Panama’s Current Climate Replicability in a Non-Hydrostatic Regional Climate Model Nested in an Atmospheric General Circulation Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Surface Air Temperature and CRU TS v4.05 Data
2.3. Precipitation Data
3. Results and Discussion
3.1. Surface Air Temperature
Bias (°C) | RMSE (°C) | Correlation | |
---|---|---|---|
AGCM | 0.55 | 1.05 | 0.93 |
NHRCM05 | −0.66 | 1.09 | 0.90 |
NHRCM02 | −0.51 | 1.08 | 0.92 |
3.2. Precipitation
Bias (mm/Month) | RMSE (mm/Month) | Correlation | |
---|---|---|---|
AGCM | −44.9 | 95.8 | 0.40 |
NHRCM05 | 127.5 | 253.1 | 0.33 |
NHRCM02 | 4.0 | 131.5 | 0.38 |
3.3. Uncertainty in Precipitation Dataset
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sasaki, H.; Kurihara, K.; Takayabu, I.; Uchiyama, T. Preliminary experiments of reproducing the present climate using the non-hydrostatic regional climate model. SOLA 2008, 4, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, H.; Murata, A.; Hanafusa, M.; Oh’izumi, M.; Kurihara, K. Reproducibility of present climate in a non-hydrostatic regional climate model nested within an atmosphere general circulation model. SOLA 2011, 7, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Fábrega, J.; Nakaegawa, T.; Pinzón, R.; Nakayama, K.; Arakawa, O.; SOUSEI Theme-C Modeling Group. Hydroclimate projections for Panama in the 21st century. Hydrol. Res. Lett. 2013, 7, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Nakaegawa, T.; Kitoh, A.; Kusunoki, S.; Murakami, H.; Arakawa, O. Hydroclimate change over central America and the Caribbean in a global warming climate projected with 20-km and 60-km mesh MRI atmospheric general circulation models. Pap. Meteorol. Geophys. 2014, 65, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Nakaegawa, T.; Kitoh, A.; Murakami, H.; Kusunoki, S. Maximum 5-day rainfall total and the maximum number of consecutive dry days over central America in the future climate projected by an atmospheric general circulation model with three different horizontal resolutions. Theor. Appl. Climatol. 2014, 116, 155–168. [Google Scholar] [CrossRef]
- Pinzón, R.E.; Hibino, K.; Takayabu, I.; Nakaegawa, T. Virtual experiencing future climate changes in Central America with MRI-AGCM: Climate analogues study. Hydrol. Res. Lett. 2017, 11, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Kusunoki, S.; Nakaegawa, T.; Pinzón, R.; Sanchez-Galan, J.E.; Fábrega, J.R. Future precipitation changes over Panama projected with the atmospheric global model MRI-AGCM3.2. Clim. Dyn. 2019, 53, 5019–5034. [Google Scholar] [CrossRef]
- Karmalkar, A.V.; Bradley, R.S.; Diaz, H.F. Climate change in Central America and Mexico: Regional climate model validation and climate change projections. Clim. Dyn. 2011, 37, 605–629. [Google Scholar] [CrossRef] [Green Version]
- Poleo, D.; Vindas, C.; Stoltz, W. Comparación y evaluación de diferentes esquemas de parametrización de cúmulos con WRF EMS aplicadas al caso del huracán otto. Tóp. Meteorol. Oceanogr. 2017, 16, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Lorenzo, M.; Bezanilla-Morlot, A.; Centella-Artola, A.; León-Marcos, A.; Borrajero-Montejo, I.; Ferrer-Hernández, A.; Salazar-Gaitán, J.; Lau-Melo, A.; Picado-Traña, F.; Pérez-Fernández, J. Assessment of different WRF configurations performance for a rain event over Panama. Atmos. Clim. Sci. 2020, 10, 280–297. [Google Scholar] [CrossRef]
- Kitoh, A.; Ose, T.; Kurihara, K.; Kusunoki, S.; Sugi, M.; KAKUSHIN Team-3 Modeling Group. Projection of changes in future weather extremes using super-high resolution global and regional atmospheric models in the KAKUSHIN Pro- gram: Results of preliminary experiments. Hydrol. Res. Lett. 2009, 3, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Mizuta, R.; Oouhi, K.; Yoshimura, H.; Noda, A.; Katayama, K.; Yukimoto, S.; Hosaka, M.; Kusunoki, S.; Kawai, H.; Nakagawa, M. 20 km-mesh global climate simulations using JMA-GSM model—Mean climate state. J. Meteorol. Soc. Jpn. 2006, 84, 165–185. [Google Scholar] [CrossRef] [Green Version]
- Ito, R.; Nakaegawa, T.; Takayabu, I. Comparison of regional characteristics of land precipitation climatology projected by an MRI-AGCM multi-cumulus scheme and multi-SST ensemble with CMIP5 multi-model ensemble projections. Prog. Earth Planet. Sci. 2020, 7, 77. [Google Scholar] [CrossRef]
- Yoshimura, H.; Mizuta, R.; Murakami, H. A spectral cumulus parameterization scheme interpolating between two convective updrafts with semi-Lagrangian calculation of transport by compensatory subsidence. Mon. Weather Rev. 2015, 143, 597–621. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef] [Green Version]
- Mellor, G.L.; Yamada, T. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 1974, 31, 1791–1806. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, M.; Niino, H. An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound. Layer Meteorol. 2004, 112, 1–31. [Google Scholar] [CrossRef]
- JMA. Outline of the Operational Numerical Weather Prediction at the Japan Meteorological Agency. March 2007. Available online: http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2007-nwp/index.htm (accessed on 10 November 2021).
- Yabu, S.; Murai, S.; Kitagawa, H. Clear-sky radiation scheme. Rep. Numer. Predict. Div. 2005, 51, 53–64. (In Japanese) [Google Scholar]
- Kitagawa, H. Radiation processes. Rep. Numer. Predict. Div. 2000, 46, 16–31. (In Japanese) [Google Scholar]
- Hirai, M.; Sakashita, T.; Kitagawa, H.; Tsuyuki, T.; Hosaka, M.; Oh’izumi, M. Development and validation of a new land surface model for JMA’s operational global model using the CEOP observation dataset. J. Meteorol. Soc. Jpn. 2007, 85, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Hirai, M.; Oh’izumi, M. Development of a new land-surface model for JMA-GSM. In Extended Abstract of 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction; American Meteorological Society: Tokyo, Japan, 2004; Available online: https://ams.confex.com/ams/84Annual/webprogram/Paper68652.html (accessed on 10 November 2021).
- Ishii, M.; Shouji, A.; Sugimoto, S.; Matsumoto, T. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol. 2005, 25, 865–879. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Nakagawa, K.; Iwanami, K.; et al. Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Kubota, T.; Aonashi, K.; Ushio, K.; Shige, S.; Takayabu, Y.N.; Kachi, M.; Arai, Y.; Tashima, T.; Masaki, T.; Kawamoto, N.; et al. Global satellite mapping of precipitation (GSMaP) products in the GPM era. In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, K.J., Eds.; Springer: Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Nakaegawa, T.; Pinzon, R.; Fabrega, J.; Cuevas, J.A.; De Lima, H.A.; Cordoba, E.; Nakayama, K.; Lao, J.I.B.; Melo, A.L.; Gonzalez, D.A.; et al. Seasonal changes of the diurnal variation of precipitation in the upper Río Chagres basin, Panamá. PLoS ONE 2019, 14, e0224662. [Google Scholar] [CrossRef] [PubMed]
- Takayabu, I.; Ishizaki, N.N.; Nakaegawa, T.; Sasaki, H.; Wongseree, W. Potential of representing the diurnal cycle of local-scale precipitation in northeastern Thailand using 5-km and 2-km grid regional climate models. Hydrol. Res. Lett. 2021, 15, 1–8. [Google Scholar] [CrossRef]
- Chan, S.C.; Kendon, E.J.; Fowler, H.J.; Blenkinsop, S.; Roberts, N.M.; Ferro, C.A.T. The value of high-resolution met office regional climate models in the simulation of multihourly precipitation extremes. J. Clim. 2014, 27, 6155–6174. [Google Scholar] [CrossRef] [Green Version]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Nakaegawa, T.; Arakawa, O.; Kamiguchi, K. Investigation of climatological onset and withdrawal of the rainy season in panama based on a daily gridded precipitation dataset with a high horizontal resolution. J. Clim. 2015, 28, 2745–2763. [Google Scholar] [CrossRef]
- Prein, A.F.; Rasmussen, R.; Stephens, G. Challenges and advances in convection-permitting climate modeling. Bull. Am. Meteorol. Soc. 2017, 98, 1027–1030. [Google Scholar] [CrossRef]
- Croce, P.; Formichi, P.; Landi, F. Evaluation of current trends of climatic actions in Europe based on observations and regional reanalysis. Remote Sens. 2021, 13, 2025. [Google Scholar] [CrossRef]
- Forzieri, G.; Bianchi, A.; E Silva, F.B.; Herrera, M.A.M.; Leblois, A.; LaValle, C.; Aerts, J.C.; Feyen, L. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Chang. 2018, 48, 97–107. [Google Scholar] [CrossRef] [PubMed]
Model | MRI-AGCM | NHRCM | |
---|---|---|---|
Grid space | 20 km | 5 km | 2 km |
Boundary condition | - | MRI-AGCM 20 km | |
Spectral nudging | - | Applied | Not applied |
Convection scheme | Yoshimura et al. (2018) [14] | Kain and Fritsch’s scheme (1990) [15] | Not applied |
Boundary layer | Mellor-Yamada (MY; 1974) Level2 [16] | MYNN2.5; Nakanishi and Niino 2004 [17] | |
Radiation process | JMA (2007) [18] | Yabu et al. (2005) [19] and Kitagawa (2000) [20] | |
Land surface model | SiB ver.0919 [21] | iSiB [22] | |
Sea surface temperatures and sea ice | COBE SST (1° × 1°) [23] | ||
External atmospheric forcing | Greenhouse gases, sulfur and volcanic aerosol, and ozone gases | Greenhouse gases |
Bias (°C) | RMSE (°C) | Correlation | |
---|---|---|---|
AGCM | 0.55 | 0.66 | 0.87 |
NHRCM05 | −0.66 | 0.76 | 0.74 |
NHRCM02 | −0.51 | 0.61 | 0.83 |
Bias (mm/Month) | RMSE (mm/Month) | Correlation | |
---|---|---|---|
AGCM | −44.86 | 77.14 | 0.95 |
NHRCM05 | 127.52 | 151.10 | 0.92 |
NHRCM02 | 4.04 | 95.03 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinzón, R.; Ishizaki, N.N.; Sasaki, H.; Nakaegawa, T. Panama’s Current Climate Replicability in a Non-Hydrostatic Regional Climate Model Nested in an Atmospheric General Circulation Model. Atmosphere 2021, 12, 1543. https://doi.org/10.3390/atmos12121543
Pinzón R, Ishizaki NN, Sasaki H, Nakaegawa T. Panama’s Current Climate Replicability in a Non-Hydrostatic Regional Climate Model Nested in an Atmospheric General Circulation Model. Atmosphere. 2021; 12(12):1543. https://doi.org/10.3390/atmos12121543
Chicago/Turabian StylePinzón, Reinhardt, Noriko N. Ishizaki, Hidetaka Sasaki, and Tosiyuki Nakaegawa. 2021. "Panama’s Current Climate Replicability in a Non-Hydrostatic Regional Climate Model Nested in an Atmospheric General Circulation Model" Atmosphere 12, no. 12: 1543. https://doi.org/10.3390/atmos12121543
APA StylePinzón, R., Ishizaki, N. N., Sasaki, H., & Nakaegawa, T. (2021). Panama’s Current Climate Replicability in a Non-Hydrostatic Regional Climate Model Nested in an Atmospheric General Circulation Model. Atmosphere, 12(12), 1543. https://doi.org/10.3390/atmos12121543