Extreme Temperature Events in Serbia in Relation to Atmospheric Circulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Climate Indices
2.3. The Mann-Kendall Test
2.4. Multiple Linear Regression (MLR)
2.5. Large-Scale Circulation Patterns
3. Results
3.1. Summer Days (SU)
3.2. Warm Days (Tx90)
3.3. Frost Days (FD)
3.4. Cold Nights (Tn10)
3.5. Heat Waves (HWs)
3.6. Influence of Atmospheric Circulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Klein Tank, A.M.G.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Jones, P.D.; Davies, T.D.; Moberg, A.; Bergström, H.; Camuffo, D.; Cocheo, C.; Maugeri, M.; Demarée, G.R.; Verhoeve, T.; et al. Trends of Extreme Temperatures in Europe and China Based on Daily Observations. Clim. Chang. 2002, 53, 355–392. [Google Scholar] [CrossRef]
- Vincent, L.A.; Peterson, T.C.; Barros, V.R.; Marino, M.B.; Rusticucci, M.; Carrasco, G.; Ramirez, E.; Alves, L.M.; Ambrizzi, T.; Berlato, M.A.; et al. Observed Trends in Indices of Daily Temperature Extremes in South America 1960–2000. J. Clim. 2005, 18, 5011–5023. [Google Scholar] [CrossRef]
- Cowan, T.; Purich, A.; Perkins, S.; Pezza, A.; Boschat, G.; Sadler, K. More Frequent, Longer, and Hotter Heat Waves for Australia in the Twenty-First Century. J. Clim. 2014, 27, 5851–5871. [Google Scholar] [CrossRef]
- Rusticucci, M.; Kyselý, J.; Almeira, G.; Lhotka, O. Long-term variability of HWs in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires. Theor. Appl. Clim. 2015, 15, 679–689. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.W.; Wu, Z.; Du, H.; Shen, X.; Ma, S. Spatial and temporal variations of summer hot days and heat waves and their relationships with large-scale atmospheric circulations across Northeast China. Int. J. Clim. 2018, 38, 5633–5645. [Google Scholar] [CrossRef]
- Olmo, M.; Bettolli, M.L.; Rusticucci, M. Atmospheric circulation influence on temperature and precipitation individual and compound daily extreme events: Spatial variability and trends over southern South America. Weather Clim. Extrem. 2020, 29, 100267. [Google Scholar] [CrossRef]
- Shevchenko, O.; Lee, H.; Snizhko, S.; Mayer, H. Long-term analysis of heat waves in Ukraine. Int. J. Clim. 2014, 34, 1642–1650. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E. Heat waves in Central Europe and their circulation conditions. Int. J. Clim. 2016, 36, 770–782. Available online: https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.4381 (accessed on 20 April 2020). [CrossRef]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häerli, C.; Linie, M.A.; Appenzeler, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef]
- Luterbacher, J.; Liniger, M.A.; Menzel, A.; Estrella, N.; Della-Marta, P.M.; Pfister, C.; Rutishauser, T.; Xoplaki, E. Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phonological impacts. Geophys. Res. Lett. 2007, 34, L12704. [Google Scholar] [CrossRef] [Green Version]
- Rebetez, M.; Dupont, O.; Giroud, M. An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003. Theor. Appl. Clim. 2009, 95, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kyselý, J. Recent severe heat waves in central Europe: How to view them in a long-term prospect? Int. J. Clim. 2010, 30, 89–109. [Google Scholar] [CrossRef]
- Founda, D.; Giannakopoulos, C. The exceptionally hot summer of 2007 in Athens, Greece—A typical summer in the future climate? Glob. Planet. Chang. 2009, 67, 227–236. [Google Scholar] [CrossRef]
- Unkašević, M.; Tošić, I. The maximum temperatures and heat waves in Serbia during the summer of 2007. Clim. Chang. 2011, 108, 207–223. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Grumm, R.H. The Central European and Russian Heat Event of July–August 2010. Bull. Am. Meteorol. Soc. 2011, 92, 1285–1296. [Google Scholar] [CrossRef] [Green Version]
- Lhotka, O.; Kyselý, J. Hot Central-European summer of 2013 in a long-term context. Int. J. Clim. 2015, 35, 4399–4407. [Google Scholar] [CrossRef]
- Hoy, A.; Hänsel, S.; Skalak, P.; Ustrnul, Z.; Bochníček, O. The extreme European summer of 2015 in a long-term perspective. Int. J. Clim. 2017, 37, 943–962. [Google Scholar] [CrossRef]
- Barcena-Martin, E.; Molina, J.; Ruiz-Sinoga, J.D. Issues and challenges in defining a heat wave: A Mediterranean case study. Int. J. Clim. 2018, 39, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Popov, T.; Gnjato, S.; Trbić, G.; Ivanišević, M. Recent trends in extreme temperature indices in bosnia and herzegovina. Carpathian J. Earth Environ. Sci. 2018, 13, 211–224. [Google Scholar] [CrossRef]
- Burić, D.; Luković, J.; Ducić, V.; Dragojlović, J.; Doderović, M. Recent trends in daily temperature extremes over southern Montenegro (1951–2010). Nat. Hazards Earth Syst. Sci. 2014, 14, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Croitoru, A.E.; Piticar, A. Changes in daily extreme temperatures in the extra-Carpathians regions of Romania. Int. J. Clim. 2013, 33, 1987–2001. [Google Scholar] [CrossRef]
- Unkašević, M.; Tošić, I. Changes in extreme daily winter and summer temperatures in Belgrade. Theor. Appl. Clim. 2009, 95, 27–38. [Google Scholar] [CrossRef]
- Unkašević, M.; Tošić, I. Trends in temperature indices over Serbia: Relationships to large-scale circulation patterns. Int. J. Clim. 2013, 33, 3152–3161. [Google Scholar] [CrossRef]
- Ruml, M.; Gregorić, E.; Vujadinović, M.; Radovanović, S.; Matović, G.; Vuković, A.; Počuča, V.; Stojičić, D. Observed changes of temperature extremes in Serbia over the period 1961–2010. Atmos. Res. 2017, 183, 26–41. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Harrington, J. Time-sensitive analysis of a warming climate on heat waves in Saudi Arabia: Temporal patterns and trends. Int. J. Clim. 2018, 38, 3123–3139. [Google Scholar] [CrossRef]
- Kyselý, J. Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: Analysis over the 20th century. Glob. Planet. Chang. 2008, 62, 147–163. [Google Scholar] [CrossRef]
- Putniković, S.; Tošić, I.; Đurđević, V. Circulation weather types and their influence on precipitation in Serbia. Theor. Appl. Clim. 2016, 128, 649–662. [Google Scholar] [CrossRef]
- Putniković, S.; Tosic, I. Relationship between atmospheric circulation weather types and seasonal precipitation in Serbia. Theor. Appl. Clim. 2018, 130, 393–403. [Google Scholar] [CrossRef]
- Mihailović, D.T.; Lalić, B.; Drešković, N.; Mimić, G.; Djurdjević, V.; Jančić, M. Climate change effects on crop yields in Serbia and related shifts of Köppen climate zones under the SRES-A1B and SRES-A2. Int. J. Clim. 2015, 35, 3320–3334. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamistu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NMC/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- ECA&D. European Climate Assessment & Dataset (ECA&D). 2013. Available online: http://eca.knmi.nl/documents/atbd.pdf (accessed on 10 November 2019).
- Kyselý, J. Changes in the Occurrence of Extreme Temperature Events. Ph.D. Thesis, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, 2000; 97p. (In Czech). [Google Scholar]
- WMO (World Meteorological Organization). Climatic Change; Tech Note No. 79, No. 170; WMO: Geneva, Switzerland, 1966. [Google Scholar]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed.; Routledge: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Nash, J.; Sutcliffe, J. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Jenkinson, A.F.; Collison, F.P. An initial climatology of gales over the North Sea. In Synoptic Climatology Branch Memorandum 62; Meteorological Office: Bracknell, UK, 1977. [Google Scholar]
- Putniković, S. Objective Classification of the Atmospheric Circulation over Serbia. Ph.D. Thesis, University of Belgrade, Faculty of Physics, Belgrade, Serbia, 2017. (In Serbian). [Google Scholar]
- Wu, Z.; Huang, N.E.; Long, R.S.; Peng, C.-K. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA 2007, 104, 14889–14894. [Google Scholar] [CrossRef] [Green Version]
- Unkašević, M.; Tosic, I. Seasonal analysis of cold and heat waves in Serbia during the period 1949–2012. Theor. Appl. Clim. 2014, 120, 29–40. [Google Scholar] [CrossRef]
- Tošić, I.; Mladjan, D.; Gavrilov, M.B.; Živanović, S.; Radaković, M.G.; Putnikovic, S.; Petrović, P.; Mistridželović, I.K.; Marković, S. Influence of meteorological variables on forest fire risk in Serbia during the period 2000-2017. Open Geosci. 2019, 11, 414–425. [Google Scholar] [CrossRef] [Green Version]
- Yiou, P.; Vautard, R.; Naveau, P.; Cassou, C. Inconsistency between atmospheric dynamics and temperatures during the exceptional 2006/2007 fall/winter and recent warming in Europe. Geophys. Res. Lett. 2007, 34, L21808. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, L20714. [Google Scholar] [CrossRef]
- Tomczyk, A.M. Impact of Atmospheric Circulation on the Occurrence of Hot Nights in Central Europe. Atmosphere 2018, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Radinović, D.j. Weather Analysis; Zavod za Izdavanje Udzbenika Srbije: Belgrade, Serbia, 1968. (In Serbian) [Google Scholar]
Abb | Station | Latitude | Longitude | Altitude (m) |
---|---|---|---|---|
ZR | Zrenjanin | 45°24′ | 20°21′ | 80 |
NS | Novi Sad | 45°20′ | 19°51′ | 84 |
SM | Sremska Mitrovica | 44°58′ | 19°38′ | 82 |
BG | Belgrade | 44°48′ | 20°28′ | 132 |
VG | Veliko Gradište | 44°45′ | 21°31′ | 82 |
LO | Loznica | 44°33′ | 19°14′ | 121 |
SP | Smederevska Palanka | 44°22′ | 20°57′ | 121 |
NE | Negotin | 44°13′ | 22°31′ | 42 |
KG | Kragujevac | 44°02′ | 20°56′ | 185 |
KV | Kraljevo | 43°44′ | 20°41′ | 215 |
NI | Niš | 43°20′ | 21°54′ | 202 |
ID | Definition | Descriptive Name |
---|---|---|
SU | Number of days with Tx > 25 °C | Summer days |
FD | Number of days with Tn < 0 °C | Frost days |
Tx90 | Number of days when Tx > 90th percentile | Warm days |
Tn10 | Number of days when Tn < 10th percentile | Cold nights |
WSDI | Number of days of at least six consecutive days during which Tx > 90th percentile | Warm spell duration index |
Abb | Station | Spring | Summer | Autumn |
---|---|---|---|---|
ZR | Zrenjanin | 0.0894 | 0.1659 | 0.0189 |
NS | Novi Sad | 0.0259 | −0.0023 | −0.0405 |
SM | Sremska Mitrovica | 0.1017 | 0.1586 | 0.0210 |
BG | Belgrade | 0.12331 | 0.2076 | 0.0500 |
VG | Veliko Gradište | 0.0959 | 0.2139 | 0.0277 |
LO | Loznica | 0.0581 | 0.1288 | 0.0007 |
SP | Smederevska Palanka | 0.1100 | 0.2140 | 0.0648 |
NE | Negotin | 0.1017 | 0.1573 | 0.0428 |
KG | Kragujevac | 0.1046 | 0.1096 | 0.0466 |
KV | Kraljevo | 0.0711 | 0.1602 | 0.0139 |
NI | Niš | 0.0911 | 0.1651 | 0.0497 |
Abb | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
ZR | 0.0460 | 0.1659 1 | 0.0838 | 0.0890 |
NS | 0.0229 | 0.0679 | 0.0224 | 0.0442 |
SM | 0.0808 | 0.1507 | 0.0763 | 0.0741 |
BG | 0.0976 | 0.2052 | 0.1050 | 0.0939 |
VG | 0.0962 | 0.1938 | 0.0728 | 0.0628 |
LO | 0.1129 | 0.1806 | 0.1023 | 0.0913 |
SP | 0.0940 | 0.1989 | 0.1152 | 0.1062 |
NE | 0.0897 | 0.1678 | 0.0611 | 0.1262 |
KG | 0.0845 | 0.1848 | 0.0848 | 0.1051 |
KV | 0.0547 | 0.1725 | 0.0623 | 0.0762 |
NI | 0.0779 | 0.1520 | 0.0738 | 0.0662 |
Abb | Spring | Autumn | Winter |
---|---|---|---|
ZR | −0.1030 1 | −0.0274 | −0.1658 |
NS | −0.0668 | 0.0034 | −0.0544 |
SM | −0.0310 | −0.0055 | −0.0961 |
BG | −0.0920 | −0.0165 | −0.1652 |
VG | −0.0124 | 0.0376 | −0.0225 |
LO | −0.0943 | −0.0137 | −0.1515 |
SP | −0.0845 | 0.0142 | −0.0235 |
NE | −0.1098 | −0.0590 | −0.1214 |
KG | −0.0948 | −0.0031 | −0.0925 |
KV | −0.1011 | −0.0116 | −0.0887 |
NI | −0.0806 | 0.0023 | −0.0466 |
Abb | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
ZR | −0.0824 1 | −0.1168 | −0.0790 | −0.1152 |
NS | −0.0287 | −0.0565 | −0.0444 | −0.0829 |
SM | −0.0440 | −0.0036 | −0.0142 | −0.0650 |
BG | −0.1358 | −0.1633 | −0.0729 | −0.1157 |
VG | 0.0054 | −0.0085 | 0.0195 | −0.0147 |
LO | −0.1366 | −0.1717 | −0.0972 | −0.1355 |
SP | −0.0839 | −0.1254 | −0.0580 | −0.0509 |
NE | −0.1018 | −0.1643 | −0.0974 | −0.0467 |
KG | −0.0939 | −0.1281 | −0.0383 | −0.0477 |
KV | −0.0900 | −0.1336 | −0.0590 | −0.0647 |
NI | −0.1011 | −0.1391 | −0.0576 | −0.0412 |
Summer | Winter | |||
---|---|---|---|---|
Abb | The Longest HW Duration in Days | The Strongest HW Severity [°C] | The Longest HW Duration in Days | The Strongest HW Severity [°C] |
ZR | 13 (2012) | 31.9 (2007) | 11 (2006/2007) | 44.0 (1988/1989) |
NS | 11 (2003) | 43.4 (1950) | 11 (1955/1956) | 65.9 (1988/1989) |
SM | 13 (2012) | 43.2 (1950) | 11 (1989/1990) | 46.3 (1988/1989) |
BG | 13 (2012) | 45.1 (2007) | 10 (1988/1989) | 62.2 (1988/1989) |
VG | 12 (2012) | 45.7 (2007) | 12 (2006/2007) | 39.6 (2006/2007) |
LO | 13 (2012) | 34.6 (2007) | 11 (1988/1989) | 53.3 (1988/1989) |
SP | 12 (2012) | 47.9 (2007) | 13 (2006/2007) | 35.6 (1988/1989) |
NE | 12 (2012) | 48.0 (2007) | 13 (2006/2007) | 70.3 (2006/2007) |
KG | 12 (2012) | 49.2 (2007) | 13 (2006/2007) | 37.2 (1988/1989) |
KV | 14 (2012) | 53.3 (2007) | 10 (1997/1998) | 29.5 (2006/2007) |
NI | 15 (1952) | 52.3 (2007) | 12 (1949/1950) | 31.0 (1949/1950) |
Spring | Summer | Autumn | Winter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Abb | r | r2 | MEF | r | r2 | MEF | r | r2 | MEF | r | r2 | MEF |
ZR | −0.0140 | 0.0002 | −1.5804 | −0.0146 | 0.0002 | −0.5422 | −0.0987 | 0.0097 | −1.0428 | 0.62751 | 0.3937 | −0.0429 |
NS | 0.1364 | 0.0186 | −0.7431 | −0.1883 | 0.0354 | −0.4525 | 0.0543 | 0.0030 | −0.7126 | 0.6345 | 0.4026 | 0.2285 |
SM | −0.0079 | 0.0000 | −2.0841 | 0.1554 | 0.0242 | −0.4290 | −0.0178 | 0.003 | −1.3030 | 0.5769 | 0.3328 | 0.0265 |
BG | 0.1273 | 0.0162 | −1.6597 | 0.2046 | 0.0419 | −0.6687 | −0.0028 | 0.0000 | −1.5933 | 0.7041 | 0.4958 | 0.0012 |
VG | 0.0684 | 0.0047 | −2.0194 | 0.0362 | 0.0013 | −0.7565 | −0.0781 | 0.0061 | −1.4615 | 0.5700 | 0.3249 | −0.2172 |
LO | 0.1328 | 0.0176 | −1.8574 | 0.3068 | 0.0941 | −0.2091 | −0.0051 | 0.0000 | −0.9917 | 0.6391 | 0.4084 | −0.2011 |
SP | 0.2272 | 0.0516 | −1.8316 | 0.2463 | 0.0606 | −0.7312 | −0.0325 | 0.0011 | −1.3038 | 0.6725 | 0.4522 | −0.1506 |
NE | 0.0708 | 0.0050 | −2.3931 | 0.0587 | 0.0034 | −0.5711 | −0.3729 | 0.1390 | −1.1424 | 0.6177 | 0.3816 | 0.2549 |
KG | 0.2624 | 0.0689 | −1.5296 | 0.2893 | 0.0837 | −0.6533 | −0.0257 | 0.0004 | −0.9982 | 0.5438 | 0.2957 | −0.3412 |
KV | 0.2504 | 0.0627 | −0.9506 | 0.4654 | 0.2166 | −0.4461 | −0.0105 | 0.0001 | −0.8356 | 0.6175 | 0.3813 | −0.1615 |
NI | 0.2749 | 0.0756 | −1.4685 | 0.1738 | 0.0302 | −0.8236 | 0.0998 | 0.0100 | −0.5522 | 0.7339 | 0.5386 | −0.2884 |
Spring | Autumn | Winter | |||||||
---|---|---|---|---|---|---|---|---|---|
Abb | r | r2 | MEF | r | r2 | MEF | r | r2 | MEF |
ZR | 0.1944 | 0.0378 | −0.5666 | −0.1182 | 0.0140 | −0.5976 | 0.4646 1 | 0.2158 | −0.6677 |
NS | 0.3203 | 0.1026 | −0.0692 | −0.0606 | 0.0037 | −0.2243 | 0.3799 | 0.1443 | −0.3885 |
SM | 0.0627 | 0.0039 | −0.2413 | −0.1048 | 0.0110 | −0.4847 | 0.4060 | 0.1648 | −1.2619 |
BG | 0.1496 | 0.0224 | −0.3520 | −0.2795 | 0.0781 | −0.7889 | 0.4682 | 0.2192 | −0.3459 |
VG | 0.2214 | 0.0490 | −0.2269 | −0.0724 | 0.0052 | −0.4642 | 0.4755 | 0.2261 | −0.2248 |
LO | 0.1298 | 0.0168 | −0.2732 | −0.2402 | 0.0577 | −0.5110 | 0.3536 | 0.1250 | −1.1552 |
SP | 0.1182 | 0.0140 | −0.2040 | −0.0828 | 0.0069 | −0.4047 | 0.4025 | 0.1620 | −0.3802 |
NE | 0.3569 | 0.1273 | −0.0536 | −0.1099 | 0.0121 | −0.5223 | 0.4262 | 0.1817 | −0.5294 |
KG | 0.2323 | 0.0540 | −0.2877 | −0.1349 | 0.0182 | −0.4148 | 0.3015 | 0.0909 | −0.7787 |
KV | 0.1257 | 0.0158 | −0.4622 | −0.1439 | 0.0207 | −0.5937 | 0.3065 | 0.0940 | −1.1487 |
NI | 0.0764 | 0.0058 | −0.1617 | −0.1791 | 0.0321 | −0.5871 | 0.4581 | 0.2099 | −0.4258 |
Spring | Summer | Autumn | Winter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Abb | r | r2 | MEF | r | r2 | MEF | r | r2 | MEF | r | r2 | MEF |
ZR | 0.2296 | 0.0527 | −1.4210 | 0.1642 | 0.0269 | −3.7438 | 0.0992 | 0.0098 | −0.8809 | 0.4282 | 0.1834 | −1.1099 |
NS | 0.48511 | 0.2353 | 0.2045 | 0.3607 | 0.1301 | −0.0225 | −0.0014 | 0.0000 | −0.3655 | 0.3329 | 0.1108 | −0.3423 |
SM | −0.1559 | 0.0243 | −0.7012 | 0.0980 | 0.0096 | −0.8953 | 0.0883 | 0.0078 | −0.7609 | 0.3005 | 0.0903 | −0.1703 |
BG | 0.1055 | 0.0111 | −0.7353 | −0.1971 | 0.0389 | −2.7973 | 0.1118 | 0.0125 | −0.6304 | 0.4167 | 0.1737 | −0.9185 |
VG | 0.1400 | 0.0196 | −0.2108 | 0.2840 | 0.0807 | −0.7659 | 0.1984 | 0.0394 | −0.2282 | 0.5067 | 0.2567 | −0.1427 |
LO | 0.0027 | 0.0000 | −1.8315 | 0.1025 | 0.0105 | −2.4236 | 0.2565 | 0.0658 | −0.6080 | 0.2749 | 0.0756 | −1.1616 |
SP | 0.1359 | 0.0185 | −0.8462 | 0.2272 | 0.0516 | −2.2530 | 0.2889 | 0.0835 | −0.2233 | 0.2855 | 0.0815 | −0.4291 |
NE | 0.3168 | 0.1004 | −1.9819 | 0.2150 | 0.0462 | −5.2958 | 0.0808 | 0.0065 | −0.6629 | 0.2650 | 0.0702 | −0.2653 |
KG | −0.0608 | 0.0037 | −1.5721 | 0.2268 | 0.0514 | −3.8088 | 0.1609 | 0.0259 | −0.3521 | 0.5129 | 0.2630 | −0.1476 |
KV | 0.0548 | 0.0030 | −1.2745 | −0.0220 | 0.0004 | −2.6036 | 0.0698 | 0.0049 | −0.9198 | 0.4051 | 0.1277 | −0.5240 |
NI | 0.0054 | 0.0000 | −1.0031 | 0.1094 | 0.0120 | −2.5427 | −0.0667 | 0.0045 | −0.8516 | 0.5558 | 0.3089 | −0.0573 |
Novi Sad |
Tx90 = 45.969 + 0.233 W − 0.723 NW − 1.006 N − 0.806 NE − 0.576 E − 0.395 SE − 0.575 S + 0.447 SW − 0.7505 C − 0.269 AC |
FD = −315.890 + 3.774 W + 3.997 NW + 5.150 N + 3.071 NE + 4.798 E + 4.181 SE + 3.199 S + 1.959 SW + 5.328 C + 4.158 AC |
Tn10 = 113.604 − 2.058 W − 1.687 NW − 1.500 N − 0.908 NE − 0.639 E − 1.047 SE − 1.461 S − 0.964 SW − 0.973 C − 1.299 AC |
Niš |
Tx90 = −29.992 + 0.799 W + 0.568 NW + 0.546 N + 0.025 NE + 0.365 E + 0.421 SE + 0.286 S + 1.155 SW + 0.202 C + 0.348 AC |
FD = −248.710 + 3.243 W + 3.571 NW + 3.243 N + 3.309 NE + 3.853 E + 3.540 SE + 2.513 S + 1.587 SW + 4.031 C + 3.509 AC |
Tn10 = −174.414 + 2.253 W + 2.149 NW + 1.593 N + 1.989 NE + 2.416 E + 2.228 SE + 1.720 S + 1.821SW + 2.062 C + 1.925 AC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tošić, I.; Putniković, S.; Tošić, M.; Lazić, I. Extreme Temperature Events in Serbia in Relation to Atmospheric Circulation. Atmosphere 2021, 12, 1584. https://doi.org/10.3390/atmos12121584
Tošić I, Putniković S, Tošić M, Lazić I. Extreme Temperature Events in Serbia in Relation to Atmospheric Circulation. Atmosphere. 2021; 12(12):1584. https://doi.org/10.3390/atmos12121584
Chicago/Turabian StyleTošić, Ivana, Suzana Putniković, Milica Tošić, and Irida Lazić. 2021. "Extreme Temperature Events in Serbia in Relation to Atmospheric Circulation" Atmosphere 12, no. 12: 1584. https://doi.org/10.3390/atmos12121584
APA StyleTošić, I., Putniković, S., Tošić, M., & Lazić, I. (2021). Extreme Temperature Events in Serbia in Relation to Atmospheric Circulation. Atmosphere, 12(12), 1584. https://doi.org/10.3390/atmos12121584