Effective Mainstreaming of Agricultural Emissions into Climate Action Agenda: The Case of Institutions and Smallholder Dairy Production Systems, Western Kenya
Abstract
:1. Introduction
- Is local decision making at microlevel in smallholder farmer agricultural production critical to the effectiveness of existing local–global GHG mitigation strategies?
- Do price risks have an influence on environmental footprints, such as methane emissions?
2. Background of the Study
2.1. Adaptation–Mitigation Dualism
2.2. Risk, Institutions, Micro-Level Decision Making, and Environmental Externalities
2.3. Agricultural Emissions: The Case of the Livestock Subsector
2.4. The Case of Resource-Constrained Farmers, Western Kenya
2.5. Effectiveness Lens in Adaptation and Mitigation
2.6. Towards an Innovative Analytical Framework for Effective Local–Global Climate Action
3. Methodology
3.1. Study Area
3.2. Field Data and Literature Review
3.3. Empirical Models
3.3.1. Gross Margin Analysis
- ∏ = Gross revenue;
- R = Price of the raw milk at farmgate;
- Q = Quantity of raw milk sold in Litres (L);
- VC = Total Variable cost of inputs in milk production;
- Si = Amount of concentrate (legume fodder) in the feed ration;
- Ei = cost of ith concentrate (legume fodder) in the feed ration.
3.3.2. Methane Emission Simulation
- DMI = Dry matter intake.
- S.E = Standard error.
Assumptions in the Simulation
- Animal breed/type does not significantly influence methane emission levels.
- Optimum PH value of 6.3–7.4 is assumed due to its effects on absorptive processes, fibre degradation, and microbial recycling within the rumen.
- Fermentation within the rumen and hind gut are similar.
- No errors in analysis of feed stuffs whose values were used in methane simulation.
- No inherent variation in nutrient composition between samples of the same feed stuff (i.e., composition does not vary with soil types and weather and the time of cutting).
- No substitution effect of legumes for stover in maize stover–legume-based rations.
3.3.3. Estimation of Ecoefficiency
4. Results
4.1. Dairy Feeding Adaptation Strategies
4.2. Weather Variability and Price Risks in Dairy Feeding Strategies
4.3. Ecoefficiency
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Dou, Y.; Batistella, M.; Challies, E.; Connor, T.; Friis, C.; Millington, J.D.; Parish, E.; Romulo, C.L.; Silva, R.F.B.; et al. Spillover systems in a telecoupled Anthropocene: Typology, methods, and governance for global sustainability. Curr. Opin. Environ. Sustain. 2018, 33, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Parish, E.S.; Herzberger, A.J.; Phifer, C.C.; Dale, V.H. Transatlantic wood pellet trade demonstrates telecoupled benefits. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef]
- Xiong, H.; Millington, J.; Xu, W. Trade in the telecoupling framework: Evidence from the metals industry. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef]
- Juhola, S.; Glaas, E.; Linner, B.-O.; Neset, T.-S. Redefining maladaptation. Environ. Sci. Policy 2016, 55, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Burch, S.; Gupta, A.; Inoue, C.; Kalfagianni, A.; Persson, Å.; Gerlak, A.K.; Ishii, A.; Patterson, J.; Pickering, J.; Scobie, M.; et al. New directions in earth system governance research. Earth Syst. Gov. 2019, 1, 100006. [Google Scholar] [CrossRef]
- UNFCCC (United Nations Framework Convention on Climate Change). Working Group on the Paris Agreement: Additional Tool under Item 3 of the Agenda on Nationally Dtermined Commitments (NDCs); UNFCCC: Bangkok, Thailand, 2018. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification and Land Degradation, Sustainable Land Management, Food Security and Greenhouse Gas Fluxes in Terrrestrial Ecosystems; Roberts, D., Ferrat, M., Connors, S., Haughey, E., Malley, J., Eds.; IPCC: Geneva, Switzerland, 2019; Available online: www.Ipcc.ch (accessed on 10 November 2020).
- Newell, P.; Srivastava, S.; Naess, L.O.; Torres, C.; Gerardo, A.; Price, R. Towards transformative climate justice: An emerging research agenda. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e733. [Google Scholar] [CrossRef]
- Otto, I.M.; Donges, J.F.; Cremades, R.; Bhowmik, A.; Hewitt, R.J. Social tipping dynamics for stabilizing Earth’ s climate by 2050. Proc. Natl. Acad. Sci. USA 2020, 117, 2354–2365. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.B.; Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Korsbakken, J.I.; Liu, Z.; Peter, G.P.; Zheng, B. Global energy growth is outpacing decarbonization Global energy growth is outpacing decarbonization. Environ. Res. Lett. 2018, 13, 120401. [Google Scholar] [CrossRef]
- Tvinnereim, E.; Mehling, M. Carbon pricing and deep decarbonisation. Energy Policy 2018, 121, 185–189. [Google Scholar] [CrossRef]
- Smith, E.K.; Mayer, A. A social trap for the climate? Collective action, trust and climate change risk perception in 35 countries. Glob. Environ. Chang. 2018, 49, 140–153. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change. Report of the Conference of the Parties on Its Twenty-First Session held in Paris from 30 November to 13 December 2015; UNFCCC: Geneva, Switzerland, 2016; Volume 1192. [Google Scholar]
- Food and Agriculture Organization. Assessing the Role of Agriculture and Land Use in Nationally Determined Contributions: Amethodology; NDCs No. 76; FAO: Rome, Italy, 2019; Available online: https://www.fao.org%2Fpublications%2Fcard%2Fen%2Fc%2FCA5543EN%2F&usg=AOvVaw2cvePdQ8o0Cn0DItyWnYZp (accessed on 2 January 2020).
- Epstein, G.; Pittman, J.; Alexander, S.M.; Berdej, S.; Dyck, T.; Kreitmair, U.; Rathwell, K.J.; Villamayor-Tomas, S.; Vogt, J.; Armitage, D. Institutional fit and the sustainability of social–ecological systems. Curr. Opin. Environ. Sustain. 2015, 14, 34–40. [Google Scholar] [CrossRef]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.; Folke, C.; Liverman, D. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, L.V. Re-Defining Sahelian ‘Adaptive Agriculture’ when Implemented Locally: Beyond Techno-fix Solutions. World Dev. 2018, 108, 274–282. [Google Scholar] [CrossRef]
- Rasmussen, J.F.; Friis-Hansen, E.; Funder, M. Collaboration between meso-level institutions and communities to facilitate climate change adaptation in Ghana. Clim. Dev. 2019, 11, 355–364. [Google Scholar] [CrossRef]
- Dapilah, F.; Østergaard, J.; Lebek, N.K.; D’haen, S.L. He who pays the Piper calls the tune: Understanding collaborative governance and climate change adaptation in Northern Ghana. Clim. Risk Manag. 2021, 32, 100306. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Global Warming of 1.5oc. An IPCC Special Report on the Impacts of Global Warming of 1.5oc above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways in the Context of Strengthening Global Response to the Threat of Climate Change, Sus; IPCC: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch%2Fsr15%2Fchapter%2Fspm%2F&usg=AOvVaw1TuvxicJVk7WTEcCx4qL5f (accessed on 5 March 2020).
- United Nations Environment Programme. Emissions Gap Report 2019; Edo, A., Hertwich, E., Heeren, N., Eds.; UNEP: Nairobi, Kenya, 2019; Available online: http://www.unenvironment.org/emissionsgap (accessed on 5 May 2021).
- Höhne, N.; Elzen, M.D.; Rogelj, J.; Metz, B.; Fransen, T.; Kuramochi, T.; Olhoff, A.; Alcamo, J.; Winkler, H.; Fu, S.; et al. Emissions: World has four times the work or one third of the time. Nat. Clim. Chang. 2020, 579, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Bonner, A.C.; Biglan, A. Rebooting Behavioral Science to Reduce Greenhouse Gas Emissions. Behav. Soc. Issues 2021. [Google Scholar] [CrossRef]
- Aguilera, E.; Reyes-palomo, C.; Díaz-gaona, C.; Sanz-cobena, A.; Smith, P.; García-laureano, R.; Rodríguez-est, V. Greenhouse gas emissions from Mediterranean agriculture: Evidence of unbalanced research efforts and knowledge gaps. Glob. Environ. Chang. 2021, 69. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. FAO’S Work on Climate Change; FAO: Rome, Italy, 2016; Available online: www.fao.org/publications (accessed on 12 October 2019).
- Food and Agriculture Organization. The Agriculture Sectors in the Intended Nationally Determined Contributions: Analysis; Environment and Natural Resources No. 62; FAO: Rome, Italy, 2016; Available online: www.fao.org%2Fpolicy-support%2Ftools-and-publications%2Fresources-details%2Fen%2Fc%2F427079%2F&usg=AOvVaw29qAGaW18EA2TvIbWtvHYM (accessed on 12 October 2019).
- Antwi-agyei, P.; Dougill, A.J.; Agyekum, T.P.; Lindsay, C.S. Alignment between nationally determined contributions and the sustainable development goals for West Africa sustainable development goals for West Africa. Clim. Policy 2018, 18, 1296–1312. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change. Nationally Determined Contributions under the Paris Agreement: Synthesis Report; UNFCCC: Geneva, Switzerland, 2021; Volume 2674, Available online: https://unfccc.int/sites/default/files/resource/cma2021_08_adv_1.pdf (accessed on 8 September 2021).
- World Bank. Risk and Opportunity: Managing Risk for Development; World Bank: Washington, DC, USA, 2014; Available online: www.worldbank.org (accessed on 9 May 2019).
- Barreteau, O.; Anderies, J.; Guerbois, C.; Quinn, T.; Therville, C.; Mathevet, R. Transfers of vulnerability through adaptation plan implementation: An analysis based on networks of feedback control loops. Ecol. Soc. 2020, 25, 3–19. [Google Scholar] [CrossRef]
- Reed, J.; Barlow, J.; Carmenta, R.; van Vianen, J.; Sunderland, T. Engaging multiple stakeholders to reconcile climate, conservation and development objectives in tropical landscapes. Biol. Conserv. 2019, 238, 108229. [Google Scholar] [CrossRef]
- Loboguerrero, A.M.; Campbell, B.M.; Cooper, P.J.M.; Hansen, J.W.; Rosenstock, T.; Wollenberg, E. Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems. Sustainability 2019, 11, 1372. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organisation of the United Nations. Developing sustainable Food Value Chains Guiding Principles Developing Sustainable Food Value Chains: Guiding Principles; Rural Infrastructure and AgroIndustries Division; Neven, D., Ed.; FAO: Rome, Italy, 2014. [Google Scholar]
- Xu, E.G.B.; Leung, K.M.Y.; Morton, B.; Lee, J.H.W. An integrated environmental risk assessment and management framework for enhancing the sustainability of marine protected areas: The Cape d’ Aguilar Marine Reserve case study in Hong Kong. Sci. Total. Environ. 2015, 505, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Grafakos, S. Which are the factors influencing the integration of mitigation and adaptation in climate change plans in Latin American cities? Environ. Res. Lett. 2019, 14, 105008. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation of the United Nations. Climate Smart Agriculture Sourcebook; FAO: Rome, Italy, 2013; Available online: http://www.fao.org/docrep/018/i3325e/i3325e04.pdf (accessed on 8 September 2017).
- Tessema, Y.; Joerin, J.; Patt, A. Crop switching as an adaptation strategy to climate change: The case of Semien Shewa Zone of Ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2019, 11, 358–371. [Google Scholar] [CrossRef] [Green Version]
- Rey, A.N.R.; Pizarro, J.C.; Anderson, C.B.; Huettmann, F. Even at the uttermost ends of the Earth: How seabirds telecouple the Beagle Channel with regional and global processes that affect environmental conservation and social-ecological sustainability. Ecol. Soc. 2017, 22. [Google Scholar] [CrossRef]
- Jiménez, A.; Garry, A.; Albert, D.P.; Grace, V.N.; Andrea, Y.W. Local lens for SDG implementation: Lessons from bottom-up approaches in Africa. Sustain. Sci. 2020, 15, 729–743. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, S.; Schipper, E.F.; Scoville-simonds, M.; Vincent, K.; Nicolai, H.; Brooks, N.; Harding, B.; Khatri, D.; Lenaerts, L.; Liverman, D. Adaptation interventions and their effect on vulnerability in developing countries: Help, hindrance or irrelevance? World Dev. 2021, 141, 105383. [Google Scholar] [CrossRef]
- Massey, E.; Biesbroek, R.; Huitema, D.; Jordan, A. A climate policy innovation: The adoption and diffusion of adaptaion policies across Europe. Global Environ. Chang. 2014, 29, 434–443. [Google Scholar] [CrossRef]
- Huitema, D.; Adger, W.; Berkout, F.; Massey, E.; Mamanian, D.; Munaretto, S.; Plummer, R.; Termeer, C.C.J.A.M. The governance of adaptation: Choices, reasons, and effects.Introduction to Special Feature. Ecol. Soc. 2016, 21, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, W. Integrated assessments of payments for ecosystem services programs. Proc. Natl. Acad. Sci. USA 2013, 110, 16297–16298. [Google Scholar] [CrossRef] [Green Version]
- Seidler, R.; Dietrich, K.; Schweizer, S.; Bawa, K.S.; Chopde, S.; Zaman, F.; Sharma, A.; Bhattacharya, S.; Devkota, L.P.; Khaling, S. Progress on integrating climate change adaptation and disaster risk reduction for sustainable development pathways in South Asia: Evidence from six research projects. Int. J. Disaster Risk Reduct. 2018, 31, 92–101. [Google Scholar] [CrossRef]
- Di Gregorio, M.; Ridho, D.; Paavola, J.; Maya, I.; Fatorelli, L.; Pramova, E.; Locatelli, B.; Brockhaus, M.; Kusumadewi, S.D. Climate policy integration in the land use sector: Mitigation, adaptation and sustainable development linkages. Environ. Sci. Policy 2017, 67, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Talebian, S.; Carlsen, K.; Johnson, O.; Volkholz, J.; Kwamboka, E. Assessing future cross-border climate impacts using shared socioeconomic pathways. Clim. Risk Manag. 2021, 32. [Google Scholar] [CrossRef]
- Ziervogel, G.; Pelling, M.; Cartwright, A.; Chu, E.; Deshpande, T.; Harris, L.; Hyams, K.; Kaunda, J.; Klaus, B.; Michael, K.; et al. Inserting rights and justice into urban resilience: A focus on everyday risk. Environ. Urban 2017, 29, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Sovacoola, B.K.; Del Rio, F.D.; Griffiths, S. Contextualizing the Covid-19 pandemic for a carbon-constrained world: Insights for sustainability transitions, energy justice, and research methodology. Energy Res. Soc. Sci. 2020, 68, 101701. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Davis, S.J.; Mitchell, R.B.; Stokes, E.C.; Unruh, G.; Urge-Vorsatz, D. Carbon Lock-In: Types, Causes, and Policy Implications. Annu. Rev. Environ. Resour. 2016, 41, 425–452. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, P.; Oels, A. The overlooked role of discourse in breaking carbon lock-in: The case of the German energy transition. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, e574. [Google Scholar] [CrossRef] [Green Version]
- North, D.C. Institutions, Institutional Change, and Economic Performance. J. Econ. Perspect. 1991, 5, 97–112. [Google Scholar] [CrossRef]
- Ishtiaque, A.; Eakin, H.; Vij, S.; Chhetri, N.; Rahman, F.; Huq, S. Multilevel governance in climate change adaptation in Bangladesh: Structure, processes, and power dynamics. Reg. Environ. Chang. 2021, 21, 1–15. [Google Scholar] [CrossRef]
- Pelling, M.; O’Brien, K.; Matyas, D. Adaptation and transformation. Clim. Chang. 2015, 133, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Totin, E.; Segnon, A.C.; Schut, M.; Affognon, H. Institutional Perspectives of Climate-Smart Agriculture: A Systematic Literature Review. Sustainability 2018, 10, 1990. [Google Scholar] [CrossRef] [Green Version]
- Schebesta, H.; Candel, J.L. Game-changing potential of the EU’s Farm to Fork Strategy. Nat. Food 2020, 1, 586–588. [Google Scholar] [CrossRef]
- Robert, M.; Thomas, A.; Bergez, J.-E. Processes of adaptation in farm decision-making models: A review. Agron. Sustain. Dev. 2016, 36, 64. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15181–15187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustavo, S.; Loboguerrero, M.A.; Corner-dolloff, C.; Lizarazo, M.; Nowak, A.; Martínez-barón, D.; Andrieu, N. Costs and bene fi ts of climate-smart agriculture: The case of the Dry Corridor in Guatemala. Agric. Syst. 2017, 151, 163–173. [Google Scholar]
- Shimon, O.P.; Ogutu, C.A.; Mburu, J.; Nyikal, R.A. Effect of Global-GAP Policy on Climate Change Perceptions of Smallholder French Beans Farmers in Central and Eastern Regions, Kenya. Climate 2017, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Wekesa, B.; Ayuya, O.; Lagat, J. Effect of climate-smart agricultural practices on household food security in smallholder production systems: Micro-level evidence from Kenya. Agric. Food Secur. 2018, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Godde, C.M.; Garnett, T.; Thornton, P.K.; Ash, A.; Herrero, M. Grazing systems expansion and intensi fi cation: Drivers, dynamics, and trade-offs. Glob. Food Secur. 2018, 16, 93–105. [Google Scholar] [CrossRef]
- Ullah, R.; Shivakoti, G.P.; Zulfiqar, F.; Kamran, M.A. Farm risks and uncertainties: Sources, impacts and management. Outlook Agric. 2016, 45, 199–205. [Google Scholar] [CrossRef]
- Koundouri, P.; Nauges, C.; Tzouvelekas, V. Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology. Am. J. Agric. Econ. 2019, 88, 657–670. Available online: https://www.jstor.org/stable/3697756 (accessed on 3 February 2021). [CrossRef] [Green Version]
- You, J. Risk under-investment in agricultural assets and dynamic asset poverty in rural China. China Econ. Rev. 2014, 29, 27–45. [Google Scholar] [CrossRef]
- Williams, T.; Hiernaux, P.; Fernandez-Rivera, S. Crop-livestock Systems in Sub-Saharan Africa: Determinants and Intensification Pathways. In Property Rights, Risk, and Livestock Development in Africa; ILRI/IFRI: Washington, DC, USA, 2000; Volume 49, pp. 132–151. [Google Scholar] [CrossRef]
- Guilhermo, F.; De Souza, C.; Olga, L.; Mayorga, M. Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: A meta-analysis. J. Clean. Prod. 2021, 312. [Google Scholar] [CrossRef]
- Havlík, P.; Valin, H.; Herrero, M.; Obersteiner, M.; Schmid, E.; Rufino, M.C. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. USA 2014, 111, 3709–3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, Y.; Andersen, P. Rural livelihood diversi fi cation and household well-being: Insights from Humla, Nepal. J. Rural. Stud. 2016, 44, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; Croz, D.M.; Thornton, P.K.; Fanzo, J.; Godde, C.; Bellows, A.; de Groot, A.; Palmer, J.; Chang, J.; van Zanten, H.; et al. Livestock and Sustainable Food Systems: Status, Trends, and Priority Actions; Center for Development Research ZEF: Bonn, Germany, 2021; Available online: https://sc-fss2021.org (accessed on 5 May 2021).
- Tubiello, F.N.; Conchedda, G.; Wanner, N.; Federici, S.; Rossi, S.; Grassi, G. Carbon emissions and removals from forests: New estimates, 1990–2020. Earth Syst. Sci. Data 2021, 13, 1681–1691. [Google Scholar] [CrossRef]
- Geber, P.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. (Eds.) Tackling Climate Change through Livestock: Aglobal Assessment of Emissions and Mitigation Opportunities; FAO (Food and Agriculture Organisation of the United Nations): Rome, Italy, 2013; Available online: http://www.fao.org/../i3437e00.htm (accessed on 14 July 2018).
- Meng, B.; Peters, G.P.; Wang, Z. Tracing Greenhouse Gas Emissions in Global Value Chains; Working Paper No. 525; Stanford University: Stanford, CA, USA, 2015. [Google Scholar]
- Notenbaert, A.; Pfeifer, C.; Silvestri, S.; Herrero, M. Targeting, out-scaling and prioritising climate-smart interventions in agricultural systems: Lessons from applying a generic framework to the livestock sector in sub-Saharan Africa. Agric. Syst. 2017, 151, 153–162. [Google Scholar] [CrossRef]
- Government of Kenya. Kenya Climate Smart Agriculure Strategy 2017–2016; G.O.K.: Nairobi, Kenya, 2017. Available online: www.Kilimo.go.ke (accessed on 20 January 2018).
- Ministry of Environment and Forestry. Kenya’s First NDC (Updated Version); Ministry of Environment and Forestry: Nairobi, Kenya, 2020.
- Kenya National Bureau of Statistics. Kenya Population and Housing Census: Counting Our People for Sustainable Development and Devolution of Services; KNBS: Nairobi, Kenya, 2019; Volume I, Available online: www.knbs.or.ke (accessed on 20 September 2019).
- Government of Kenya. Climate Change Action Plan 2018–2022; G.O.K.: Nairobi, Kenya, 2018; Volume I. Available online: www.environment.go.ke (accessed on 2 July 2020).
- Volenzo, T.E.; Odiyo, J.O. Perception of Environmental Spillovers Across Scale in Climate Change Adaptation Planning: The Case of the case of small-scale farmers’ irrigation strategies, Kenya. Climate 2020, 8, 3. [Google Scholar] [CrossRef]
- Chesterman, S.; Neely, C. Agriculture in Kenya Working Paper implications of Climate—Smart Agriculture in Kenya; No. 90; Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2015; Available online: www.ccafs.cgiar.org (accessed on 6 July 2020).
- Weitz, N.; Strambo, C.; Kemp-benedict, E.; Nilsson, M. Closing the governance gapsin the water-energy-food nexus: Insights from integrative governance. Glob. Environ. Chang. 2017, 45, 165–173. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. The Future of Livestock in Kenya: Opportunities and Challenges in the Face of Uncertainity; FAO: Rome, Italy, 2019; Available online: www.fao.org/publications (accessed on 2 May 2020).
- KDB (Kenya Dairy Board). KDB Online Portal; KDB: Nairobi, Kenya, 2020. Available online: www.kdb.co.ke (accessed on 3 April 2021).
- Bebe, B.O.; Rademaker, C.; van der Lee, J.; Kilelu, C.W.; Tonui, C. Sustainable growth of the Kenyan dairy sector—A quick scan of robustness, reli- ability and resilience. Wagening. Livest. Res. 2015. [Google Scholar] [CrossRef] [Green Version]
- Folke, C.; Hahn, T.; Olsson, P.; Norberg, J. Adaptive Governance of Social-Ecological Systems. Annu. Rev. Environ. Resour. 2005, 30, 441–443. [Google Scholar] [CrossRef] [Green Version]
- Adger, N.W.; Arnell, W.N.; Tompkins, L.E. Successful adaptation to climate change across scales. Glob. Environ. Chang. 2005, 15, 77–86. [Google Scholar] [CrossRef]
- Mees, H.L.; Dijk, J.; van Soest, D.; Driessen, P.P.; van Rijswick, M.H.; Runhaar, H. A method for the deliberate and deliberative selection of policy instrument. Ecol. Soc. 2014, 19, 190258. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, J.; Knoepfel, P. The Adaptation Policy Paradox: The Implementation Deficit of Policies. Ecol. Soc. 2013, 18, 31–47. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Sovacool, B.K.; Martiskainen, M.; Hook, A.; Baker, L. Decarbonization and its discontents: A critical energy justice perspective on four low-carbon transitions. Clim. Chang. 2019, 2019, 581–619. [Google Scholar] [CrossRef] [Green Version]
- Folke, C.; Pritchard, L.; Berkes, F.; Colding, J.; Svedin, U. The Problem of Fit between Ecosystems and Institutions: Ten Years Later. Ecol. Soc. 2007, 12, 30–65. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.J.; Morton, L.W.; Hobbs, J. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation: The Roles of Trust in Sources of Climate Information, Climate Change Beliefs, and Perceived Risk. Environ. Behav. 2015, 47, 205–234. [Google Scholar] [CrossRef]
- Barrett, C.B.; Carter, M.; Little, P.D.; Barrett, C.; Carter, M.; Little, P. Understanding and Reducing Persistent Poverty in Africa: Introduction to a Special Issue. J. Dev. Stud. 2006, 42, 167–177. [Google Scholar] [CrossRef]
- Morgenstern, O. The Theory of Games. Sci. Am. 1949, 180, 22–25. [Google Scholar] [CrossRef]
- Rijke, J.; Brown, R.; Zevenbergen, C.; Ashley, R.; Farrelly, M.; Morison, P.; Van Herk, S. Fit-for-purpose governance: A framework to make adaptive governance operational. Environ. Sci. Policy 2012, 22, 73–84. [Google Scholar] [CrossRef]
- Kaplinsky, R. Globalisation and Unequalisation: What Can Be Learned from Value Chain Analysis? J. Dev. Stud. 2010, 37, 117–146. [Google Scholar] [CrossRef]
- Villamayor-tomas, S.; Grundmann, P.; Epstein, G.; Evans, T.; Kimmich, C. The Water-Energy-Food Security Nexus through the Lenses of the Value Chain and the Institutional Analysis and Development Frameworks. Water Altern. 2015, 8, 735–755. [Google Scholar]
- Ampaire, L.E.; Jassogne, L.; Providence, H.; Acosta, M.; Twyman, J.; Winowiecki, L.; Asten, P. Institutional challenges to climate change adaptation: A case study on policy action gaps in Uganda. Environ. Sci. Policy 2017, 75, 81–90. [Google Scholar] [CrossRef]
- Jaetzold, R.; Schmidt, H.; Hornetz, B.; Shisanya, C. Farm Management Handbook of Kenya Volume 11—Natural Condtions and Farm Management Information, 2nd ed.; Part II/A1(Western Kenya) and Part II/CI(Eastern Province); Ministry of Agriculture: Nairobi, Kenya, 2011; Volume II.
- Mills, J.A.N.; Kebreab, E.; Yates, C.M.; Crompton, L.A.; Cammell, S.B.; Dhanoa, M.S.; Agnew, R.E.; France, J. Alternative approaches to predicting methane emissions from dairy cows. J. Anim. Sci. 2003, 81, 3141–3150. [Google Scholar] [CrossRef]
- Ellis, J.L.; Kebreab, E.; Odongo, N.E.; Mcbride, B.W.; Okine, E.K.; France, J. Prediction of Methane Production from Dairy and Beef Cattle. J. Dairy Sci. 2007, 90, 3456–3466. [Google Scholar] [CrossRef]
- Hirooka, H. Systems approaches to beef cattle production systems using modelling and Simulation. Anim. Sci. J. 2010, 81, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.; Kasperson, R.E.; Matsone, P.A.; McCarthy, J.J.; Corell, R.W.; Christensene, L.; Eckley, N.; Kasperson, J.X.; Amy, L.; Marybeth, A.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debela, E.; Tolera, A.; Eik, L.O.; Salte, R. Nutritive Value of Morphological fractions of Sesbania sesban and Desmodium intortum. Trop. Subtrop. Agroecosyst. 2011, 14, 793–805. [Google Scholar]
- Fekadu, D.; Bediye, S.; Sileshi, Z. Characterizing and predicting chemical composition and in vitro digestibility of crop residue using near infrared reflectance spectroscopy (NIRS). Livest. Res. Rural. Dev. 2010, 22, 22029. Available online: http://www.lrrd.org/lrrd22/2/feka22029.htm (accessed on 7 March 2020).
- Muinga, R.W.; Topps, J.H.; Rooke, J.A.; Thorpe, W. The effect of supplementation with Leucaena leucocephala and maize bran on voluntary food intake, digestibility, live weight and milk yield of Bos indicus × Bos taurus dairy cows and rumen fermentation in steers offered Pennisetum purpureum ad libitum. Anim. Sci. 2010, 60, 13–23. [Google Scholar] [CrossRef]
- Zimmerer, K.; Lambin, E.; Vanek, S. Smallholder telecoupling and potential sustainabilit. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef] [Green Version]
- Masuda, K. Optimization Model for Mitigating Global Warming at the Farm Scale: An Application to Japanese Rice Farms. Sustainability 2016, 8, 593. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. IPCC guidelines for National Green House Gas Inventories: Agriculture, Forestry and Other Land Uses; Emissions from Livestock and Manure Management; IPCC: Geneva, Switzerland, 2006; Chapter 10; Volume 4. [Google Scholar]
- Murgueitio, E.; Calle, Z.; Uribe, F.; Calle, A.; Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 2011, 261, 1654–1663. [Google Scholar] [CrossRef]
- Campbell, B.M.; Thornton, P.; Zougmore, R.; Asten, P.V.; Lipper, L. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 2014, 2014, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Arslan, A.; Mccarthy, N.; Lipper, L.; Asfaw, S.; Cattaneo, A.; Kokwe, M. Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia. J. Agric. Econ. 2015, 66, 753–780. [Google Scholar] [CrossRef]
- Kugelberg, S.; Bartolini, F.; Kanter, D.; Birgitte, A.; Pira, K.; Sanz-cobena, A.; Leip, A. Implications of a food system approach for policy agenda-setting design. Glob. Food Secur. 2021, 28, 100451. [Google Scholar] [CrossRef] [PubMed]
- Eakin, H.C.; Lemos, M.C.; Nelson, D.R. Differentiating capacities as a means to sustainable climate change adaptation. Glob. Environ. Chang. 2014, 27, 1–8. [Google Scholar] [CrossRef]
- Locatelli, B.; Pavageau, C.; Pramova, E.; Di Gregorio, M. Integrating climate change mitigation and adaptation in agriculture and forestry: Opportunities and trade-offs. Wires Clim. Chang. 2015, 6, 585–598. [Google Scholar] [CrossRef]
- Rogers, E. A prospective and retrospective look at the diffusion model. J. Health Commun. 2004, 9, 13–19. [Google Scholar] [CrossRef]
- Hopkins, D. The sustainability of climate change adaptation strategies in New Zealand’s ski industry: A range of stakeholder perceptions. J. Sustain. Tour. 2014, 22, 107–126. [Google Scholar] [CrossRef]
- Moser, S.C.; Ekstrom, J.; Kim, J.; Heitsch, S. Adaptation finance archetypes: Local governments’ persistent challenges offunding adaptation to climate change and ways to overcome them. Ecol. Soc. 2019, 24. [Google Scholar] [CrossRef]
Kakamega | Bungoma | |
---|---|---|
Social Economic characteristic | ||
Total Population | 1,867,579 | 1,670,570 |
Households (HH) | 433,207 | 358,796 |
Area (Size) in Sq. km | 3020 | 3023.9 |
Pop density (No. of persons)/km2 | 618 | 552 |
HH size (persons per Household | 4.3 | 4.6 |
% Poverty | 50 | 52 |
% Ms use | 95 | 72 |
Study Population Unit | Sampling Method | Size (N) | Data Collection Instrument |
---|---|---|---|
Household Heads | Multistage | 400 | Questionnaire |
Feed producers | Purposive | 6 | Interview schedule |
Agro-vet shops | Purposive | 13 | Interview schedule |
FDG members | Purposive | 12 | Interview schedule |
Farmer cooperative managers | Purposive | 7 | Interview schedule |
Advisory organisation Managers | Purposive/census | 5 | Interview schedule |
% Awareness | % Adopted | |||||
---|---|---|---|---|---|---|
Nutritional intervention | KAK | BGM | KAK | BGM | OAW (%) | OA (%) |
Molasses | 25 | 21 | 15 | 12 | 23 | 13.5 |
Minerals | 48 | 45 | 27.5 | 16.3 | 46.5 | 16.3 |
Legume fodder | 5 | 7 | 1 | 1 | 6 | 1 |
Potato vines | 25 | 42 | 13.5 | 33.5 | 33.5 | 24.4 |
Grain residues | 40 | 23 | 25 | 3 | 31.5 | 14 |
Silage | 30 | 28 | 3 | 2 | 29 | 2.5 |
Hay | 76 | 42 | 13 | 9 | 59 | 11 |
Ms | 95 | 90 | 87 | 83 | 92.5 | 85 |
Napier (Deferred) | 85 | 75 | 75 | 65 | 80 | 70 |
Ratio of Stover to Supplement/Feed DM (g kg−1) Level | |||||||
---|---|---|---|---|---|---|---|
Ration type DM (g kg−1) | 1.0 | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | Mean |
Whole Stover (930) | 887.7 432.8 | 857.8 407.7 | 827.9 382.5 | 798.3 357.3 | 768.4 332.2 | 738.5 307.0 | 813.1 369.9 |
Stover (top 890) | 874.8 422.3 | 846.3 397.8 | 817.7 374 | 789.1 349.9 | 760.6 325.3 | 732.0 301.6 | 803.4 361.8 |
Napier silage (468) | 617.2 207.1 | 617 206.0 | 615.1 203.0 | 613.7 202.0 | 612.3 200.6 | 611 199.6 | 614.4 189.7 |
Napier fresh (175) | 615.9 201.7 | 615.4 201.3 | 613.4 201.3 | 611.0 199.6 | 608.6 197.5 | 606.2 196.2 | 608.3 199.6 |
Desmodium (210) | Na | 615.4 203.3 | 612 200.6 | 610.0 199.9 | 608.6 197.2 | 605.2 196.2 | 610.2 188.7 |
Leucaena (240) | Na | 615.4 203.3 | 613.7 201.6 | 611.7 199.9 | 608.6 198.2 | 607.2 196.5 | 611.3 199.9 |
Sesbania (230) | Na | 615.4 203.3 | 613.4 201.6 | 611.3 199.9 | 608.9 198.2 | 607.2 196.5 | 611.2 199.9 |
Calliandra (220) | Na | 615.7 203.7 | 613.4 201.6 | 610.0 198.3 | 609.3 198.2 | 606.9 196.2 | 611 199.6 |
Potato vines (100) | 616.42 208.4 | 615.4 203.3 | 612.7 200.9 | 610.3 198.9 | 607.6 196.9 | 605.2 194.5 | 611.3 200.5 |
Mean (MBSWM) | Na | 615.7 203.7 | 608.8 197.5 | 606.3 195.8 | 604.9 194.5 | 601.8 191.8 | 607.5 196.7 |
Mean for grain residue mixture (MBSWG) | Na | 616.8 204.3 | 613.0 201.3 | 612.0 201.0 | 611.3 199.6 | 609.3 198.2 | 612.5 200.9 |
Mean MBSM with molasses (20% DM) | Na | 615.4 203.3 | 613.0 201.6 | 611.0 199.6 | 608.6 197.9 | 606.6 195.8 | 610.9 199.6 |
Mean MBSMG | Na | 616.1 203.7 | 613.0 201.3 | 611.7 199.9 | 610.0 198.9 | 607.9 197.2 | 611.7 200.2 |
Feeding Strategies | Sum | Mean | Variance |
---|---|---|---|
Ms | 25.43 | 3.18 | 7.51 |
Ms + L | 57.92 | 7.24 | 34.55 |
Ms + Cs + M | 61.87 | 7.73 | 40.51 |
NaP | 103.96 | 12.99 | 129.36 |
Nap + L | 43.53 | 5.44 | 16.56 |
Nap + csc + M | 85.59 | 10.70 | 84.93 |
Ms + Nap | 43.13 | 5.39 | 16.15 |
Ms + Nap + csc | 126.19 | 15.77 | 194.71 |
Ms + Nap + Csc + M | 143.54 | 17.94 | 254.54 |
Feeding Strategies | Mean Eco. Eff. |
---|---|
Ms | 113.4 ± 6.8 |
Ms + L | 277.4 ± 37.8 |
Ms + Cs + M | 296.7 ± 44.3 |
NaP | 501.5 ± 140.9 |
Nap + L | 206.7 ± 18.1 |
Nap + csc + M | 412.2 ± 92.6 |
Ms + Nap | 204.7 ± 17.7 |
Ms + Nap + csc | 609.6 ± 211.8 |
Ms + Nap + Csc + Nap | 693.4 ± 276.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volenzo Elijah, T.; Makungo, R.; Ekosse, G.-I. Effective Mainstreaming of Agricultural Emissions into Climate Action Agenda: The Case of Institutions and Smallholder Dairy Production Systems, Western Kenya. Atmosphere 2021, 12, 1507. https://doi.org/10.3390/atmos12111507
Volenzo Elijah T, Makungo R, Ekosse G-I. Effective Mainstreaming of Agricultural Emissions into Climate Action Agenda: The Case of Institutions and Smallholder Dairy Production Systems, Western Kenya. Atmosphere. 2021; 12(11):1507. https://doi.org/10.3390/atmos12111507
Chicago/Turabian StyleVolenzo Elijah, Tom, Rachel Makungo, and Georges-Ivo Ekosse. 2021. "Effective Mainstreaming of Agricultural Emissions into Climate Action Agenda: The Case of Institutions and Smallholder Dairy Production Systems, Western Kenya" Atmosphere 12, no. 11: 1507. https://doi.org/10.3390/atmos12111507
APA StyleVolenzo Elijah, T., Makungo, R., & Ekosse, G. -I. (2021). Effective Mainstreaming of Agricultural Emissions into Climate Action Agenda: The Case of Institutions and Smallholder Dairy Production Systems, Western Kenya. Atmosphere, 12(11), 1507. https://doi.org/10.3390/atmos12111507