Aerosol Particle Transport and Deposition in Upper and Lower Airways of Infant, Child and Adult Human Lungs
Abstract
:1. Introduction
2. Lung Model
2.1. Lung Geometry
2.2. Mesh Generation
3. Numerical Method
3.1. Airflow Model
3.2. Particle Transport Model
3.3. Deposition Efficiency Calculation
3.4. Grid Independence Study and Model Validation
3.4.1. Grid Dependency Test
3.4.2. Model Validation
4. Results and Discussion
4.1. Airflow Characteristics
4.2. Wall Shear Stress
4.3. Particle Deposition
4.4. Limitations of the Study
5. Conclusions
- The average wall shear stress is decreased with an increase of age. The pressure of generation G0 to G3 of a 9-month-old lung is 56.35% higher than the 30-year-old lung due to the inhalation flow rate.
- 30% more particles are deposited in the lower airways (G12–G15) than in the upper airways (G0–G3).
- 60.32%, 61.31%, and 61.75% 5-nm particles are deposited in the generation G12 for 9-month, 6-year, and 30-year ages, respectively, which indicates that the number of particle deposition increases with increased age.
- A high percentage of the 5-nm particles (over 95%) entering G12 can be deposited in the deep lung airways (G12–G15). As the particle size is increased to 500 nm, only 3% of the particles are deposited in the G12–G15 lung airways. The above finding indicates that particles must have a small diameter to increase the deposition in the deep lung airways.
- The numerical study showed that deposition efficiency is significantly affected by lung airways reduction. Most of the particles are deposited in the 30-year-old lung than 9-month-old lung in the lower generations compared to the upper generation. Therefore, our results further investigate that correctly choosing particles size as targeted drug-aerosol delivery size based on age.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sorino, C.; Negri, S.; Spanevello, A.; Visca, D.; Scichilone, N. Inhalation therapy devices for the treatment of obstructive lung diseases: The history of inhalers towards the ideal inhaler. Eur. J. Intern. Med. 2020, 75, 15–18. [Google Scholar] [CrossRef]
- Pulivendala, G.; Bale, S.; Godugu, C. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv. Transl. Res. 2020, 10, 339–353. [Google Scholar] [CrossRef]
- Matera, M.G.; Calzetta, L.; Ora, J.; Rogliani, P.; Cazzola, M. Pharmacokinetic/pharmacodynamic approaches to drug delivery design for inhalation drugs. Expert Opin. Drug Deliv. 2021, 18, 891–906. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Islam, M.S.; Luo, Z. Ultrafine particle transport and deposition in the upper airways of a CT-based realistic lung. In Proceedings of the 21st Australasian Fluid Mechanics Conference(AFMC 2018), Adelaide, Australia, 10–13 December 2018. [Google Scholar]
- Wang, J.; Fan, Y. Lung injury induced by TiO2 nanoparticles depends on their structural features: Size, shape, crystal phases, and surface coating. Int. J. Mol. Sci. 2014, 15, 22258–22278. [Google Scholar] [CrossRef]
- Inthavong, K.; Zhang, K.; Tu, J. Numerical modelling of nanoparticle deposition in the nasal cavity and the tracheobronchial airway. Comput. Methods Biomech. Biomed. Eng. 2011, 14, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kleinstreuer, C. Airflow structures and nano-particle deposition in a human upper airway model. J. Comput. Phys. 2004, 198, 178–210. [Google Scholar] [CrossRef]
- Islam, M.S.; Larpruenrudee, P.; Saha, S.C.; Pourmehran, O.; Paul, A.R.; Gemci, T.; Collins, R.; Paul, G.; Gu, Y. How severe acute respiratory syndrome coronavirus-2 aerosol propagates through the age-specific upper airways. Phys. Fluids 2021, 33, 081911. [Google Scholar] [CrossRef]
- Cheng, K.-H.; Cheng, Y.-S.; Yeh, H.-C.; Swift, D. Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage. J. Biomech. Eng. 1997, 119, 476–482. [Google Scholar] [CrossRef]
- Balásházy, I.; Hofmann, W. Deposition of aerosols in asymmetric airway bifurcations. J. Aerosol Sci. 1995, 26, 273–292. [Google Scholar] [CrossRef]
- Weibel, E.R.; Cournand, A.F.; Richards, D.W. Morphometry of the Human Lung; Springer: Berlin/Heidelberg, Germany, 1963. [Google Scholar]
- Moskal, A.; Gradoń, L. Temporary and spatial deposition of aerosol particles in the upper human airways during breathing cycle. J. Aerosol Sci. 2002, 33, 1525–1539. [Google Scholar] [CrossRef]
- Hofmann, W.; Golser, R.; Balashazy, I. Inspiratory deposition efficiency of ultrafine particles in a human airway bifurcation model. Aerosol Sci. Technol. 2003, 37, 988–994. [Google Scholar] [CrossRef] [Green Version]
- Pourmehran, O.; Gorji, T.B.; Gorji-Bandpy, M. Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics. Biomech. Modeling Mechanobiol. 2016, 15, 1355–1374. [Google Scholar] [CrossRef]
- Islam, M.S.; Saha, S.C.; Sauret, E.; Gemci, T.; Yang, I.A.; Gu, Y. Ultrafine particle transport and deposition in a large scale 17-generation lung model. J. Biomech. 2017, 64, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Asgari, M.; Lucci, F.; Kuczaj, A.K. Multispecies aerosol evolution and deposition in a human respiratory tract cast model. J. Aerosol Sci. 2021, 153, 105720. [Google Scholar] [CrossRef]
- Ménache, M.; Hofmann, W.; Ashgarian, B.; Miller, F. Airway geometry models of children’s lungs for use in dosimetry modeling. Inhal. Toxicol. 2008, 20, 101–126. [Google Scholar] [CrossRef] [PubMed]
- Veneroni, C.; Mercadante, D.; Lavizzari, A.; Colnaghi, M.; Mosca, F.; Dellacà, R.L. Changes in respiratory mechanics at birth in preterm infants: A pilot study. Pediatric Pulmonol. 2020, 55, 1640–1645. [Google Scholar] [CrossRef]
- Anderko, L.; Chalupka, S.; Du, M.; Hauptman, M. Climate changes reproductive and children’s health: A review of risks, exposures, and impacts. Pediatr. Res. 2020, 87, 414–419. [Google Scholar] [CrossRef]
- Kim, J.B.; Prunicki, M.; Haddad, F.; Dant, C.; Sampath, V.; Patel, R.; Smith, E.; Akdis, C.; Balmes, J.; Snyder, M.P. Cumulative lifetime burden of cardiovascular disease from early exposure to air pollution. J. Am. Heart Assoc. 2020, 9, e014944. [Google Scholar] [CrossRef]
- Vriesman, M.H.; Koppen, I.J.; Camilleri, M.; Di Lorenzo, C.; Benninga, M.A. Management of functional constipation in children and adults. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 21–39. [Google Scholar] [CrossRef]
- Schechter, M.S. Airway clearance applications in infants and children. Respir. Care 2007, 52, 1382–1391. [Google Scholar] [PubMed]
- Xu, G.; Yu, C. Effects of age on deposition of inhaled aerosols in the human lung. Aerosol Sci. Technol. 1986, 5, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Ou, C.; Chen, J.; Xiang, Y. Particle deposition in tracheobronchial airways of an infant, child and adult. Sci. Total Environ. 2018, 612, 339–346. [Google Scholar] [CrossRef]
- Rahman, M.M.; Zhao, M.; Islam, M.S.; Dong, K.; Saha, S.C. Aging effects on airflow distribution and micron-particle transport and deposition in a human lung using CFD-DPM approach. Adv. Powder Technol. 2021, 32, 3506–3516. [Google Scholar] [CrossRef]
- Kwok, P.C.L.; Chan, H.-K. Delivery of inhalation drugs to children for asthma and other respiratory diseases. Adv. Drug Deliv. Rev. 2014, 73, 83–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoppert, D.; Reed, M.; Benavides, S.; Totton, J.; Hoff, D.; Moffett, B.; Norris, K.; Vaillancout, R.; Aucoin, R.; Worthington, M. Paediatric age categories to be used in differentiating between listing on a model essential medicines list for children. Word Health Organ. Position Pap. 2007, 1, 1–5. [Google Scholar]
- Zhang, W.; Xiang, Y.; Lu, C.; Ou, C.; Deng, Q. Numerical modeling of particle deposition in the conducting airways of asthmatic children. Med. Eng. Phys. 2020, 76, 40–46. [Google Scholar] [CrossRef]
- Islam, M.S.; Saha, S.C.; Sauret, E.; Ong, H.; Young, P.; Gu, Y. Euler–Lagrange approach to investigate respiratory anatomical shape effects on aerosol particle transport and deposition. Toxicol. Res. Appl. 2019, 3, 2397847319894675. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Raghav, V.; Padhmashali, V.; Paul, G.; Islam, M.S.; Saha, S.C. Airflow and particle transport prediction through stenosis airways. Int. J. Environ. Res. Public Health 2020, 17, 1119. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Islam, M.S.; Saha, S.C. Targeted drug delivery of magnetic nano-particle in the specific lung region. Computation 2020, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.; Qi, S.; Yue, Y.; Shen, J.; Zhang, B.; Sun, W.; Qian, W.; Islam, M.S.; Saha, S.C.; Wu, J. Structural and functional alterations of the tracheobronchial tree after left upper pulmonary lobectomy for lung cancer. Biomed. Eng. Online 2019, 18, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Zhao, M.; Islam, M.S.; Dong, K.; Saha, S.C. Airflow dynamic and particle deposition in age-specific human lungs. In Proceedings of the 22nd Australasian Fluid Mechanics Conference (AFMC 2020), Brisbane, Australia, 7–10 December 2020. [Google Scholar]
- Islam, M.S.; Larpruenrudee, P.; Hossain, S.I.; Rahimi-Gorji, M.; Gu, Y.; Saha, S.C.; Paul, G. Polydisperse Aerosol Transport and Deposition in Upper Airways of Age-Specific Lung. Int. J. Environ. Res. Public Health 2021, 18, 6239. [Google Scholar] [CrossRef]
- Hendryx, M.; Islam, M.S.; Dong, G.-H.; Paul, G. Air pollution emissions 2008–2018 from australian coal mining: Implications for public and occupational health. Int. J. Environ. Res. Public Health 2020, 17, 1570. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Gu, Y.; Farkas, A.; Paul, G.; Saha, S.C. Helium–oxygen mixture model for particle transport in CT-based upper airways. Int. J. Environ. Res. Public Health 2020, 17, 3574. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, W. Mathematical model for the postnatal growth of the human lung. Respir. Physiol. 1982, 49, 115–129. [Google Scholar] [CrossRef]
- Morsi, S.; Alexander, A. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 1972, 55, 193–208. [Google Scholar] [CrossRef]
- Rahman, M.M.; Zhao, M.; Islam, M.S.; Dong, K.; Saha, S.C. Numerical study of nanoscale and microscale particle transport in realistic lung models with and without stenosis. Int. J. Multiph. Flow 2021, 145, 103842. [Google Scholar] [CrossRef]
- Rahman, M.M.; Zhao, M.; Islam, M.S.; Dong, K.; Saha, S.C. Airflow dynamics and aerosol particle transport in a human lung. In Proceedings of the 1st International Conference on Mechanical and Manufacturing Engineering Research and Practice (iCMMERP-2019), Sydney, Australia, 24–28 November 2019; pp. 5–9. [Google Scholar]
- Kim, C. Ultrafine Particle Deposition in a Double Bifurcation Tube with Human G3–G5 Airway Geometry; Internal Report; US EPA: Washington, DC, USA, 2002.
- Kleinstreuer, C.; Zhang, Z.; Li, Z. Modeling airflow and particle transport/deposition in pulmonary airways. Respir. Physiol. Neurobiol. 2008, 163, 128–138. [Google Scholar] [CrossRef]
- Chen, X.; Feng, Y.; Zhong, W.; Sun, B.; Tao, F. Numerical investigation of particle deposition in a triple bifurcation airway due to gravitational sedimentation and inertial impaction. Powder Technol. 2018, 323, 284–293. [Google Scholar] [CrossRef]
- Islam, M.S.; Larpruenrudee, P.; Paul, A.R.; Paul, G.; Gemci, T.; Gu, Y.; Saha, S.C. SARS CoV-2 aerosol: How far it can travel to the lower airways? Phys. Fluids 2021, 33, 061903. [Google Scholar] [CrossRef]
- Dong, J.; Shang, Y.; Tian, L.; Inthavong, K.; Qiu, D.; Tu, J. Ultrafine particle deposition in a realistic human airway at multiple inhalation scenarios. Int. J. Numer. Methods Biomed. Eng. 2019, 35, e3215. [Google Scholar] [CrossRef]
- Dang Khoa, N.; Phuong, N.L.; Ito, K. Numerical modeling of nanoparticle deposition in realistic monkey airway and human airway models: A comparative study. Inhal. Toxicol. 2020, 32, 311–325. [Google Scholar] [CrossRef]
- Ou, C.; Jian, H.; Deng, Q. Particle Deposition in Human Lung Airways: Effects of Airflow, Particle Size, and Mechanisms. Aerosol Air Qual. Res. 2020, 20, 2846–2858. [Google Scholar] [CrossRef]
Generation (G) | Diameter (cm) | Length (cm) | Diameter (cm) | Length (cm) | Diameter (cm) | Length (cm) |
---|---|---|---|---|---|---|
Upper airways (G0–G3) | 9 month old infant | 6 year old child | 30 year old adult | |||
0 | 0.615 | 4.630 | 0.985 | 7.934 | 1.665 | 12.286 |
1 | 0.491 | 1.712 | 0.842 | 2.822 | 1.219 | 4.284 |
2 | 0.333 | 0.761 | 0.572 | 1.307 | 0.829 | 1.896 |
3 | 0.227 | 0.307 | 0.387 | 0.525 | 0.559 | 0.759 |
Lower airways (G12–G15) | ||||||
12 | 0.041 | 0.143 | 0.067 | 0.233 | 0.095 | 0.330 |
13 | 0.036 | 0.121 | 0.058 | 0.193 | 0.082 | 0.271 |
14 | 0.031 | 0.097 | 0.052 | 0.161 | 0.074 | 0.231 |
15 | 0.028 | 0.087 | 0.046 | 0.142 | 0.066 | 0.201 |
Breathing Frequencies fb (min−1) | Tidal Volume Vt (mL) | Inhalation Flow Rate Qin (L/min) | Flow Velocity (m/s) | ||
---|---|---|---|---|---|
Upper Airways (G0–G3) | Lower Airways (G12–G15) | ||||
Infant | 33.82 | 47.68 | 3.22 | 1.806 | 0.098 |
Child | 19.34 | 209.44 | 8.09 | 1.766 | 0.093 |
Adult | 13.98 | 500 | 14 | 1.071 | 0.080 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Zhao, M.; Islam, M.S.; Dong, K.; Saha, S.C. Aerosol Particle Transport and Deposition in Upper and Lower Airways of Infant, Child and Adult Human Lungs. Atmosphere 2021, 12, 1402. https://doi.org/10.3390/atmos12111402
Rahman MM, Zhao M, Islam MS, Dong K, Saha SC. Aerosol Particle Transport and Deposition in Upper and Lower Airways of Infant, Child and Adult Human Lungs. Atmosphere. 2021; 12(11):1402. https://doi.org/10.3390/atmos12111402
Chicago/Turabian StyleRahman, Md. M., Ming Zhao, Mohammad S. Islam, Kejun Dong, and Suvash C. Saha. 2021. "Aerosol Particle Transport and Deposition in Upper and Lower Airways of Infant, Child and Adult Human Lungs" Atmosphere 12, no. 11: 1402. https://doi.org/10.3390/atmos12111402
APA StyleRahman, M. M., Zhao, M., Islam, M. S., Dong, K., & Saha, S. C. (2021). Aerosol Particle Transport and Deposition in Upper and Lower Airways of Infant, Child and Adult Human Lungs. Atmosphere, 12(11), 1402. https://doi.org/10.3390/atmos12111402