scholar] [CrossRef] [PubMed]
- Baykal, Y.; Luo, Y.; Ji, X. Scintillations of Higher Order Laser beams in Anisotropic Atmospheric Turbulence. Appl. Opt. 2016, 55, 9422–9426. [Google Scholar] [CrossRef]
- Gudimetla, V.S.R.; Holmes, R.B.; Farrell, T.C.; Lucas, J. Phase Screen Simulations of Laser Propagation through Non-Kolmogorov Atmospheric Turbulence. Proc. SPIE 2011, 8038, 803808. [Google Scholar]
- Zheng, L.; Wei, H.; Cai, D.; Jia, P.; Zhang, R.; Li, Z. Spiral Spectrum of Laguerre-Gaussian Beams in Slant Non-Kolmogorov Atmospheric Turbulence. Optik 2017, 142, 103–108. [Google Scholar]
- Zhang, H.; Fu, W. Polarization Properties of Square Multi-Gaussian Schell-Model Beam Propagating through Non-Kolmogorov Turbulence. Optik 2017, 134, 161–169. [Google Scholar] [CrossRef]
- Tang, L.; Wang, H.; Zhang, X.; Zhu, S. Propagation Properties of Partially Coherent Lommel Beams in Non-Kolmogorov Turbulence. Opt. Commun. 2018, 427, 79–84. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y. Bandwidth-limited Orbital Angular Momentum Mode of Bessel Gaussian Beams in the Moderate to Strong Non-Kolmogorov Turbulence. Opt. Commun. 2019, 438, 90–95. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, X.; Zhao, C.; Wang, F.; Gbur, G.; Cai, Y. Spiral Spectrum of a Laguerre-Gaussian Beam Propagating in Anisotropic Non-Kolmogorov Turbulent Atmosphere along Horizontal Path. Opt. Express 2019, 27, 25342–25356. [Google Scholar] [CrossRef]
- Tan, L.; Du, W.; Ma, J.; Yu, S.; Han, Q. Log-amplitude Variance for a Gaussian-beam Wave Propagating through Non-Kolmogorov Turbulence. Opt. Express 2010, 18, 451–462. [Google Scholar] [CrossRef]
- Du, W.; Tan, L.; Ma, J.; Jiang, Y. Temporal-frequency Spectra for Optical Wave Propagating through Non-Kolmogorov Turbulence. Opt. Express 2010, 18, 5763–5775. [Google Scholar] [CrossRef]
- Du, W.; Yu, S.; Tan, L.; Ma, J.; Jiang, Y.; Xie, W. Angle-of-arrival Fluctuations for Wave Propagation through Non-Kolmogorov Turbulence. Opt. Commun. 2005, 282, 705–708. [Google Scholar] [CrossRef]
- Tan, L.; Du, W.; Ma, J. Effect of the Outer Scale on the Angle-of-arrival Variance for Free-space-laser Beam Corrugated by Non-Kolmogorov Turbulence. J. Russ. Laser Res. 2009, 30, 557–564. [Google Scholar] [CrossRef]
- Du, W.; Tan, L.; Ma, J. Theory Study on Beam Wander for Laser Beam Propagation through Non-Kolmogorov Turbulence. Acta Opt. Sin. 2008, 28, 20–23. [Google Scholar]
- Du, W.; Yang, J.; Yao, Z.; Lu, J.; Liu, D.; Cui, Q. Wander of a Gaussian-Beam Wave Propagated Through a Non-Kolmogorov Turbulent Atmosphere. J. Russ. Laser Res. 2014, 35, 415–422. [Google Scholar] [CrossRef]
- Du, W.; Yang, J.; Yao, Z.; Lu, J.; Liu, D.; Cui, Q. Two-frequency Mutual Coherence Function of a Gaussian Beam Pulse in Non-Kolmogorov Turbulent Atmosphere. J. Russ. Laser Res. 2015, 36, 355–362. [Google Scholar] [CrossRef]
- Yi, X.; Liu, Z.; Yue, P. Inner- and Outer-scale Effects on the Scintillation Index of an Optical Wave Propagating through Moderate-to-strong Non-Kolmogorov Turbulence. J. Russ. Laser Res. 2012, 20, 4232–4247. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Xue, B.; Cao, X. Analysis of Optical Waves Propagating through Moderate-to-strong Non-Kolmogorov Turbulence. J. Opt. Soc. Am. A 2013, 30, 1738–1745. [Google Scholar] [CrossRef]
- Cui, L.; Xue, B.; Zhou, F. Analytical Expressions for the Angle of Arrival Fluctuations for Optical Waves Propagation through Moderate-to-strong Non-Kolmogorov Refractive Turbulence. J. Opt. Soc. Am. A 2013, 30, 2188–2195. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Xue, B.; Cao, X.; Zhou, F. Angle of arrival Fluctuations Considering Turbulence Outer Scale for Optical Waves Propagation through Moderate-to-strong Non-Kolmogorov Turbulence. J. Opt. Soc. Am. A 2014, 31, 829–835. [Google Scholar] [CrossRef]
- Deng, P.; Yuan, X.; Huang, D. Scintillation of a Laser Beam Propagation through Non-Kolmogorov Strong Turbulence. Opt. Commun. 2012, 285, 880–887. [Google Scholar] [CrossRef]
- Cui, L.; Cao, L. Temporal Power Spectra of Angle of Arrival Fluctuations for Opticalwaves Propagating through Moderate-to-strong Non-Kolmogorov Refractive Turbulence. Opitk 2015, 126, 4308–4312. [Google Scholar] [CrossRef]
- Cui, L.; Xue, B.; Cao, X.; Zhou, F. Influence of Moderate-to-strong Non-Kolmogorov Turbulence on the Imaging System by Atmospheric Turbulence MTF. Opitk 2015, 126, 880–887. [Google Scholar] [CrossRef]
- Cui, L.; Xue, B.; Zheng, S.; Xue, W.; Bai, X.; Cao, X.; Zhou, F. Atmospheric Spectral Model and Theoretical Expressions of Irradiance Scintillation Index for Optical Wave Propagating through Moderate-to-strong Non-Kolmogorov Turbulence. J. Opt. Soc. Am. A 2012, 29, 1091–1098. [Google Scholar] [CrossRef]
- Ma, J.; Fu, Y.; Yu, S.; Xie, X.; Tan, L. Further Analysis of Scintillation Index for a Laser Beam Propagating through Moderate-to-strong Non-Kolmogorov Turbulence Based on Generalized Effective Atmospheric Spectral Model. Chin. Phys. B 2018, 27, 034201. [Google Scholar] [CrossRef]
- Belen’kii, M.S. Effect of the Stratosphere on Star Image Motion. Opt. Lett. 1995, 20, 1359–1361. [Google Scholar] [CrossRef] [PubMed]
- Zilberman, A.; Golbraikh, E.; Kopeika, N.S. Propagation of Electromagnetic Waves in Kolmogorov and Non-Kolmogorov Atmospheric Turbulence: Three-layer Altitude Model. Appl. Opt. 2008, 47, 6385–6391. [Google Scholar] [CrossRef]
- Zilberman, A.; Golbraikh, E.; Arnon, S.; Kopeika, N. Kolmogorov and non-Kolmogorov Turbulence and its Effect on Optical Communication Links. Proc. SPIE 2007, 6709, 67090K. [Google Scholar]
- Yi, X.; Liu, Z.; Yue, P. Uplink laser satellite-communication system performance for a Gaussian beam propagating through three-layer altitude spectrum of weak-turbulence. Optik 2013, 124, 2916–2919. [Google Scholar] [CrossRef]
- Du, W.; Zhu, H.; Liu, D.; Yao, Z.; Cai, C.; Du, X.; Ai, R. Influence of non-Kolmogorov Turbulence on Beam Spreading in Laser Satellite Communication. J. Russ. Laser Res. 2012, 33, 401–408. [Google Scholar]
- Du, W.; Yao, Z.; Liu, D.; Cai, C.; Du, X.; Ai, R. Influence of Non-Kolmogorov Turbulence on Iintensity Fluctuations in Laser Satellite Communication. J. Russ. Laser Res. 2012, 33, 90–97. [Google Scholar] [CrossRef]
- Du, W.; Chen, F.; Yao, Z.; Ai, R.; Liu, D.; Cui, Q. Influence of Non-Kolmogorov Turbulence on Bit-error Rate in Laser Satellite Communication. J. Russ. Laser Res. 2013, 34, 255–259. [Google Scholar] [CrossRef]
- Du, W.; Yang, Z.; Jin, Z.; Shi, C.; Wang, Y.; Ti, Y.; Yao, Z.; Zhu, H.; Jiao, D.; Liu, J.; et al. Outer-Scale Effect of a Gaussian-Beam Wave Propagated Through Non-Kolmogorov Turbulent Atmosphere on the Beam Wander. J. Russ. Laser Res. 2012, 33, 90–97. [Google Scholar] [CrossRef]
- Du, W.; Cheng, X.; Wang, Y.; Jin, Z.; Liu, D.; Feng, S.; Yang, Z. Scintillation Index of a Plane Wave Propagating through Kolmogorov and Non-Kolmogorov Turbulence along Laser-satellite Communication Downlink at Large Zenith Angles. J. Russ. Laser Res. 2020, 41, 616–627. [Google Scholar] [CrossRef]
- Du, W.; Yuan, Q.; Cheng, X.; Wang, Y.; Jin, Z.; Liu, D.; Feng, S.; Yang, Z. Scintillation Index of a Spherical Wave Propagating Through Kolmogorov and Non-Kolmogorov Turbulence along Laser-Satellite Communication Uplink at Large Zenith Angles. J. Russ. Laser Res. 2021, 42, 150–161. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Du, W.; Yuan, Q.; Liu, D.; Feng, S. A Survey of Structure of Atmospheric Turbulence in Atmosphere and Related Turbulent Effects. Atmosphere 2021, 12, 1608. https://doi.org/10.3390/atmos12121608
Wang F, Du W, Yuan Q, Liu D, Feng S. A Survey of Structure of Atmospheric Turbulence in Atmosphere and Related Turbulent Effects. Atmosphere. 2021; 12(12):1608. https://doi.org/10.3390/atmos12121608
Chicago/Turabian StyleWang, Fazhi, Wenhe Du, Qi Yuan, Daosen Liu, and Shuang Feng. 2021. "A Survey of Structure of Atmospheric Turbulence in Atmosphere and Related Turbulent Effects" Atmosphere 12, no. 12: 1608. https://doi.org/10.3390/atmos12121608
APA StyleWang, F., Du, W., Yuan, Q., Liu, D., & Feng, S. (2021). A Survey of Structure of Atmospheric Turbulence in Atmosphere and Related Turbulent Effects. Atmosphere, 12(12), 1608. https://doi.org/10.3390/atmos12121608