Deposition of Smoke Particles in Human Airways with Realistic Waveform
Abstract
:1. Introduction
2. Computational Methodology
2.1. Geometry
- Oropharynx: This is the rear of the oral opening consisting of a portion of the tongue, soft palate, part of the throat, and the tonsil glands. The opening (inlet) equal to the diameter of a cigarette is provided in the HRT model.
- Larynx: This is known as the ’voice generation box’.
- Trachea: This is known as the windpipe.
- Bronchus: This is one of the two long airways connecting the trachea of the lungs.
2.2. Grid Generation
2.3. Governing Equations
2.3.1. Continuity Equation
- μ = viscosity of fluid
- ui, uj (i, j = 1, 2, 3) is the velocity component in x, y and z direction.
- p = pressure
- ρ = density of fluid.
2.3.2. Governing Equation for Particle Phase
2.3.3. LRN k−ω Turbulence Model
2.4. Boundary Conditions
2.4.1. Airflow Boundary Condition
2.4.2. DPM Boundary Conditions
2.5. Smoke Particle Properties
2.6. CFD Solver Settings
3. Results and Discussion
3.1. Deposition and Flow Pattern at Constant Velocity
3.1.1. Total Deposition Fraction of CSP at Constant Flow
3.1.2. Puffing Velocity Contour
3.1.3. Velocity Contours at Transverse Planes at Constant Fresh Air Inhalation
3.1.4. Generation Wise CSP Deposition at a Constant Flow Rate
3.2. Results of Realistic Puffing Waveform
3.2.1. Velocity Contours at Transient Puffing and Post-Puffing Waveform
3.2.2. Airflow Vector with Realistic Puffing Waveform Showing Inhalation and Exhalation during Smoking
3.2.3. Velocity Contours at Transverse Planes for Transient Conditions
3.2.4. Particle Propagation Pattern at Transient Conditions
3.3. CSP Deposition at Different HRT Locations with Transient Smoking Waveform
3.3.1. CSP Deposition at Various Locations of the HRT
3.3.2. Generation-Wise CSP Deposition at Various Instants
3.3.3. Total Deposition Fraction for Different Particle Sizes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention (US); National Center for Chronic Disease Prevention and Health Promotion (US); Office on Smoking and Health (US). How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General; Centers for Disease Control and Prevention (US): Atlanta, GA, USA, 2010.
- National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General; Centers for Disease Control and Prevention (US): Atlanta, GA, USA, 2014.
- Novotny, T.E.; Bialous, S.A.; Burt, L.; Curtis, C.; Da Costa, V.L.; Iqtidar, S.U.; Liu, Y.; Pujari, S.; D’Espaignet, E.T. The environmental and health impacts of tobacco agriculture, cigarette manufacture and consumption. Bull. World Health Organ. 2015, 93, 877–880. [Google Scholar] [CrossRef]
- Robertson, P.; Walsh, M.; Greene, J. Oral effects of smokeless tobacco use by professional baseball players. Adv. Dent. Res. 1997, 11, 307–312. [Google Scholar] [CrossRef]
- Allam, E.; Zhang, W.; Al-Shibani, N.; Sun, J.; Labban, N.; Song, F.; Windsor, L.J. Effects of cigarette smoke condensate on oral squamous cell carcinoma cells. Arch. Oral Biol. 2011, 56, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.J.; Yu, R.J. Deposition of Cigarette Smoke Particles in the Human Respiratory Tract. Aerosol Sci. Technol. 2011, 34, 202–215. [Google Scholar] [CrossRef]
- Hinds, W.; First, M.; Huber, G.; Shea, J. A Method for Measuring Respiratory Deposition of Cigarette Smoke during Smoking. Am. Ind. Hyg. Assoc. J. 1983, 44, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Martonen, T. Deposition patterns of cigarette smoke in human airways. Am. Ind. Hyg. Assoc. J. 1992, 53, 6–18. [Google Scholar] [CrossRef]
- Phalen, R.F.; Oldham, M.J.; Mannix, R.C.; Schum, G.M. Cigarette Smoke Deposition in the Tracheobronchial Tree: Evidence for Colligative Effects. Aerosol Sci. Technol. 1994, 20, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Oldham, M.J.; Schum, G.M.; Phalen, R.F. The Deposition of Concentrated Cigarette Smoke in Airway Models. Ann. Occup. Hyg. 2002, 46, 343–345. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, D.M. A Review of the Influence of Particle Size, Puff Volume, and Inhalation Pattern on the Deposition of Cigarette Smoke Particles in the Respiratory Tract. Inhal. Toxicol. 2004, 16, 675–689. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.R.; Dixon, M. The Retention of Tobacco Smoke Constituents in the Human Respiratory Tract. Inhal. Toxicol. 2006, 18, 255–294. [Google Scholar] [CrossRef]
- Gower, S.; Hammond, D. CSP Deposition to the Alveolar Region of the Lung: Implications of Cigarette Design. Risk Anal. 2007, 27, 1519–1533. [Google Scholar] [CrossRef] [PubMed]
- Kleinstreuer, C.; Feng, Y. Lung Deposition Analyses of Inhaled Toxic Aerosols in Conventional and Less Harmful Cigarette Smoke: A Review. Int. J. Environ. Res. Public Health 2013, 10, 4454–4485. [Google Scholar] [CrossRef]
- Mikheev, V.B.; Ivanov, A.; Lucas, E.A.; South, P.L.; Colijn, H.O.; Clark, P.I. Aerosol size distribution measurement of electronic cigarette emissions using combined differential mobility and inertial impaction methods: Smoking machine and puff topography influence. Aerosol Sci. Technol. 2018, 52, 1233–1248. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cui, H.; Chen, L.; Fan, M.; Cai, J.; Guo, J.; Yurteri, C.U.; Si, X.; Liu, S.; Xie, F.; et al. Modeled Respiratory Tract Deposition of Smoke Aerosol from Conventional Cigarettes, Electronic Cigarettes and Heat-not-burn Products. Aerosol Air Qual. Res. 2021, 21, 200241. [Google Scholar] [CrossRef]
- Manojkumar, N.; Srimuruganandam, B.; Nagendra, S.S. Application of multiple-path particle dosimetry model for quantifying age specified deposition of particulate matter in human airway. Ecotoxicol. Environ. Saf. 2019, 168, 241–248. [Google Scholar] [CrossRef]
- Sahu, S.; Tiwari, M.; Bhangare, R.; Pandit, G. Particle Size Distribution of Mainstream and Exhaled Cigarette Smoke and Predictive Deposition in Human Respiratory Tract. Aerosol Air Qual. Res. 2013, 13, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Sosnowski, T.R.; Kramek-Romanowska, K. Predicted Deposition of E-Cigarette Aerosol in the Human Lungs. J. Aerosol Med. Pulm. Drug Deliv. 2016, 29, 299–309. [Google Scholar] [CrossRef]
- Kane, D.B.; Asgharian, B.; Price, O.T.; Rostami, A.; Oldham, M.J. Effect of smoking parameters on the particle size distribution and predicted airway deposition of mainstream cigarette smoke. Inhal. Toxicol. 2010, 22, 199–209. [Google Scholar] [CrossRef]
- Asgharian, B.; Price, O.T.; Yurteri, C.U.; Dickens, C.; McAughey, J. Component-specific, cigarette particle deposition modeling in the human respiratory tract. Inhal. Toxicol. 2013, 26, 36–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bui, V.K.H.; Moon, J.-Y.; Chae, M.; Park, D.; Lee, Y.-C. Prediction of Aerosol Deposition in the Human Respiratory Tract via Computational Models: A Review with Recent Updates. Atmosphere 2020, 11, 137. [Google Scholar] [CrossRef] [Green Version]
- Tian, G.; Hindle, M.; Lee, S.; Longest, P.W. Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data. Pharm. Res. 2015, 32, 3170–3187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, B.; Srivastav, V.K.; Jain, A.; Paul, A.R. Study of Numerical Schemes for the CFD Simulation of Human Airways. Int. J. Integr. Eng. 2019, 11, 32–40. [Google Scholar]
- Islam, M.S.; Larpruenrudee, P.; Paul, A.R.; Paul, G.; Gemci, T.; Gu, Y.; Saha, S.C. SARS CoV-2 aerosol: How far it can travel to the lower airways? Phys. Fluids 2021, 33, 061903. [Google Scholar] [CrossRef] [PubMed]
- Srivastav, V.K.; Paul, A.R.; Jain, A. Effects of cartilaginous rings on airflow and particle transport through simplified and realistic models of human upper respiratory tracts. Acta Mech. Sin. 2013, 29, 883–892. [Google Scholar] [CrossRef]
- Srivastav, V.K.; Paul, A.R.; Jain, A. Capturing the wall turbulence in CFD simulation of human respiratory tract. Math. Comput. Simul. 2019, 160, 23–38. [Google Scholar] [CrossRef]
- Srivastav, V.K.; Jain, A.; Paul, A.R. Computational Studies of Aerosolized Drug Deposition in Human Respiratory Tract. Recent Adv. Comput. Mech. Simul. 2021, 2, 11–23. [Google Scholar] [CrossRef]
- Srivastav, V.K.; Kumar, A.; Shukla, S.K.; Paul, A.K.; Bhatt, A.D.; Jain, A. Airflow and Aerosol-Drug Delivery in a CT Scan based Human Respiratory Tract with Tumor using CFD. J. Appl. Fluid Mech. 2014, 7, 345–356. [Google Scholar] [CrossRef]
- Srivastav, V.K.; Paul, A.R.; Jain, A. Computational study of drug delivery in tumorous human airways. Int. J. Comput. Sci. Math. 2019, 10, 459–475. [Google Scholar] [CrossRef]
- Singh, D.; Jain, A.; Paul, A.R. Numerical Study on Particle Deposition in Healthy Human Airways and Airways with Glomus Tumor. In Advances in Biomedical Engineering and Technology; Rizvanov, A.A., Singh, B.K., Ganasala, P., Eds.; Springer: Singapore, 2021. [Google Scholar]
- Shukla, R.K.; Srivastav, V.K.; Paul, A.R.; Jain, A. Fluid structure interaction studies of human airways. Sadhana 2020, 45, 1–6. [Google Scholar] [CrossRef]
- Tiwari, A.; Jain, A.; Paul, A.R.; Saha, S.C. Computational evaluation of drug delivery in human respiratory tract under realistic inhalation. Phys. Fluids 2021, 33. [Google Scholar] [CrossRef]
- Muller, W.; Hess, G.; Scherer, P. A Model of Cigarette Smoke Particle Deposition. Am. Ind. Hyg. Assoc. J. 1990, 51, 245–256. [Google Scholar] [CrossRef]
- Robinson, R.J.; Oldham, M.J.; Clinkenbeard, R.E.; Rai, P. Experimental and Numerical Smoke Carcinogen Deposition in a Multi-Generation Human Replica Tracheobronchial Model. Ann. Biomed. Eng. 2006, 34, 373–383. [Google Scholar] [CrossRef]
- Steffens, J. Comparison of Particle Deposition for Realistic Adult and Adolescent Upper Airway Geometries Using Unsteady Computational Fluid Dynamics. Master’s Thesis, Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA. Available online: https://scholarworks.rit.edu/theses/7253 (accessed on 24 June 2021).
- Zhang, Z.; Kleinstreuer, C.; Hyun, S. Size-change and deposition of conventional and composite cigarette smoke particles during inhalation in a subject-specific airway model. J. Aerosol Sci. 2012, 46, 34–52. [Google Scholar] [CrossRef]
- Zhang, Z.; Kleinstreuer, C.; Feng, Y. Vapor deposition during cigarette smoke inhalation in a subject-specific human airway model. J. Aerosol Sci. 2012, 53, 40–60. [Google Scholar] [CrossRef]
- Li, Z. Particle Deposition in Oral-tracheal Airway Models with Very Low Inhalation Profiles. J. Bionic Eng. 2012, 9, 252–261. [Google Scholar] [CrossRef]
- Saber, E.M.; Heydari, G. Flow patterns and deposition fraction of particles in the range of 0.1–10 µm at trachea and the first third generations under different breathing conditions. Comput. Biol. Med. 2012, 42, 631–638. [Google Scholar] [CrossRef]
- Schroeter, J.; Asgharian, B.; Price, O.; Yurteri, C.U.; Dickens, C.; McAughey, J. CFD simulations of mainstream cigarette smoke particle growth and deposition in the oral airways. J. Aerosol Med. Pulm. Drug Deliv. 2014, 26. Available online: https://www.bat-science.com/groupms/sites/BAT_B9JBW3.nsf/vwPagesWebLive/DO96KCKX/$FILE/Schroeter-ISAM2013.pdf?openelement (accessed on 24 June 2021).
- Pichelstorfer, L.; Winkler-Heil, R.; Hofmann, W. Lagrangian/Eulerian model of coagulation and deposition of inhaled particles in the human lung. J. Aerosol Sci. 2013, 64, 125–142. [Google Scholar] [CrossRef] [Green Version]
- Kolanjiyil, A.V.; Kleinstreuer, C. Computational analysis of aerosol-dynamics in a human whole-lung airway model. J. Aerosol Sci. 2017, 114, 301–316. [Google Scholar] [CrossRef]
- Feng, Y.; Kleinstreuer, C.; Castro, N.; Rostami, A. Computational transport, phase change and deposition analysis of inhaled multicomponent droplet–vapor mixtures in an idealized human upper lung model. J. Aerosol Sci. 2016, 96, 96–123. [Google Scholar] [CrossRef] [Green Version]
- Haghnegahdar, A.; Feng, Y.; Chen, X.; Lin, J. Computational analysis of deposition and translocation of inhaled nicotine and acrolein in the human body with e-cigarette puffing topographies. Aerosol Sci. Technol. 2018, 52, 483–493. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Liu, Y. Modeling the bifurcating flow in a CT-scanned human lung airway. J. Biomech. 2008, 41, 2681–2688. [Google Scholar] [CrossRef]
- Kleinstreuer, C.; Zhang, Z. Airflow and Particle Transport in the Human Respiratory System. Annu. Rev. Fluid Mech. 2010, 42, 301–334. [Google Scholar] [CrossRef]
- Rodgman, A.; Perfetti, T.A. The Chemical Components of Tobacco and Tobacco Smoke; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Jaccard, G.; Djoko, D.T.; Korneliou, A.; Stabbert, R.; Belushkin, M.; Esposito, M. Mainstream smoke constituents and in vitro toxicity comparative analysis of 3R4F and 1R6F reference cigarettes. Toxicol. Rep. 2019, 6, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Lipowicz, P.J. Determination of cigarette smoke particle density from mass and mobility measurements in a millikan cell. J. Aerosol Sci. 1988, 19, 587–589. [Google Scholar] [CrossRef]
- Boué, S.; Goedertier, D.; Hoeng, J.; Kuczaj, A.; Majeed, S.; Mathis, C.; May, A.; Phillips, B.; Peitsch, M.C.; Radtke, F.; et al. State-of-the-art methods and devices for the generation, exposure, and collection of aerosols from heat-not-burn tobacco products. Toxicol. Res. Appl. 2020, 4. [Google Scholar] [CrossRef] [Green Version]
Scheme | No. of Elements | Maximum Skewness | Average Velocity (m/s) |
---|---|---|---|
1 | 1,940,389 | 0.94 | 4.5742 |
2 | 2,864,974 | 0.86 | 4.5855 |
3 | 3,536,776 | 0.87 | 4.5948 |
4 | 5,157,626 | 0.94 | 4.5939 |
Inlet | Velocity Inlet | Unsteady Velocity |
---|---|---|
Turbulence intensity | ||
Hydraulic diameter | ||
Wall | Stationary wall | |
No-slip | ||
Roughness constant | 0.5 | |
Outlet | pressure | Zero gauge |
Inlet | escape |
Outlet | escape |
wall | trap |
Injection type | surface |
Mass flow rate | 8.338 × 10−7 kg/s |
Particle size | micron |
Coupling with continuous phase | yes |
Diameter distribution | uniform |
Turbulent dispersion | Discrete random walk model |
Air | Density | 1.225 kg/m3 |
Viscosity | 1.785 × 10−5 | |
Smoke particle | Density | 1120 kg/m3 |
Solver | Pressure Based, Incompressible, Transient Flow | |
---|---|---|
Pressure -velocity coupling | SIMPLEC | |
Spatial Discretization | Momentum | Quick |
Pressure | Standard | |
Gradient | Green-Gauss node based | |
Turbulence kinetic energy | QUICK | |
Specific dissipation rate | QUICK | |
Transient formulation | First-order implicit |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, A.R.; Khan, F.; Jain, A.; Saha, S.C. Deposition of Smoke Particles in Human Airways with Realistic Waveform. Atmosphere 2021, 12, 912. https://doi.org/10.3390/atmos12070912
Paul AR, Khan F, Jain A, Saha SC. Deposition of Smoke Particles in Human Airways with Realistic Waveform. Atmosphere. 2021; 12(7):912. https://doi.org/10.3390/atmos12070912
Chicago/Turabian StylePaul, Akshoy Ranjan, Firoz Khan, Anuj Jain, and Suvash Chandra Saha. 2021. "Deposition of Smoke Particles in Human Airways with Realistic Waveform" Atmosphere 12, no. 7: 912. https://doi.org/10.3390/atmos12070912
APA StylePaul, A. R., Khan, F., Jain, A., & Saha, S. C. (2021). Deposition of Smoke Particles in Human Airways with Realistic Waveform. Atmosphere, 12(7), 912. https://doi.org/10.3390/atmos12070912