Ensemble Forecasting Experiments Using the Breeding of Growing Modes with Perturbed Land Variables
Abstract
:1. Introduction
2. Methods and Data
2.1. Weather Event Description
2.2. Experimental Design
2.2.1. Perturbation Saturation Characteristics
2.2.2. Ensemble Forecast Experiment
2.3. Evaluation Parameters
2.3.1. Ensemble Spread
2.3.2. Equitable Threat Score (ETS)
2.3.3. Forecast Errors and Spatial Correlation Coefficient
3. Results and Discussion
3.1. Perturbation Saturation Characteristics
3.1.1. Atmospheric Variables
3.1.2. Land Surface Variables
3.2. Ensemble Forecast Experiment
3.2.1. Evaluation Parameters
Ensemble Spread
ETS
RMSE and CORR
3.2.2. Precipitation Probability Forecast
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lorenz, E.N. Deterministic Non-Periodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Mintz, Y. Very long-term global integrations of the primitive equations of atmospheric motion. Proc. WMO/IUGG Symposium on Research and Development Aspects of Long-Range Forecasting. WMO Technol. 1965, 66, 141–142. [Google Scholar]
- Zhang, X.; Min, J.; Wu, T. A study of ensemble-sensitivity-based initial condition perturbation methods for convection-permitting ensemble forecasts. Atmos. Res. 2020, 234, 104741. [Google Scholar] [CrossRef]
- Leith, C.E. Theoretical skill of Monte Carlo forecasts. Mon. Weather Rev. 1974, 102, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Mullen, S.L.; Baumhefner, D.P. The impact of initial condition uncertainty on numerical Simulations of Large-scale Explosive Cyclogenesis. Mon. Weather Rev. 1989, 117, 2800–2821. [Google Scholar] [CrossRef] [Green Version]
- Toth, Z.; Kalnay, E. Estimating the growing modes of the atmosphere: The breeding method. In Research Highlights of the NMC Development Division: 1990–1991; National Meteorological Center: Washington, DC, USA, 1991; pp. 439–443. [Google Scholar]
- Toth, Z.; Kalnay, E. Ensemble forecasting at NMC: The generation of perturbations. Bull. Am. Meteorol. Soc. 1993, 74, 2317–2330. [Google Scholar] [CrossRef] [Green Version]
- Toth, Z.; Kalnay, E. Ensemble forecasting at NMC and the breeding method. Mon. Weather Rev. 1997, 125, 3297–3319. [Google Scholar] [CrossRef]
- Hoffman, M.J.; Kalnay, E.J.; Carton, A.; Yang, S.-C. Use of breeding to detect and explain instabilities in the global ocean. Geophys. Res. Lett. 2009, 36, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Balci, N.; Mazzucato, A.L.; Restrepo, J.M.; Sell, G.R. Ensemble dynamics and bred vectors. Mon. Weather Rev. 2012, 140, 2308–2334. [Google Scholar] [CrossRef]
- O’Kane, T.J.; Sandery, P.A.; Monselesan, D.P.; Sakov, P.; Chamberlain, M.A.; Matear, R.J.; Collier, M.A.; Squire, D.T.; Stevens, L. Coupled data assimilation and ensemble initialization with application to multiyear ENSO prediction. J. Clim. 2019, 32, 997–1024. [Google Scholar] [CrossRef]
- Buizza, R.; Palmer, T.N. The singular vector structure of the atmospheric global circulation. J. Atmos. Sci. 1995, 52, 1434–1456. [Google Scholar] [CrossRef] [Green Version]
- Buizza, R.; Miller, M.J.; Palmer, T.N. Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Q. J. R. Meteorol. Soc. 1999, 125, 2887–2908. [Google Scholar] [CrossRef]
- Palmer, T. The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years. Q. J. R. Meteorol. Soc. 2019, 145, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, H.L.; Houtekamer, P.L.; Pellerin, G. Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Weather. Rev. 2001, 130, 2791–2808. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhang, L. A Study of Initial Perturbation Saturation in Ensemble Prediction Based on the “Breeding of Growing Modes” Method. Chin. J. Atmos. Sci. 2005, 06, 113–122. [Google Scholar]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Hong, Y.; Chen, Y.; Yang, Y.; Tang, G.; Yao, Y.; Liu, R. Performance of optimally merged multisatellite precipitation products using the dynamic Bayesian model averaging scheme over the Tibetan Plateau. J. Geophys. Res. Atmos. 2018, 123, 814–834. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.E.; Nikolopoulos, E.I.; Anagnostou, E.N.; Quintana-Seguí, P.; Barella-Ortiz, A. A nonparametric statistical technique for combining global precipitation datasets: Development and hydrological evaluation over the Iberian Peninsula. Hydrol. Earth Syst. Sci. 2018, 22, 1371–1389. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.A.E.; Nikolopoulos, E.I.; Anagnostou, E.N. Machine Learning-Based Blending of Satellite and Reanalysis Precipitation Datasets: A Multiregional Tropical Complex Terrain Evaluation. J. Hydrometeorol. 2019, 20, 2147–2161. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.E.; Begum, F.; Ilham, S.J.; Khan, R.S. Advanced wind speed prediction using convective weather variables through machine learning application. Appl. Comput. Geosci. 2019, 1, 100002. [Google Scholar] [CrossRef]
- Zeng, X.-M.; Wang, N.; Wang, Y.; Zheng, Y.; Zhou, Z.; Wang, G.; Chen, C.; Liu, H. WRF-simulated sensitivity to land surface schemes in short and medium ranges for a high-temperature event in East China: A comparative study. J. Adv. Model. Earth Syst. 2015, 7, 1305–1325. [Google Scholar] [CrossRef]
- Constantinidou, K.; Zittis, G.; Hadjinicolaou, P. Variations in the Simulation of Climate Change Impact Indices due to Different Land Surface Schemes over the Mediterranean, Middle East and Northern Africa. Atmosphere 2019, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Min, J.; Zhuang, X.; Wang, S. Ensemble Sensitivity Analysis-Based Ensemble Transform with 3D Rescaling Initialization Method for Storm-Scale Ensemble Forecast. Atmosphere 2019, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.-M.; Wu, Z.; Song, S.; Xiong, S.; Zheng, Y.; Zhou, Z.; Liu, H. Effects of land surface schemes on the simulation of a heavy rainfall event by WRF. Chin. J. Geophys.-Chin. Ed. 2012, 55, 16–28. [Google Scholar] [CrossRef]
- Zeng, X.-M.; Wang, M.; Wang, N.; Yi, X.; Chen, C.; Zhou, Z.; Wang, G.; Zheng, Y. Assessing simulated summer 10-m wind speed over China: Influencing processes and sensitivities to land surface schemes. Clim. Dyn. 2018, 50, 4189–4209. [Google Scholar] [CrossRef]
- Guan, J.; Zhang, L. Ensemble forecasting experiments based on the BGM method. J. Meteorol. Sci. 2006, 3, 3272–3278. (In Chinese) [Google Scholar]
- Zeng, X.-M.; Wang, B.; Zhang, Y.; Zheng, Y.; Wang, N.; Wang, M.; Yi, X.; Chen, C.; Zhou, Z.; Liu, H. Effects of land surface schemes on WRF-simulated geopotential heights over China in summer 2003. J. Hydrometeorol. 2016, 17, 829–851. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, X.-M.; Ge, H.; Zhang, C. Sensitivity simulation of heavy rainfall to land surface characteristics and ensemble forecast test. Meteorol. Mon. 2014, 40, 146–157. (In Chinese) [Google Scholar]
- Keil, C.; Baur, F.; Bachmann, K.; Rasp, S.; Schneider, L.; Barthlott, C. Relative contribution of soil moisture, boundary-layer and microphysical perturbations on convective predictability in different weather regimes. Q. J. R. Meteorol. Soc. 2019, 145, 3102–3115. [Google Scholar] [CrossRef]
- Du, J.; Tracton, M.S. Impact of lateral boundary conditions on regional-model ensemble prediction. In Research Activities in Atmospheric and Oceanic Modelling; WMO: Geneva, Switzerland, 1999; pp. 6–7. [Google Scholar]
- Hou, D.; Kalnay, E.; Droegemeier, K.K. Objective verification of the samex ′98 ensemble forecasts. Mon. Weather Rev. 2001, 129, 73–91. [Google Scholar] [CrossRef]
- Ji, F.; Ekstroem, M.; Evans, J.P.; Teng, J. Evaluating rainfall patterns using physics scheme ensembles from a regional atmospheric model. Theor. Appl. Climatol. 2014, 115, 297–304. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, Z.; Wei, J.; Yang, C.; Kunstmann, H. Performance of the WRF model in simulating intense precipitation events over the Hanjiang river basin, China—A multi-physics ensemble approach. Atmos. Res. 2020, 248, 105206. [Google Scholar] [CrossRef]
- Hamill, T.M.; Colucci, S.J. Verification of Eta–RSM short- range ensemble forecasts. Mon. Weather Rev. 1997, 125, 1312–1327. [Google Scholar] [CrossRef]
- Whitaker, J.S.; Loughe, A.F. The relationship between ensemble spread and ensemble mean skill. Mon. Weather Rev. 1998, 126, 3292–3302. [Google Scholar] [CrossRef] [Green Version]
Experiment | Horizontal Resolution (km) | Vertical Resolution (Levels) | Forcing Data | Perturbation Variables |
---|---|---|---|---|
Control | 15 | 31 | FNL | None |
ATM | 15 | 31 | FNL | Atmospheric |
LSM | 15 | 31 | FNL | Land |
Experiment | SPREAD (mm) | AMRE | Normalised RMSE | CORR | Areal Percentage |
---|---|---|---|---|---|
Control | - | 37.9% | 1.000 | 0.432 | - |
ATM | 7.32 | 32.3% | 0.957 | 0.423 | 68.6% |
LSM | 3.82 | 35.6% | 0.968 | 0.446 | 55.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.-M.; Liang, Y.-J.; Wang, Y.; Zheng, Y.-Q. Ensemble Forecasting Experiments Using the Breeding of Growing Modes with Perturbed Land Variables. Atmosphere 2021, 12, 1578. https://doi.org/10.3390/atmos12121578
Zeng X-M, Liang Y-J, Wang Y, Zheng Y-Q. Ensemble Forecasting Experiments Using the Breeding of Growing Modes with Perturbed Land Variables. Atmosphere. 2021; 12(12):1578. https://doi.org/10.3390/atmos12121578
Chicago/Turabian StyleZeng, Xin-Min, Yong-Jing Liang, Yang Wang, and Yi-Qun Zheng. 2021. "Ensemble Forecasting Experiments Using the Breeding of Growing Modes with Perturbed Land Variables" Atmosphere 12, no. 12: 1578. https://doi.org/10.3390/atmos12121578
APA StyleZeng, X.-M., Liang, Y.-J., Wang, Y., & Zheng, Y.-Q. (2021). Ensemble Forecasting Experiments Using the Breeding of Growing Modes with Perturbed Land Variables. Atmosphere, 12(12), 1578. https://doi.org/10.3390/atmos12121578